
Service-oriented Life Cycles for
Developing Transdisciplinary Engineering

Systems

Michael Sobolewski a,b,1 and Raymond Kolonay a
a

 Air Force Research Laboratory, WPAFB, Ohio 45433
b

 Polish Japanese Institute of IT, 02-008 Warsaw, Poland

Abstract. A transdisciplinary computational model requires extensive
computational resources to study the behavior of complex engineering systems by
computer simulation. The large system under study that consists of hundreds or
thousands of variables is often a complex engineering design system for which
simple, intuitive analytical solutions are not readily available. In this paper the
basic concepts of mogramming (modeling and programming, or both) for N3

(three-dimensional design structure matrix) diagramming in a Service-ORriented
Computing enviRonment (SORCER) are presented. On the one hand,
mogramming with service variables allows for computational fidelity with
multiple services, evaluations, and sources of data. On the other hand, any
combination of local and remote services in the system can be described as a
collaborative service federation of engineering applications, tools, and utilities. A
service-oriented lifecycle for all phases of mogram-based systems development
reflecting N3 diagraming is presented. In particular all basic phases from inception
through analysis, design, construction, transition, and maintenance are outlined in
a service-oriented framework for deploying transdisciplinary engineering design
systems.

Keywords. MADO, SDLC, service-orientation, N2 and N3 diagrams, exertion-
oriented programming, mogramming, transdisciplinary systems, SORCER

Introduction

Multidisciplinary Analysis and Design Optimization (MADO) is a domain of research
that studies the application of numerical analysis and optimization techniques for the
design of engineering systems involving multiple disciplines. The formulation of
MADO problems has become increasingly complex as the number of engineering
disciplines and design variables included in typical studies has grown from a few dozen
to thousands when applying high-fidelity physics-based modeling early in the design
process [1]. The Service-oriented computing environment (SORCER) is a true service-
oriented MADO environment that has been developed and applied to solve
multidisciplinary design-optimization problems [2][3][4][6].

A service is the work performed in which a service provider (one that serves)
exerts acquired abilities to execute a computation.

A Service-oriented Architecture (SOA) is a software architecture using loosely
coupled service providers that introduces a service registry, the third component to
client-server architecture. The registry allows finding service providers in the network.

1 Corresponding Author, E-Mail: sobol@sorcersoft.org.

Transdisciplinary Lifecycle Analysis of Systems
R. Curran et al. (Eds.)
© 2015 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-544-9-541

541

A Service-object-oriented Architecture (SOOA) is SOA with the communication
based on remote message passing with the ability to pass data using any wire protocol
that can be chosen by a remote object (provider) to satisfy efficient communication
with its requestors. In SOOA a proxy object used by the requestor is created,
registered, and owned by the provider.

Service-oriented programming (SOP) is a programming model organized around
service activities rather than service provider actions and service collaborations rather
than service provider subroutines. The approach is about specifying service
collaborations (activities) by the end user rather than the programmer developing
subroutines (actions) of a single service provider.

Historically, a program has been viewed as a subroutine (callable unit) that takes
input data, processes it, and produces output data. The programming challenge was
seen as how to write subroutines, not how to manage data, and not how to manage
collaborations of services. Object-oriented programing shifted the focus from
subroutines to data management - objects with encapsulated data managed by
subroutines (methods). The SOP challenge is refocused on the collaboration of
local/remote autonomous services. Service-oriented programming takes the view that
what we really care about are the service collaborations we want to manage rather than
the subroutines with data required to manage them.

The first step in SOP is to identify all the services the end user needs to use and
how they relate to each other in a compound service request, an exercise often known
as service modeling. Once services have been identified, corresponding service
providers define the kind of data they contain - data contexts - and any subroutines that
can process the data. Each distinct subroutine is known as a service action (operation)
defined by the provider’s service type used as a reference to service providers. Service
providers communicate with well-defined declarative service requests called context
models or imperative service requests called service exertions. We call a context model
and service exertion respectively as a model and exertion for short, unless otherwise
stated. Compound requests are called service mograms that are aggregations of both
models and exertions- service models - expressed in a relevant service-oriented
language. Mograms express work to be done by collaborating service providers, so
they are front-end (abstract) services with respect to actualized service collaborations
as their back-end (concrete) services. The MADO engineers (end users) usually create
front-end services collaborations while software engineers develop service providers –
actions of individual service providers.

The N2 (N-squared) diagram or design structure matrix [5] represents the
functional or physical interfaces between system elements depicted as diagonal nodes
with connectors showing data flow between nodes. It is used to systematically define
and analyze functional and physical interfaces of the system. It is an engineering tool
for creating front-end MADO services or applications, for example in combination
with essential design factor matrix [6] or with the full-scale UML-based flavor using
SysML [7] tools. The analysis process and data flow represented as the N2 diagram for
the design of the next generation efficient supersonic air vehicle (ESAV) is discussed
in [8][9].

SORCER is based on SOOA using service signatures dependent on service types
(provider-requestor contracts) that play the role of references to service providers and
allow binding to local or remote services (tools, applications, and utilities) at runtime
[2][3]. In this service-oriented (SO) representation, systems, subsystems and
components are implemented as scalable, dynamic, and transdisciplinary collaborations

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles542

of local/remote services. Both system and subsystem components represented by N2
diagrams are expressed in SORCER as mograms [10][11]. Five types of context
models and tree types of exertions are distinguished in SORCER. With high expressive
power of mograms composed of models and exertions, the N2 diagram can be expanded
recursively in the third direction with nested mograms as subsystems being again N2
diagrams (multiple layers of interconnected N2 diagrams). Also, each node in the N2
diagram can be defined with multiple fidelities that expend the N2 diagram in the third
dimension (a single node substituted with multiple nodes as a multi fidelity mograms).
We call hierarchically organized mogram-based diagrams with multi-fidelity
components and flow of control as N3 (N-cubed) diagrams. Both, N2 and N3 diagrams
are discussed in Section 2.

In most service systems the focus is on back-end aggregation of services into a
single provider, thus having more services performed by the same provider or by the
same provider node, e.g., an application server. In either case these new services are
still elementary services to the end user. This type of back-end aggregation, done by
software developers is called service assembly in contrast to the MADO aggregation
corresponding to the N3 diagram created by the end user. In contrast, the front-end
aggregation is a service composition and requires service-oriented languages to express
declaratively and imperatively compositions of hierarchically organized services with
multiple fidelities. Two service-oriented languages, declarative Context Modeling
Language (CML) and imperative Exertion-Oriented Language (EOL) are discussed in
Section 3.

Two ways of defining service composition coexist within SORCER: declarative
context models and imperative exertions with SO flow of control. A context model is a
collection of interrelated service variables - functional compositions - called service
entries. Imperative service compositions – object compositions (composite design
pattern [13]) with flow of control - are called exertions. Both models and exertions use
service signatures to bind at runtime to corresponding service providers. A dynamic
collection of service providers requested for the actualization of model or exertion is
called a service federation. Note that service collaboration is an activity while a service
federation is just a collection of service providers needed for the collaboration. Values
of dependent variables in context models can be evaluated by exertions and context
models can be used as service components of exertions. Therefore in SORCER, an
MADO system represented by the N3 diagram is a hierarchically organized aggregation
of models and exertions with multiple fidelities.

The remainder of this paper is organized as follows: Section 1 describes briefly
problem solving with N2 and N3 diagramming; Section 2 describes SO mogramming
for N3 diagramming; Section 3 describes life cycles for developing transdisciplinary
MADO systems; finally Section 4 concludes with final remarks and comments.

1. Problem Solving with N-squared (N2) and N-cubed (N3) diagramming

Sometimes it is just hard to get started with service-oriented MADO. Faced with a long
problem or project description it’s not clear what is the required order of activities and
related actions to perform. Project descriptions usually just include an overview of the
project, because there are actually many ways to solve the problem or achieve a
required purpose.

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles 543

How do we actually approach the problem? One way to think about a problem is to
consider it as interactions between uniform services within a system. Two methods of
this form of interpretation are the top-down approach and the bottom-up approach. The
top-down approach is considered the “compound service” approach, because the
general idea of the system is first formulated declaratively and without getting down to
the lowest level entities related to implementation of individual services (actions) and
data used. The compound service, or activity, is then broken down into slightly smaller
services. Those services are then split again until we reach the very bottom level of
elementary services (actions). The bottom-up approach considers the lowest level
entities first and their interaction with one another which build subsystems usually
representing imperative processes. These subsystems will interact with each to form
greater subsystems and slowly build our way up to the highest system.

Top-down and bottom-up describes two different methods of thinking: working at
the top is considered strategic and declarative, while working at the bottom is tactical
and imperative. How a given situation is actually perceived and processed will vary
with the person, experience, and runtime environment chosen. However, the approach
is to do whatever is best for managing complexity of the solution by a combination of
both declarative and imperative thinking.

In declarative programming a process is expressed by a functional composition
while in imperative programming is expressed by an algorithm. An algorithm is a
procedure for solving a problem in the form of a self-contained step-by-step set of
services (operations) to be performed with explicit control flow defined. The emphasis
on explicit control flow distinguishes an imperative programming language from a
declarative programming language.

The N2 diagram design structure represents the functional or physical interfaces
between system elements depicted as diagonal services with connectors showing data
flow between services. In Fig.1 nodes of the N2 diagram represent services e1, m1, m3,
and e6 and the diagram as a whole defines the functional composition:

e6(e1, m1(e1), m3(e1))

where the parameters of strict function e6 are evaluated sequentially in the order
specified.

In general, N2 diagramming is a graphical representation of a functional
composition. The composition is defined in a declarative modeling language with no
explicit flow of control for branching and looping. An expanded N2 diagram with
multi-fidelity of diagonal services that can be hierarchically organized with component
diagrams along with flow of control is called an N3 (N-cubed) diagram. An example of
an N3 diagram that expands the N2 diagram from Fig. 1 is depicted in Fig. 2. It
represents the following functional composition:

[g: e1,2; e6,3]e6,*(e1,2(mx,1), m1(e1,1), m3,1(mx,1, ez,2, e1,1))

where [g: e1,2; e6,3] denotes a guard for e6 defining the loop under condition g: if g is
true then e1,2 else e6,3. A current fidelity e6,* of e6 is determined by this self-aware
service at runtime. The third dimension here is represented by multiplicity of service
nodes e1, m3, and e6 with fidelities: e1,1 and e1,2 for e1; m3,1 and m3,2 for m3; and e6,1, e6,2,
and e6,3 for e6. Additionally, each service node can be hierarchically nested with its own
N3 diagrams, for example m3,1 depends on two diagrams N32,1 and N32,2 and e1,1 on N31.

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles544

The matrix crossing points (small circles) represent connectors that match outputs to
relevant inputs between heterogeneous and autonomous services.

In SORCER a service-oriented process represented by an N3 diagram can be
defined declaratively with a Context Modeling Language (CML) as a model or
algorithmically as an exertion with an Exertion-Oriented Language (EOL), or with both
languages at the same time as a mogram – see the following Section for details. Within
EOL a control flow exertion (conditional exertion) is a statement whose execution
results in a choice being made as to which of two or more execution paths should be
followed. Multi-fidelity diagonal services are represented by instances of multi-fidelity
service of the context model type.

2. Service-oriented mogramming

A service mogram is a service model that is executed by a dynamic federation of
services. In other words a mogram exerts the collaborating service providers in a
service federation created at runtime. Mograms are specified in the Service Modeling
Language (SML) that consists of two parts: Context Modeling Language (CML) and
Exertion-Oriented Language (EOL). The former is used to specify data models (data
contexts) for exertions and collections of interrelated functional compositions - context
models. While CML is used for declarative service-oriented programming, EOL is
focused on object-oriented composites of services - exertions.

A model is a declarative representation of something, especially a system,
phenomenon, or service that accounts for its properties and is used to study its
characteristics expressed in terms of service variables associated with functional
compositions.

In every computing process variables represent data elements and the number of
variables increases with the increased complexity of the problems being solved. The
value of a service variable is not necessarily part of an equation or formula as in
mathematics - its value is a result of service execution or the service itself. Handling
large sets of interconnected variables for transdisciplinary computing requires adequate
programming methodologies.

In SORCER interrelated service variables of a model are called entries. An entry
used in a model refers by name (path) to one of the pieces of data - value. A value can

Figure 1. N2 diagram for composition:
e6(e1, m1(e1), m3(e1)).

Figure 2. N3 diagram for composition:
[g: e1,2; e6,3]e6,*(e1,2(mx,1), m1(e1,1), m3,1(mx,1, ez,2, e1,1)).

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles 545

be explicit or calculated by a subroutine. A parameter is a special kind of entry, named
in a subroutine by its path (semantic name) and returning the value of the entry. These
values, called arguments, that are used in subroutines are defined by input entries of the
model. Most parameters are functionals – functions that take functions as their
arguments. A selected subset of output entries defines a studied response of the model.
Just as in standard mathematical usage, the argument is the actual input passed to a
subroutine, whereas the parameter is the variable inside the implementation of the
subroutine. Depending on the type of subroutine (evaluation, invocation, service, or
composite evaluation) we distinguish four types of basic context models (EntModel,
ParModel, SrvModel, VarModel) with ServiceContext as the data model for exertions,
as depicted in the right part of in Fig. 3. Multi-fidelity diagonal services are represented
by instances of multi-fidelity service of the context model type MultiFidelityService.

Figure 3. The UML diagram of SORCER top-level interfaces and classes.

A sketch of a context model is expressed in CML as follows:

Service e1 = exertion(sig(“doAnalysis”, Optimization.class), context(…));
…
Service em = exertion (…);
Service m1 = model(ent(…);
…
Service mn = model(ent(…);
Condition g = condition(…);

Service mo = model(
 // order of entries does not matter
 ent(“e1”, fi(“e1,1“, e1)),

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles546

 ent(“m1”, m1, args(“e1”))),
 …
 ent(“m3”, fi(“m3,1”, m3, args(“N32,1”, “N32,2”, “e1”))),
 …
 outEnt(“e6”, loop(g, e6, args(“m3”, “m1”, “e1”))),
 response(“e6”));

Model out = exert(mo); // evaluate the model mo
Context cxt = result(out); // get the evaluation result
cxt = response(mo); // get declared response e6
Object obj = response(mo, “e1”); // get declared response e1

The first part of the mogram declares component services used in the model mo.

All entries in the model define subroutines with arguments defined by other entries in
the same model. At the end of mogram the basic CML operators are illustrated for
model evaluation and obtaining results.

Exertions are structured by the composite design pattern [13] with elementary
exertions called tasks and compound exertions, exertion of Blok and Job types, as seen
in the left part in Fig. 3. A block represents concatenation of exertions with block-
structured programming combined with flow of control exertions. Jobs represent
object-oriented composites (workflows with pipes for data flow). Therefore, a mogram
is either a model (declarative SO program) or an exertion (imperative SO program), or
a hierarchical hybrid of both as defined by the UML sketch in Fig. 3.

Netlets are expressions in SML that are interpreted as SML scripts (text files) with
the SORCER network shell (nsh). Technically netlets are both Groovy scripts and Java
sources, therefore can be interpreted with a Groovy shell or compiled with a Java
compiler. The former gives the agility of running MADO analyses and optimization
and performing modifications to the netlets with no need for an IDE. The latter, with a
Java IDE, allows for efficient development (compilation and debugging). Therefore,
with their dual nature of netlets they can be developed much easier with Java IDEs and
frequently updated as executable text files. In Java sources netlets can be used directly
as services to provide implementation of service providers that can publish standard
service types implemented by mograms.

A sketch of an exertion-oriented program is expressed in EOL as follows:

Service e1 = exertion(sig(…), context(result(“out/par”), …);
…
Service em = exertion (…);
Service m1 = model(ent(…);
…
Service mn = model(ent(…);
Condition g = condition(…);

Service xrt = loop(g, block(
 // services are ordered for execution
 fi(“e1,1“, e1),
 m1,

 fi(“m3,1”, m3),

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles 547

 e6,
 context(…, result(“opti/value”));

Exertion out = exert(xrt); // execute xrt
Context cxt = context(out); // get result
cxt = value(exertion); // get declared value at opti/value
Object obj = value(xrt, “result/value”); // get value at the path result/value

The first part of the above exertion-oriented program declares component
mograms used in the main exertion xrt. The execution of the exertion xrt is defined by
the concatenation of component mograms (service-oriented statements) to be executed
with the semantics of block-structured programing. At the end of the above mogram
the usage of the basic EOL operators is illustrated for executing exertions and obtaining
results.

Note that both the main model mo and the main exertion xrt implement the same
N3 diagram N30 in Fig. 2. It demonstrates that the main mograms representing N3
diagrams can be implemented either way, with declarative (CML) or imperative
language (EOL) for the top-level mograms.

3. Life cycles for developing service-oriented MADO systems

A systems development life cycle (SDLC) is composed of a number of distinct work
phases that are used by engineers and system developers to plan for, design, build, test
and deliver systems represented by N3 diagrams. An N3-based SDLC aims to produce
high quality systems that meet or exceed customer expectations, based on requirements
represented by hierarchically organized N3 diagrams. A well-defined SDLC process
enables the delivery of transdisciplinary systems, which move through each clearly
defined phase of the generic template of planning, creating, testing, and deploying an
information system.

In systems engineering, with the increasing level of service-orientation (everything
as a service) and increasing number of legacy and new network services supplied by
different development groups and organizations, also increases systems distribution
and heterogeneity. To reliably manage the increasing level of distribution and
heterogeneity, the SORCER environment has been expended to support N3-based
mogramming combined with its unique SDLC phases: inception, analysis, design,
construction, transition, and maintenance.

1. Inception
a) Determine which processes better represent the problem being solved - top-

down or bottom-up problem solving, or the hybrid approach
b) For top-down solutions use CML modeling, for bottom-up use EOL

programming, for hybrid solutions use SO mogramming with CML/EOL or
EOL/CML

c) Identify relevant existing services and those not available yet
d) Identify service UIs required for the end users

2. Analysis
a) Define N3 diagrams representing the MADO process with N3 nodes and N3

components for the hierarchically organized MADO system identified in 1b

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles548

b) If multi-fidelities are required, define corresponding high fidelity alternatives
for corresponding nodes in the N3 diagrams defined in 2a

c) Define service signatures for all local/remote services used in the N3 diagrams
d) For all service types used in signatures, define the Java interfaces that define

the behavior of the service providers
e) Define entries in the data contexts and context models along with needed

connectors to support seamless data flow across N3 diagrams
f) Decide what codes to acquire/buy/develop in support of service providers that

implement service types defined in 2d
g) Define service UIs required for the end users identified in 1d

3. Design
a) Design detailed service types (Java interfaces) for all N3 analysis interfaces

defined in 2d
b) Design all service providers in support of service types designed in 3a
c) Design component mograms, with API or SML/EOL, for N3 diagrams defined

in 2a
d) Design front-end netlets in SML/EOL N3 diagrams for end-users defined in 2a
e) Design required service UIs for corresponding service providers as defined in

2g

4. Construction
a) Use SORCER project templates for developing and testing a service

provider/requestor and service UIs
b) Implement all service types designed in 3a
c) Implement all service provider designed in3b
d) Implement component mograms designed in 3c
e) Implement service UIs designed in 3e
f) Implement netlets designed in 3d as standalone files executable with the nsh

shell
g) Deploy SORCER operating system for development
h) Deploy all required services for development
i) Test services provider classes with local signatures
j) Test remote service providers with service types implemented in 4c
k) Test all service UIs implemented in 4e
l) Test all component mograms implemented in 4d
m) Test all netlets representing N3 diagrams designed in 4f

5. Transition
a) Deploy SORCER operating system for production
b) Deploy all required services for production
c) Transition netlets to end users
d) Provide support for updating and executing netlets by the end users
e) Demonstrate all service UIs’ functionality to the end users.
f) Demonstrate/run/modify netlets with the nsh shell
g) Capture MADO inputs, results with related netlets along with required codes

and sources as a part of corporate design history
h) If updates are needed to N3 diagrams go to 2

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles 549

6. Maintenance
a) Maintain the repository of all codes and sources for developed services with

the unique service IDs used in N3 mograms for later reuse of persisted solution
b) Maintain continuous integration testing of all N3 mograms/netlets/service UIs
c) If minor updates of mograms/netlets/service UIs are required go to 2 or 3
d) If essential updates of mograms/netlets/service UIs are required go to 1

4. Conclusions

Using presented higher-level SO abstractions for mogramming allows reducing the
complexity of creating and using transdisciplinary MADO systems. These network-
centric collaborative systems are created at runtime by teams of engineers working
together and using many shared services that can be provisioned autonomically on
demand.

Domain specific SO languages are for humans, unlike software languages that are
for computers, intended to express domain specific complex MADO processes and
related solutions. Two programming languages (CML and EOL) for SO computing are
introduced in this paper in the context of N2 and N3 diagramming. The SORCER
network shell (nsh) manages the corresponding service federations at runtime for the
N2 and N3 diagrams expressed by mograms.

SDLC phases of mogram-based systems development are presented with the
semantics of N3 diagramming. These continue to evolve with the focus on the
development of interactive tools that facilitate easy creation and testing of graphical
N3diagrams. In particular, all the basic phases from inception through analysis, design,
transition and maintenance are tested and continuously improved for developing
aerospace transdisciplinary engineering systems.

The SORCER mogramming environment supports the two-way convergence of
modeling and programming. It allows for flexible problem solving solutions as
presented in Section 1 and 2. On one hand, EOL is uniformly converged with CML to
express front-end service exertions. On the other hand, CML is uniformly converged
with EOL to express a front-end declarative context models. Both front-end exertions
and models can be used as service providers directly within SORCER.

The evolving SORCER platform (the GitHub open source project [14]) introduces
front-end mogramming languages [11] and an API with a modular service-oriented
operating system [2]. It adds two entirely new layers of abstraction to the practice of
SO computing. The presented SO MADO approach has been verified and validated in
research projects at the Multidisciplinary Science and Technology Center,
AFRL/WPAFB [8][15][16].

Acknowledgement

This work was supported by Air Force Research Lab, Aerospace Systems Directorate,
Multidisciplinary Science and Technology Center, the contract number FA8650-10-D-
3037, Service-Oriented Optimization Environment for Distributed High Fidelity
Engineering Design Optimization.

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles550

References

[1] R. M. Kolonay, A physics-based distributed collaborative design process for military aerospace vehicle
development and technology assessment, International Journal on Agile Systems and Management,
Vol. 7 (2014) Nos. 3/4, pp. 242 – 260.

[2] M. Sobolewski, Service oriented computing platform: an architectural case study. In: R. Ramanathan,
K. Raja (eds.) Handbook of research on architectural trends in service-driven computing, IGI Global,
Hershey, 2014, pp. 220-255.

[3] M. Sobolewski, Unifying Front-end and Back-end Federated Services for Integrated Product
Development, In: J. Cha et al. (eds.) Moving Integated Product Development to Service Clods in
Global Economy, IOS Press, Amsterdam, pp. 3-16, 2014, Retrieved May 25, 2015,
http://ebooks.iospress.nl/publication/37838.

[4] M. Sobolewski, Technology Foundations. In: J. Stjepandić et al. (eds.) Concurrent Engineering in the
21st Century, Springer International Publishing Switzerland, pp. 67-99, 2015.

[5] T. R. Browning, Applying the Design Structure Matrix to System Decomposition and Integration
Problems: A Review and New Directions, IEEE Transactions on Engineering Management, Vol. 48
(2001), No. 3, pp. 292-306.

[6] L. Nan, W. Xu and J. Cha, A Hierarchical Method for Coupling Analysis of Design Services in
Distributed Collaborative Design Environment, International Journal on Agile Systems and
Management, Vol. 8, 2015, Nos. 3/4, in press.

[7] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling Language, Addison-Wesley
Professional, Upper Saddle River, 2013.

[8] S. A. Burton, E. J. Alyanak, and R. M. Kolonay, Efficient Supersonic Air Vehicle Analysis and
Optimization Implementation using SORCER, 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSM AIAA 2012-5520.

[9] M. Sobolewski, S. Burton, and R. Kolonay, Parametric Mogramming with Var-oriented Modeling and
Exertion-Oriented Programming Languages. Proceedings of the 20th ISPE International Conference on
Concurrent Engineering, C. Bil et al. (Eds.), ISBN: 978-1-61499-301-8 (print), 978-1-61499-302-5
(online), IOS Press, 2013, pp. 381-390. Retrieved May 25, 2015,
http://ebooks.iospress.nl/publication/34826.

[10] A. Kleppe, Software Language Engineering, Addison-Wesley Professional, Upper Saddle River, 2009.
[11] M. Sobolewski, and R. Kolonay, Unified Mogramming with Var-Oriented Modeling and Exertion-

Oriented Programming Languages, Int. J. Communications, Network and System Sciences,
2012, 5, 9. http://www.scirp.org/journal/PaperInformation.aspx?paperID=22393, Accessed: 25 May
2015.

[12] M. Sobolewski, Object-Oriented Service Clouds for Transdisciplinary Computing, in: I. Ivanov et al.
(eds.), Cloud Computing and Services Science, DOI 10.1007/978-1-4614-2326-3_1, Springer Science +
Business Media New York, 2012.

[13] T. Bevis, Java Design Pattern Essentials, Ability First Limited, Leigh-on-Sea, 2012.
[14] SORCER Project. http://sorcersoft.org/project/site/, Accessed: 25 May 2015.
[15] R. M. Kolonay, and M. Sobolewski, Service ORiented Computing EnviRonment (SORCER) for Large

Scale, Distributed, Dynamic Fidelity Aeroelastic Analysis & Optimization, International Forum on
Aeroelasticity and Structural Dynamics, IFASD2011, 26–30 June, 2011, Paris.

[16] R. M. Kolonay, E. D. Thompson, J. A. Camberos and F. Eastep, Active Control of Transpiration
Boundary Conditions for Drag Minimization with an Euler CFD Solver, AIAA-2007–1891, 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu,
2007.

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles 551

http://www.scirp.org/journal/PaperInformation.aspx?paperID=22393
http://sorcersoft.org/project/site/

