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Abstract. A transdisciplinary computational model requires extensive 
computational resources to study the behavior of complex engineering systems by 
computer simulation. The large system under study that consists of hundreds or 
thousands of variables is often a complex engineering design system for which 
simple, intuitive analytical solutions are not readily available. In this paper the 
basic concepts of mogramming (modeling and programming, or both) for N3 

(three-dimensional design structure matrix) diagramming in a Service-ORriented 
Computing enviRonment (SORCER) are presented. On the one hand, 
mogramming with service variables allows for computational fidelity with 
multiple services, evaluations, and sources of data. On the other hand, any 
combination of local and remote services in the system can be described as a 
collaborative service federation of engineering applications, tools, and utilities. A 
service-oriented lifecycle for all phases of mogram-based systems development 
reflecting N3 diagraming is presented. In particular all basic phases from inception 
through analysis, design, construction, transition, and maintenance are outlined in 
a service-oriented framework for deploying transdisciplinary engineering design 
systems. 

Keywords. MADO, SDLC, service-orientation, N2 and N3 diagrams, exertion-
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Introduction 

Multidisciplinary Analysis and Design Optimization (MADO) is a domain of research 
that studies the application of numerical analysis and optimization techniques for the 
design of engineering systems involving multiple disciplines. The formulation of 
MADO problems has become increasingly complex as the number of engineering 
disciplines and design variables included in typical studies has grown from a few dozen 
to thousands when applying high-fidelity physics-based modeling early in the design 
process [1]. The Service-oriented computing environment (SORCER) is a true service-
oriented MADO environment that has been developed and applied to solve 
multidisciplinary design-optimization problems [2][3][4][6]. 

A service is the work performed in which a service provider (one that serves) 
exerts acquired abilities to execute a computation.  

A Service-oriented Architecture (SOA) is a software architecture using loosely 
coupled service providers that introduces a service registry, the third component to 
client-server architecture. The registry allows finding service providers in the network.  
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A Service-object-oriented Architecture (SOOA) is SOA with the communication 
based on remote message passing with the ability to pass data using any wire protocol 
that can be chosen by a remote object (provider) to satisfy efficient communication 
with its requestors. In SOOA a proxy object used by the requestor is created, 
registered, and owned by the provider.  

Service-oriented programming (SOP) is a programming model organized around 
service activities rather than service provider actions and service collaborations rather 
than service provider subroutines. The approach is about specifying service 
collaborations (activities) by the end user rather than the programmer developing 
subroutines (actions) of a single service provider.  

Historically, a program has been viewed as a subroutine (callable unit) that takes 
input data, processes it, and produces output data. The programming challenge was 
seen as how to write subroutines, not how to manage data, and not how to manage 
collaborations of services. Object-oriented programing shifted the focus from 
subroutines to data management - objects with encapsulated data managed by 
subroutines (methods). The SOP challenge is refocused on the collaboration of 
local/remote autonomous services. Service-oriented programming takes the view that 
what we really care about are the service collaborations we want to manage rather than 
the subroutines with data required to manage them.  

The first step in SOP is to identify all the services the end user needs to use and 
how they relate to each other in a compound service request, an exercise often known 
as service modeling. Once services have been identified, corresponding service 
providers define the kind of data they contain - data contexts - and any subroutines that 
can process the data. Each distinct subroutine is known as a service action (operation) 
defined by the provider’s service type used as a reference to service providers. Service 
providers communicate with well-defined declarative service requests called context 
models or imperative service requests called service exertions. We call a context model 
and service exertion respectively as a model and exertion for short, unless otherwise 
stated. Compound requests are called service mograms that are aggregations of both 
models and exertions- service models - expressed in a relevant service-oriented 
language. Mograms express work to be done by collaborating service providers, so 
they are front-end (abstract) services with respect to actualized service collaborations 
as their back-end (concrete) services. The MADO engineers (end users) usually create 
front-end services collaborations while software engineers develop service providers – 
actions of individual service providers. 

The N2 (N-squared) diagram or design structure matrix [5] represents the 
functional or physical interfaces between system elements depicted as diagonal nodes 
with connectors showing data flow between nodes. It is used to systematically define 
and analyze functional and physical interfaces of the system. It is an engineering tool 
for creating front-end MADO services or applications, for example in combination 
with essential design factor matrix [6] or with the full-scale UML-based flavor using 
SysML [7] tools. The analysis process and data flow represented as the N2 diagram for 
the design of the next generation efficient supersonic air vehicle (ESAV) is discussed 
in [8][9].  

SORCER is based on SOOA using service signatures dependent on service types 
(provider-requestor contracts) that play the role of references to service providers and 
allow binding to local or remote services (tools, applications, and utilities) at runtime 
[2][3]. In this service-oriented (SO) representation, systems, subsystems and 
components are implemented as scalable, dynamic, and transdisciplinary collaborations 
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of local/remote services. Both system and subsystem components represented by N2 
diagrams are expressed in SORCER as mograms [10][11]. Five types of context 
models and tree types of exertions are distinguished in SORCER. With high expressive 
power of mograms composed of models and exertions, the N2 diagram can be expanded 
recursively in the third direction with nested mograms as subsystems being again N2 
diagrams (multiple layers of interconnected N2 diagrams). Also, each node in the N2 
diagram can be defined with multiple fidelities that expend the N2 diagram in the third 
dimension (a single node substituted with multiple nodes as a multi fidelity mograms). 
We call hierarchically organized mogram-based diagrams with multi-fidelity 
components and flow of control as N3 (N-cubed) diagrams. Both, N2 and N3 diagrams 
are discussed in Section 2. 

In most service systems the focus is on back-end aggregation of services into a 
single provider, thus having more services performed by the same provider or by the 
same provider node, e.g., an application server. In either case these new services are 
still elementary services to the end user. This type of back-end aggregation, done by 
software developers is called service assembly in contrast to the MADO aggregation 
corresponding to the N3 diagram created by the end user. In contrast, the front-end 
aggregation is a service composition and requires service-oriented languages to express 
declaratively and imperatively compositions of hierarchically organized services with 
multiple fidelities. Two service-oriented languages, declarative Context Modeling 
Language (CML) and imperative Exertion-Oriented Language (EOL) are discussed in 
Section 3. 

Two ways of defining service composition coexist within SORCER: declarative 
context models and imperative exertions with SO flow of control. A context model is a 
collection of interrelated service variables - functional compositions - called service 
entries. Imperative service compositions – object compositions (composite design 
pattern [13]) with flow of control - are called exertions. Both models and exertions use 
service signatures to bind at runtime to corresponding service providers. A dynamic 
collection of service providers requested for the actualization of model or exertion is 
called a service federation. Note that service collaboration is an activity while a service 
federation is just a collection of service providers needed for the collaboration. Values 
of dependent variables in context models can be evaluated by exertions and context 
models can be used as service components of exertions. Therefore in SORCER, an 
MADO system represented by the N3 diagram is a hierarchically organized aggregation 
of models and exertions with multiple fidelities. 

The remainder of this paper is organized as follows: Section 1 describes briefly 
problem solving with N2 and N3 diagramming; Section 2 describes SO mogramming 
for N3 diagramming; Section 3 describes life cycles for developing transdisciplinary 
MADO systems; finally Section 4 concludes with final remarks and comments.  

1. Problem Solving with N-squared (N2) and N-cubed (N3) diagramming 

Sometimes it is just hard to get started with service-oriented MADO. Faced with a long 
problem or project description it’s not clear what is the required order of activities and 
related actions to perform. Project descriptions usually just include an overview of the 
project, because there are actually many ways to solve the problem or achieve a 
required purpose. 
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How do we actually approach the problem? One way to think about a problem is to 
consider it as interactions between uniform services within a system. Two methods of 
this form of interpretation are the top-down approach and the bottom-up approach. The 
top-down approach is considered the “compound service” approach, because the 
general idea of the system is first formulated declaratively and without getting down to 
the lowest level entities related to implementation of individual services (actions) and 
data used. The compound service, or activity, is then broken down into slightly smaller 
services. Those services are then split again until we reach the very bottom level of 
elementary services (actions). The bottom-up approach considers the lowest level 
entities first and their interaction with one another which build subsystems usually 
representing imperative processes. These subsystems will interact with each to form 
greater subsystems and slowly build our way up to the highest system.  

Top-down and bottom-up describes two different methods of thinking: working at 
the top is considered strategic and declarative, while working at the bottom is tactical 
and imperative. How a given situation is actually perceived and processed will vary 
with the person, experience, and runtime environment chosen. However, the approach 
is to do whatever is best for managing complexity of the solution by a combination of 
both declarative and imperative thinking.  

In declarative programming a process is expressed by a functional composition 
while in imperative programming is expressed by an algorithm. An algorithm is a 
procedure for solving a problem in the form of a self-contained step-by-step set of 
services (operations) to be performed with explicit control flow defined. The emphasis 
on explicit control flow distinguishes an imperative programming language from a 
declarative programming language.  

The N2 diagram design structure represents the functional or physical interfaces 
between system elements depicted as diagonal services with connectors showing data 
flow between services. In Fig.1 nodes of the N2 diagram represent services e1, m1, m3, 
and e6 and the diagram as a whole defines the functional composition: 

e6(e1, m1(e1), m3(e1)) 

where the parameters of strict function e6 are evaluated sequentially in the order 
specified. 

In general, N2 diagramming is a graphical representation of a functional 
composition. The composition is defined in a declarative modeling language with no 
explicit flow of control for branching and looping. An expanded N2 diagram with 
multi-fidelity of diagonal services that can be hierarchically organized with component 
diagrams along with flow of control is called an N3 (N-cubed) diagram. An example of 
an N3 diagram that expands the N2 diagram from Fig. 1 is depicted in Fig. 2. It 
represents the following functional composition: 

[g: e1,2; e6,3]e6,*(e1,2(mx,1), m1(e1,1), m3,1(mx,1, ez,2, e1,1)) 

where [g: e1,2; e6,3] denotes a guard for e6 defining the loop under condition g: if g is 
true then e1,2 else e6,3. A current fidelity e6,* of e6 is determined by this self-aware 
service at runtime. The third dimension here is represented by multiplicity of service 
nodes e1, m3, and e6 with fidelities: e1,1 and e1,2 for e1; m3,1 and m3,2 for m3; and e6,1, e6,2, 
and e6,3 for e6. Additionally, each service node can be hierarchically nested with its own 
N3 diagrams, for example m3,1 depends on two diagrams N32,1 and N32,2 and e1,1 on N31. 
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The matrix crossing points (small circles) represent connectors that match outputs to 
relevant inputs between heterogeneous and autonomous services. 

In SORCER a service-oriented process represented by an N3 diagram can be 
defined declaratively with a Context Modeling Language (CML) as a model or 
algorithmically as an exertion with an Exertion-Oriented Language (EOL), or with both 
languages at the same time as a mogram – see the following Section for details. Within 
EOL a control flow exertion (conditional exertion) is a statement whose execution 
results in a choice being made as to which of two or more execution paths should be 
followed. Multi-fidelity diagonal services are represented by instances of multi-fidelity 
service of the context model type. 

2. Service-oriented mogramming 

A service mogram is a service model that is executed by a dynamic federation of 
services. In other words a mogram exerts the collaborating service providers in a 
service federation created at runtime. Mograms are specified in the Service Modeling 
Language (SML) that consists of two parts: Context Modeling Language (CML) and 
Exertion-Oriented Language (EOL).  The former is used to specify data models (data 
contexts) for exertions and collections of interrelated functional compositions - context 
models. While CML is used for declarative service-oriented programming, EOL is 
focused on object-oriented composites of services - exertions.  

A model is a declarative representation of something, especially a system, 
phenomenon, or service that accounts for its properties and is used to study its 
characteristics expressed in terms of service variables associated with functional 
compositions.  

In every computing process variables represent data elements and the number of 
variables increases with the increased complexity of the problems being solved. The 
value of a service variable is not necessarily part of an equation or formula as in 
mathematics - its value is a result of service execution or the service itself. Handling 
large sets of interconnected variables for transdisciplinary computing requires adequate 
programming methodologies. 

In SORCER interrelated service variables of a model are called entries. An entry 
used in a model refers by name (path) to one of the pieces of data - value. A value can 

Figure 1. N2 diagram for composition: 
e6(e1, m1(e1), m3(e1)). 

Figure 2. N3 diagram for composition: 
[g: e1,2; e6,3]e6,*(e1,2(mx,1), m1(e1,1), m3,1(mx,1, ez,2, e1,1)). 
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be explicit or calculated by a subroutine. A parameter is a special kind of entry, named 
in a subroutine by its path (semantic name) and returning the value of the entry. These 
values, called arguments, that are used in subroutines are defined by input entries of the 
model. Most parameters are functionals – functions that take functions as their 
arguments. A selected subset of output entries defines a studied response of the model. 
Just as in standard mathematical usage, the argument is the actual input passed to a 
subroutine, whereas the parameter is the variable inside the implementation of the 
subroutine. Depending on the type of subroutine (evaluation, invocation, service, or 
composite evaluation) we distinguish four types of basic context models (EntModel, 
ParModel, SrvModel, VarModel) with ServiceContext as the data model for exertions, 
as depicted in the right part of in Fig. 3. Multi-fidelity diagonal services are represented 
by instances of multi-fidelity service of the context model type MultiFidelityService. 

 
Figure 3. The UML diagram of SORCER top-level interfaces and classes. 

A sketch of a context model is expressed in CML as follows: 

Service e1 = exertion(sig(“doAnalysis”, Optimization.class), context(…)); 
… 
Service em = exertion (…); 
Service m1 = model(ent(…); 
… 
Service mn = model(ent(…); 
Condition g = condition(…); 
 
Service mo = model(  
 // order of entries does not matter 
 ent(“e1”, fi(“e1,1“, e1)),  

M. Sobolewski and R. Kolonay / Service-Oriented Life Cycles546



 ent(“m1”, m1, args(“e1”))),  
 …   
 ent(“m3”, fi(“m3,1”, m3, args(“N32,1”, “N32,2”, “e1”))),  
 …  
 outEnt(“e6”, loop(g, e6, args(“m3”, “m1”, “e1”))),  
 response(“e6”)); 
 
Model out = exert(mo);  // evaluate the model mo 
Context cxt = result(out);  // get the evaluation result 
cxt = response(mo);   // get declared response e6 
Object obj = response(mo, “e1”); // get declared response e1 
 
The first part of the mogram declares component services used in the model mo. 

All entries in the model define subroutines with arguments defined by other entries in 
the same model. At the end of mogram the basic CML operators are illustrated for 
model evaluation and obtaining results. 

Exertions are structured by the composite design pattern [13] with elementary 
exertions called tasks and compound exertions, exertion of Blok and Job types, as seen 
in the left part in Fig. 3. A block represents concatenation of exertions with block-
structured programming combined with flow of control exertions. Jobs represent 
object-oriented composites (workflows with pipes for data flow). Therefore, a mogram 
is either a model (declarative SO program) or an exertion (imperative SO program), or 
a hierarchical hybrid of both as defined by the UML sketch in Fig. 3.  

Netlets are expressions in SML that are interpreted as SML scripts (text files) with 
the SORCER network shell (nsh). Technically netlets are both Groovy scripts and Java 
sources, therefore can be interpreted with a Groovy shell or compiled with a Java 
compiler. The former gives the agility of running MADO analyses and optimization 
and performing modifications to the netlets with no need for an IDE. The latter, with a 
Java IDE, allows for efficient development (compilation and debugging). Therefore, 
with their dual nature of netlets they can be developed much easier with Java IDEs and 
frequently updated as executable text files. In Java sources netlets can be used directly 
as services to provide implementation of service providers that can publish standard 
service types implemented by mograms. 

A sketch of an exertion-oriented program is expressed in EOL as follows: 

Service e1 = exertion(sig(…), context(result(“out/par”), …); 
… 
Service em = exertion (…); 
Service m1 = model(ent(…); 
… 
Service mn = model(ent(…); 
Condition g = condition(…); 
 
Service xrt = loop(g, block( 
 // services are ordered for execution  
 fi(“e1,1“, e1), 
 m1, 

 fi(“m3,1”, m3), 
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 e6, 
 context(…, result(“opti/value”)); 
 
Exertion out = exert(xrt);  // execute xrt 
Context cxt = context(out);  // get result 
cxt = value(exertion);   // get declared value at opti/value 
Object obj = value(xrt, “result/value”); // get value at the path result/value 

The first part of the above exertion-oriented program declares component 
mograms used in the main exertion xrt. The execution of the exertion xrt is defined by 
the concatenation of component mograms (service-oriented statements) to be executed 
with the semantics of block-structured programing. At the end of the above mogram 
the usage of the basic EOL operators is illustrated for executing exertions and obtaining 
results. 

Note that both the main model mo and the main exertion xrt implement the same 
N3 diagram N30 in Fig. 2. It demonstrates that the main mograms representing N3 
diagrams can be implemented either way, with declarative (CML) or imperative 
language (EOL) for the top-level mograms. 

3. Life cycles for developing service-oriented MADO systems 

A systems development life cycle (SDLC) is composed of a number of distinct work 
phases that are used by engineers and system developers to plan for, design, build, test 
and deliver systems represented by N3 diagrams. An N3-based SDLC aims to produce 
high quality systems that meet or exceed customer expectations, based on requirements 
represented by hierarchically organized N3 diagrams. A well-defined SDLC process 
enables the delivery of transdisciplinary systems, which move through each clearly 
defined phase of the generic template of planning, creating, testing, and deploying an 
information system.  

In systems engineering, with the increasing level of service-orientation (everything 
as a service) and increasing number of legacy and new network services supplied by 
different development groups and organizations, also increases systems distribution 
and heterogeneity. To reliably manage the increasing level of distribution and 
heterogeneity, the SORCER environment has been expended to support N3-based 
mogramming combined with its unique SDLC phases: inception, analysis, design, 
construction, transition, and maintenance. 

1. Inception 
a) Determine which processes better represent the problem being solved - top-

down or bottom-up problem solving, or the hybrid approach 
b) For top-down solutions use CML modeling, for bottom-up use EOL 

programming, for hybrid solutions use SO mogramming with CML/EOL or 
EOL/CML 

c) Identify relevant existing services and those not available yet 
d) Identify service UIs required for the end users 

2. Analysis 
a) Define N3 diagrams representing the MADO process with N3 nodes and N3 

components for the hierarchically organized MADO system identified in 1b 
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b) If multi-fidelities are required, define corresponding high fidelity alternatives 
for corresponding nodes in the N3 diagrams defined in 2a 

c) Define service signatures for all local/remote services used in the N3 diagrams 
d) For all service types used in signatures, define the Java interfaces that define 

the behavior of the service providers 
e) Define entries in the data contexts and context models along with needed 

connectors to support seamless data flow across N3 diagrams 
f) Decide what codes to acquire/buy/develop in support of service providers that 

implement service types defined in 2d 
g) Define service UIs required for the end users identified in 1d 

3. Design 
a) Design detailed service types (Java interfaces) for all N3 analysis interfaces 

defined in 2d 
b) Design all service providers in support of service types designed in 3a 
c) Design component mograms, with API or SML/EOL, for N3 diagrams defined 

in 2a 
d) Design front-end netlets in SML/EOL N3 diagrams for end-users defined in 2a 
e) Design required service UIs for corresponding service providers as defined in 

2g 

4. Construction 
a) Use SORCER project templates for developing and testing a service 

provider/requestor and service UIs  
b) Implement all service types designed in 3a 
c) Implement all service provider designed in3b 
d) Implement component mograms designed in 3c 
e) Implement service UIs designed in 3e 
f) Implement netlets designed in 3d as standalone files executable with the nsh 

shell 
g) Deploy SORCER operating system for development 
h) Deploy all required services for development 
i) Test services provider classes with local signatures 
j) Test remote service providers with service types implemented in 4c 
k) Test all service UIs implemented in 4e 
l) Test all component mograms implemented in 4d 
m) Test all netlets representing N3 diagrams designed in 4f 

5. Transition 
a) Deploy SORCER operating system for production 
b) Deploy all required services for production 
c) Transition netlets to end users  
d) Provide support for updating and executing netlets by the end users 
e) Demonstrate all service UIs’ functionality to the end users. 
f) Demonstrate/run/modify netlets with the nsh shell 
g) Capture MADO inputs, results with related netlets along with required codes 

and sources as a part of corporate design history  
h) If updates are needed to N3 diagrams go to 2 
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6. Maintenance 
a) Maintain the repository of all codes and sources for developed services with 

the unique service IDs used in N3 mograms for later reuse of persisted solution 
b) Maintain continuous integration testing of all N3 mograms/netlets/service UIs 
c) If minor updates of mograms/netlets/service UIs are required go to 2 or 3 
d) If essential updates of mograms/netlets/service UIs are required go to 1 

4. Conclusions 

Using presented higher-level SO abstractions for mogramming allows reducing the 
complexity of creating and using transdisciplinary MADO systems. These network-
centric collaborative systems are created at runtime by teams of engineers working 
together and using many shared services that can be provisioned autonomically on 
demand.  

Domain specific SO languages are for humans, unlike software languages that are 
for computers, intended to express domain specific complex MADO processes and 
related solutions. Two programming languages (CML and EOL) for SO computing are 
introduced in this paper in the context of N2 and N3 diagramming. The SORCER 
network shell (nsh) manages the corresponding service federations at runtime for the 
N2 and N3 diagrams expressed by mograms.  

SDLC phases of mogram-based systems development are presented with the 
semantics of N3 diagramming. These continue to evolve with the focus on the 
development of interactive tools that facilitate easy creation and testing of graphical 
N3diagrams. In particular, all the basic phases from inception through analysis, design, 
transition and maintenance are tested and continuously improved for developing 
aerospace transdisciplinary engineering systems. 

The SORCER mogramming environment supports the two-way convergence of 
modeling and programming. It allows for flexible problem solving solutions as 
presented in Section 1 and 2. On one hand, EOL is uniformly converged with CML to 
express front-end service exertions. On the other hand, CML is uniformly converged 
with EOL to express a front-end declarative context models. Both front-end exertions 
and models can be used as service providers directly within SORCER.  

The evolving SORCER platform (the GitHub open source project [14]) introduces 
front-end mogramming languages [11] and an API with a modular service-oriented 
operating system [2]. It adds two entirely new layers of abstraction to the practice of 
SO computing. The presented SO MADO approach has been verified and validated in 
research projects at the Multidisciplinary Science and Technology Center, 
AFRL/WPAFB [8][15][16]. 
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