
Chapter 5
Achieving Optimal Utility for Distributed

Differential Privacy Using Secure
Multiparty Computation

Fabienne EIGNER a, Aniket KATE a, Matteo MAFFEI a, Francesca PAMPALONI b,
and Ivan PRYVALOV a

a CISPA, Saarland University, Germany
b General Electric, Italy

Abstract. Computing aggregate statistics about user data is of vital importance for
a variety of services and systems, but this practice seriously undermines the privacy
of users. Recent research efforts have focused on the development of systems for
aggregating and computing statistics about user data in a distributed and privacy-
preserving manner. Differential privacy has played a pivotal role in this line of
research: the fundamental idea is to perturb the result of the statistics before release,
which suffices to hide the contribution of individual users.

In this paper, we survey existing approaches to privacy-preserving data aggre-
gation and compare them with respect to system assumptions, privacy guarantees,
utility, employed cryptographic methods, and supported sanitization mechanisms.
Furthermore, we explore the usage of secure multiparty computations (SMC) for
the development of a general framework for privacy-preserving data aggregation.
The feasibility of such an approach is a long-held belief, which we support by
providing the first efficient cryptographic realization. In particular, we present Pri-
vaDA, a new and general design framework for distributed differential privacy that
leverages recent advances in SMC on fixed and floating point numbers. PrivaDA
supports a variety of perturbation mechanisms, e.g. the Laplace, discrete Laplace,
and exponential mechanisms. We demonstrate the efficiency of PrivaDA with a
performance evaluation and its usefulness by exploring two potential application
scenarios, namely, web analytics and lecture evaluations.

Keywords. Differential privacy, secure multiparty computation

Introduction

Statistics about user data play a significant role in the digital society: they are used daily
for improving services, analyzing trends, performing marketing studies, conducting re-
search, and so on. For instance, website owners rely on third-party analytics services to
learn statistical information (e.g. gender, age, nationality) about their visitors; electricity
suppliers introduced smart meters in order to constantly monitor users’ electricity con-
sumption, which allows them to compute prices based on energy usage trends, to opti-

Applications of Secure Multiparty Computation
P. Laud and L. Kamm (Eds.)
© 2015 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-532-6-81

81

mize energy distribution, and so on; service providers often ask their users to evaluate
the quality of their services with the goal of publishing the aggregate results.

The acquisition and processing of sensitive information poses serious concerns
about the privacy of users. The first problem is how and where is the user data aggre-
gated: companies find it convenient to collect and process user data directly, but this
gives them access to a wealth of sensitive information. For instance, web analytics rely
on user tracking, which allows aggregators to reconstruct a detailed and precise profile
of each individual. The second problem is how to publish aggregate data or statistics in
a privacy-preserving manner. For example, researchers demonstrated how precise infor-
mation about the habits of citizens can be reconstructed from the electricity consumption
information collected by smart meters [1] and how the identity and state of health of
individuals can be derived from genome-wide association studies [2].

Privacy-Preserving Statistics

The research community has long struggled to understand what privacy means in the
context of statistics and, consequently, to devise effective privacy protection techniques.

Differential privacy. Differential privacy (DP) [3] is a popular framework for defining
and enforcing privacy for statistics on sensitive data. The fundamental idea is that a query
on a database is differentially private if the contribution of an individual in the database
can only marginally influence the query result. More precisely, the contribution of each
single entry to the query result is bounded by a small constant factor, even if all remaining
entries are known. A deterministic query can be made differentially private by perturbing
the result with a certain amount of noise. The amount of noise depends on the query itself,
and a variety of perturbation algorithms [4, 5] have been proposed for different queries
and datatypes (e.g. numerical and non-numerical data, buckets, histograms, graphs).

Distributed differential privacy (DDP). While the original definition of DP focused on
a centralized setting, in which a database is queried by a curious entity, subsequent work
has extended the definition to a distributed setting (e.g. [6, 7]), in which mutually dis-
trustful, and potentially compromised, parties collaborate to compute statistics about dis-
tributed data. In particular, Dwork et al. [6] were the first to suggest the idea of employ-
ing secure multiparty computation (SMC) to aggregate and perturb data in a privacy-
preserving distributed manner. In general, in a distributed setting, which will be the focus
of this paper, the problem to solve is two-fold: (i) how to aggregate data and compute
statistics without parties learning each other’s data and (ii) how to perturb the result so
as to obtain DP even in the presence of malicious parties that deviate from the protocol.

State-of-the-art. Several specialized cryptographic protocols have been proposed re-
cently to solve this problem (e.g. [4,8–16]), and have paved the way for the enforcement
of DP in challenging scenarios, such as smart metering [17,18] and web analytics [11,19,
20]. The different works can be grouped into fully distributed approaches [10,12,15,16]
(see [13] for a comparison), in which users themselves perform the sanitization mech-
anism in a distributed manner and server-based approaches [11, 14, 19, 20] that rely on
few (non-colluding) honest but curious (HbC) parties, e.g. an aggregator and a publisher,
to compute the noise. For a more detailed comparison we refer to Sec. 2.

Despite the tremendous progress made in this field, the widespread deployment of
DP in modern systems still faces some open challenges.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy82

First, many existing approaches to DDP exploit the divisibility properties of certain
noise mechanisms and let each party produce a little amount of noise, the sum of which
yields the noise required to achieve DP. This solution is affected by a trade-off between
privacy and utility, as the amount of noise each user has to add is proportional to the
number of tolerated malicious or failing parties: the more malicious parties, the more
noise has to be added and therefore, the less accurate the result. Hence, in order to obtain
strong privacy guarantees, each party should assume all others to be malicious, but this
leads to an intolerable error (O(N2), where N is the number of users) as we will show
in Sec. 2. Relying on a lower honesty threshold, however, not only gives lower privacy
guarantees but also leads parties to the paradox of having to agree on how many of them
are dishonest.

Second, several schemes suffer from the answer pollution problem: a single party
can substantially pollute the aggregate result by adding excessive noise.

Third, many schemes involve a significant computational effort, which makes them
impractical in several scenarios, e.g. for aggregating data stored on mobile devices with
limited computation power.

Last, existing solutions are tailored to individual datatypes and perturbation mecha-
nisms. Computing different kinds of queries or employing different perturbation mecha-
nisms requires the use of different protocols that rely on different cryptographic schemes,
communication patterns, and assumptions. The engineering effort and usability penalty
are significant and discourage system administrators from deploying such technologies.

Our Contributions

In this work, we review and compare existing approaches to distributed privacy-
preserving data aggregation. Furthermore, we present PrivaDA, the first generic frame-
work for computing differentially private statistics about distributed data. We show how
to achieve provable DDP guarantees, while overcoming the previously discussed limi-
tations, by leveraging recently proposed SMC protocols for floating point numbers [9],
fixed point numbers [21], and integers [22]. Our construction refines these schemes, orig-
inally designed for the honest but curious setting, so as to make them secure even in
the malicious setting. Moreover, considering the recent work by Bendlin et al. [23] and
Damgård et al. [24], we make these schemes tolerate any number of faults.

The overall privacy-preserving data aggregation computation is organized in two
phases: the aggregation phase, in which the clients securely compute the aggregate result,
and the perturbation phase, in which this result is perturbed so as to achieve DDP. To
improve performance, SMC is actually conducted by computing parties that collect input
shares from each client and perform the required computations. For the perturbation
phase, the fundamental idea is to let computing parties jointly compute a random seed
(i.e. a random variable in (0,1)), which is then used to produce the required noise by
encoding.

The distinctive features of our approach are the following.

Generality. PrivaDA supports a variety of perturbation mechanisms, such as noise
drawn from the Laplace and the discrete Laplace (symmetric geometric) distribution as
well as the exponential mechanism. Consequently, it is well-suited for a variety of appli-
cation scenarios.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 83

Strong privacy. As long as at least one of the computation parties is honest, malicious
parties cannot learn the aggregate result, the seed or the noise (i.e. DDP is achieved).
This is a fundamental difference from other approaches (e.g. [11,19,20], where colluding
parties can immediately read the individual user’s data.

Optimal utility and resistance to pollution attacks. The result is perturbed with the
minimal amount of noise required to achieve DDP, irrespective of the expected number
of dishonest users and computation parties. Hence, our protocol provides optimal utility
and resistance to answer pollution. We also provide mechanisms to tackle the orthogonal
problem of ensuring that the protocol only accepts client inputs that are contained in a
set of valid answers.

Efficiency. We demonstrated the feasibility of our approach by implementing the sys-
tem and conducting a performance evaluation. We stress that the client does not have to
perform any expensive computation: she just has to provide each computing party with
a share of her data and can then go offline, which makes this approach suitable even for
mobile devices. Furthermore, PrivaDA supports a large number of clients without any
significant performance penalty.

Outline. The paper is organized in the following manner. Sec. 1 gives some necessary
background information on DP and on SMC for arithmetic operations, and Sec. 2 pro-
vides a survey of related work. Sec. 3 presents our framework and our algorithms for
two query sanitization mechanisms, while Sec. 4 provides an instantiation of the differ-
entially private algorithms with efficient SMC. Sec. 5 analyzes the security of these pro-
tocols, and Sec. 6 investigates their performance. Finally, Sec. 7 illustrates two use cases
for our framework.

Unpublished content. The present work extends and revises a paper published at AC-
SAC 2014 [25]. In this extended version we present some modifications of the original
SMC that leverages recent work by Bendlin et al. [23] and Damgård et al. [24] based
on [26] to improve performance and to eliminate the honest majority assumption. Fur-
thermore, we have added a detailed survey of related works on DDP, and we have in-
cluded the proofs of the main security results. Moreover, we have revised the application
scenarios and added a new use case.

1. Background

In this section we present the concept of differential privacy and the cryptographic build-
ing blocks that PrivaDA builds on.

1.1. Differential Privacy

Differential privacy (DP), originally introduced by Dwork [3], has rapidly become one
of the fundamental privacy properties for statistical queries. Intuitively, a query is dif-
ferentially private if it behaves statistically similarly on all databases D,D′ differing in
one entry, written D ∼ D′. This means that the presence or absence of each individual
database entry does not significantly alter the result of the query. The definition of DP
is parameterized by a number ε that measures the strength of the privacy guarantee: the

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy84

smaller the parameter ε , the smaller the risk to join the database. We use D and R to
denote the domain and range of the query respectively.

Definition 1 (Differential Privacy [3]) A randomized function f : D → R is ε-
differentially private if for all databases D,D′ ∈ D so that D ∼ D′ and every set S ⊆R,
it holds that Pr [f (D) ∈ S]≤ eε ·Pr [f (D′) ∈ S].

A deterministic query can be made differentially private by perturbing its results with
noise. In the following, we describe three popular perturbation mechanisms. An impor-
tant insight is that the amount of noise perturbation depends on the query: the more a
single entry affects the query result, the stronger the perturbation has to be. This can
be expressed using the notion of the sensitivity of queries, which measures how much a
query amplifies the distance between two inputs.

Definition 2 (Sensitivity [4]) The sensitivity Δ f of a query f :D→R is defined as Δ f =
max∀D,D′∈D.D∼D′ | f (D)− f (D′)|.

Intuitively, queries of low sensitivity map nearby inputs to nearby outputs. For in-
stance, the query “how many students like the ’Security’ lecture?” has sensitivity 1, as
adding or removing one entry affects the result by at most 1.

Laplace noise. The most commonly used sanitization mechanism for queries returning
a numerical result is the Laplace mechanism [4], i.e. the addition of random noise drawn
according to a Laplace distribution Lap(λ) to the correct query result. As shown by
Dwork et al. [4], this mechanism provides ε-DP, if the parameter λ is set to Δ f

ε . The
distribution is both parameterized by the sensitivity of the query and the privacy value ε .

Theorem 1 (DP of the Laplace mechanism [4]) For all queries f : D → R the query
f (x)+Lap(Δ f

ε) is ε-differentially private.

Exponential mechanism. There are many scenarios in which queries return non-
numerical results (e.g. strings or trees). For instance, consider the query “what is your
favorite lecture?”. For such queries, the addition of noise either leads to nonsensical re-
sults or is not well-defined. To address this issue, McSherry and Talwar [5] proposed
the so-called exponential mechanism. The mechanism considers queries on databases D
that are expected to return a query result a of an arbitrary type R. For our purpose we
consider the range R to be finite, e.g. the set of lectures offered by a university. We refer
to each a ∈R as a candidate. The mechanism assumes the existence of a utility function
q : (D×R)→R that assigns a real valued score to each possible input-output pair (D,a)
that measures the quality of the result a with respect to input D. The higher such a score,
the better (i.e. more exact) the result. The mechanism εε

q (D) aims at providing the best
possible result a ∈R, while enforcing DP.

Definition 3 (Exponential mechanism [5]) For all q : (D × R) → R the ran-
domized exponential mechanism εε

q (D) for D ∈ D is defined as εε
q (D) :=

return a ∈R with probability proportional to eεq(D,a).

This definition captures the entire class of differential privacy mechanisms, as proven
by McSherry and Talwar [5], who also give an encoding of Laplace noise addition by

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 85

choosing an appropriate utility function q. The authors also show that the mechanism

ε
ε

2Δq
q (D) provides ε-DP.

Theorem 2 (DP of the exponential mechanism [5]) The mechanism ε
ε

2Δq
q (D) is ε-

differentially private.

1.2. Secure Multiparty Computation

SMC enables a set of parties P = {P1,P2, . . . ,Pβ} to jointly compute a function on their
private inputs in a privacy-preserving manner [27]. More formally, every party Pi ∈ P
holds a secret input value xi, and P1, . . . ,Pβ agree on some function f that takes β inputs.
Their goal is to compute and provide y = f (x1, . . . ,xβ) to a recipient while making sure
that the following two conditions are satisfied: (i) correctness: the correct value of y is
computed, and (ii) secrecy: the output y is the only new information that is released to
the recipient (see Sec. 5 for a formal definition).

Although the feasibility of SMC in the computational setting as well as in the in-
formation theoretic one has been known for more than 25 years, dedicated work to opti-
mize secure realizations of commonly used arithmetic operations has started only in the
last few years [9,21,22,28–30]. Nevertheless, most of these realizations perform limited
SMC arithmetic operations over input elements belonging only to finite fields [28] or in-
tegers [22]. Thus, they are not well-suited or sufficient for DDP mechanisms. In contrast,
we build on SMC for algorithms on fixed point numbers [21] and some recent work by
Aliasgari et al. [9], who presented SMC arithmetic algorithms over real numbers repre-
sented in floating point form. They also propose SMC protocols for elementary functions
such as logarithm and exponentiation, and conversion of numbers from the floating point
form to the fixed point form or the integer form and vice-versa. Our work starts by ob-
serving that their logarithm and exponentiation SMC protocols, combined with the SMC
schemes for the basic integer, fixed point, and floating point number operations, pave the
way for a practical design of various perturbation mechanisms for DDP in a completely
distributed manner. Nevertheless, to be suitable for our design, we have to enhance and
implement this large array of protocols to work against a malicious adversary.

We assume that secret sharing and basic SMC operations take place over a field Fq.
Let [x] denote that the value x ∈ Fq is secret-shared among P1, . . . ,Pβ so that participation
from all β parties is required to reconstruct x. Note that [x]+ [y], [x]+ c, and c[x] can be
computed by each Pi locally using her shares of x and y, while computation of [x][y] is
interactive and performed using Beaver’s multiplication triple-based technique [26].

Basic SMC protocols. We use the following SMC protocols [9,21,22,28] for our DDP
mechanisms.

1. The protocol [r]←RandInt(k) allows the parties to generate shares [r] of a random
k-bit value r (i.e. r ∈[0,2k)) without interactive operations [28].

2. The protocols [a] ← IntAdd([a1], [a2]) and [a] ← IntScMul([a1],α) allow for the
addition of two shared integers and the multiplication of a shared integer with a
scalar, respectively, returning a shared integer.

3. The protocols [b] ← FPAdd([b1], [b2]) and [b] ← FPScMul([b1],α) allow for the
addition of two shared fixed point numbers and the multiplication of a shared fixed
point number with a scalar, respectively, returning a shared fixed point number.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy86

Table 1. Complexity of the employed SMC tasks

Type Protocol Rounds Interactive Operations

Rand. Generation RandInt 0 0

Reconstruction Rec 1 1

Addition IntAdd 0 0
FPAdd 0 0
FLAdd log�+ log log�+27 14�+(log log�) log�+(�+9) log�+9k+4logk+37

Multiplication FLMul 11 8�+10

Division FLDiv 2log�+7 2log�(�+2)+3�+8

Scalar IntScMul 0 0
Multiplication FPScMul 0 0

FLScMul 10 8�+7

Comparison FLLT 6 4�+5k+4logk+13

Conversion Int2FL log�+13 log�(2�−3)−11
FP2FL log�+13 log�(2�−3)−10
FL2Int 3loglog�+53 27�+3(log log�) log�+18log�+20k+19
FL2FP 3loglog�+53 27�+3(log log�) log�+18log�+24k+17

Rounding FLRound log log�+30 15�+(log log�) log�+15log�+8k+10

Exponentiation FLExp2 12log�+ log log�+27 8�2 +9�+ � log�+(log�) log log�+12k+9

Logarithm FLLog2 13.5�+0.5� log�+ 15�2 +90.5�+0.5�(log�)(log log�)+
3log�+0.5� log log�+ 3(log�) log log�+0.5�2 log�+11.5� log�+

3loglog�+146 4.5�k+28k+2� logk+16logk+128

4. The protocols FLMul, FLDiv, and FLAdd can be used to multiply, divide, or add
two shared floating point numbers, respectively. The output is a shared floating
point number.

5. The conversion protocols FL2Int (float-to-int), Int2FL (int-to-float), FL2FP (float-
to-fixed-point), and FP2FL (fixed-point-to-float) allow us to convert numbers rep-
resented as integers, floating point, or fixed point into another one of these repre-
sentations.

6. The exponentiation protocol FLExp2 takes a shared floating point number [r] as
input and returns the shared floating point number corresponding to [2r].

7. The logarithm computation FLLog2 takes a shared floating point number [r] and
either returns the shared floating point number corresponding to [log2 r] or an error
(for r ≤ 0).

8. The protocol FLRound takes a shared floating point value [r] as input and operates
on two modes (given as an additional argument). If mode = 0 then the protocol
outputs the floor [
r�], otherwise, if mode= 1 then the protocol outputs the ceiling
[�r]. The output is a shared floating point number.

9. The protocol FLLT allows us to compare two shared floating point numbers and
returns [1] if the first operand is less than the second, and [0] otherwise.

In Table 1, we compare the complexities of the SMC protocols described. The com-
plexity of SMC protocols is generally measured in terms of two parameters: interactive
operations and rounds. An interactive operation involves every party sending a message
to every other party, while round complexity measures the number of sequential invo-
cations of interactive operations. Additional local computations are not included in the
complexity.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 87

Intuitively, additions for both integer and fixed point data types are non-interactive
and consequently very fast, while for floating point values, the algorithm is quite involved
and is also more costly than floating multiplication. Scalar multiplications for integers
are free, however, a scalar multiplication for floating point numbers asks for almost the
same amount of computation as in the case of FLMul. As expected, the more complex
exponentiation and logarithm algorithms are also the most costly. Note that these com-
plexities can be significantly reduced using pre-computation and batched processing [9].
The relative efficiency of these SMC schemes plays a fundamental role in our design.

2. Literature Review

The problem of privacy-preserving data aggregation has recently received increasing at-
tention in the research community. In this section we survey relevant literature, unifying
different terminologies employed in different works to allow for a meaningful compari-
son. The different works can be grouped into fully distributed approaches, in which the
users themselves utilize the sanitization mechanism in a distributed manner, and server-
based approaches that rely on few (non-colluding) parties, e.g. an aggregator and a pub-
lisher, to compute the noise. Note that the usage of computing parties that jointly gen-
erate the noise means that PrivaDA is not fully distributed, but in contrast to existing
server-based solutions, it distributes the trust among multiple parties.

2.1. Fully Distributed Setting

Dwork et al. [6] propose a protocol for distributed noise generation: their scheme, how-
ever, requires interactions among all users. Some recent works [10, 12, 15, 16] (see
also [13] for a comparison) propose fully distributed systems to distributively aggre-
gate time-series data, where the latter are directly perturbed by users and then encrypted
in such a way that the aggregator is only able to decrypt their aggregation but nothing
else. Rastogi and Nath [15] propose to use the additively homomorphic threshold Pail-
lier cryptosystem to encrypt users’ data, and Shamir’s secret sharing scheme to combine
users’ decryption shares. In their system, indeed, decrypting the aggregated result re-
quires an extra interaction round between the aggregator and the users, where the latter
are required to be online until the end of the decryption. This provokes both an increased
communication cost and a long delay, besides the fact that requiring that all users are
simultaneously online is a strong assumption that is inappropriate in several practical
settings (e.g. mobile). Furthermore, their scheme supports only sum queries (i.e. no other
linear combinations are allowed).

The system proposed by Shi et al. [12,16] does not need the extra round and is valid
for more kinds of queries, even if they are always numerical. By exploiting a system
to intersect user groups, [12] compensates for user failures with the help of redundant
information, which allows the system to be more resistant and to support dynamic joins
and leaves. However, the redundant information, besides degrading utility, increases the
communication cost (here around O(logN) and no longer satisfies the aggregator obliv-
iousness (AO) property (according to which the aggregator does not learn anything else
but the final query result) as intermediate data are now available to him. Furthermore, that
work deals with a slightly weaker definition of privacy, namely, computational (ε,δ)-DP.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy88

Ács and Castelluccia [10] propose another scheme for smart metering systems,
which is robust against failures and malicious nodes and is built on a very simple modulo
addition-based encryption scheme. This system requires each user to receive, and store,
several encryption keys that cancel themselves out when aggregated, so that an explicit
decryption is not necessary. Both requiring a user’s side storage that is linear in the size
of the network, and the need to establish several keys for each user, are not easy to re-
alize in practice. More efficient protocols based on somewhat similar ideas have been
proposed in the context of smart meters [17, 18].

2.2. Server-Based Setting

Several works rely on honest but curious servers that are additionally assumed not to
collude with each other [11,14,19,20] to compute noise perturbation: in case of collusion,
not only the noise but also the individual user’s data is disclosed. In our SMC scheme
PrivaDA, colluding parties can neither recover the noise nor directly read the individual
user’s data.

In their recent work, Li and Cao [31] address the issue of users dynamically joining
and leaving the data aggregation protocol, and propose a ring-based interleaved grouping
construction that allows for data aggregation with high churn rates. However, their sys-
tem relies on both a non-collusion assumption between the aggregator and the employed
key dealer, and the participation of a threshold of honest users. Since PrivaDA uses com-
puting parties, the aggregation is independent of the users after they forward their data
to the servers, circumventing the problem of dynamic user joins and leaves.

2.3. Strengths and Weaknesses of Existing Approaches

Table 2 compares some of the most important works about DDP. Here, N denotes the
total number of users, and Δ is used to denote the sensitivity of the respective query (see
Sec. 1). The function β (·, ·) is defined as β (x,y) = Γ(x)Γ(y)

Γ(x+y) , where Γ(x) =
∫ +∞

0 xt−1e−xdx;
γ is a lower bound on the fraction of honest users that we require to guarantee DP, and α
is an upper bound on the number of failures (i.e. data that does not reach the aggregator)
the system can accept. For the specifics of how the noise for sanitization is generated for
the individual approaches (i.e. the use of Gaussian or Gamma distributions to generate
the Laplace noise) we refer to [13]. We note that all papers in the table assume some com-
promised users (or computation parties), that is, users that follow the protocol correctly
but may collude with the aggregator, passing him some information like the noise they
have added or their data. Furthermore, the table specifies whether third parties, such as
data aggregators (aggr.) or website publishers (publ.), are honest but curious or malicious
(i.e. allowed to deviate from the protocol).

Utility. As the table demonstrates, a central drawback of all fully distributed models
presented above is the poor utility of the result. This is due to the fact that the amount of
noise each user has to add in order to satisfy privacy guarantees depends on other users’
behaviors (i.e. the fraction of possibly malicious users and the probability of failure spec-
ified by γ,α that are supposed to be known in advance and that must not be exceeded
so as to achieve DP). The more users are falsely assumed to be malicious (i.e. small γ ,
large k) the lower the final accuracy in the worst case. In PrivaDA, instead, the noise is
generated in a distributed fashion starting from a random seed that is jointly computed

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 89

by the computing parties. Differently from the fully distributed models, the final amount
of noise obtained is exactly the one required to achieve DP (i.e. the utility is optimal),
irrespective of the number of computation parties, the fraction of honest entities, or the
probability of failures.

Non-collusion. Similarly to [11,14,19], PrivaDA relies on a non-collusion assumption,
but contrary to those approaches, we distribute the trust not only amongst two, but mul-
tiple parties (for which it suffices to assume an honest majority). In [14] an extension to
the distributed case is proposed but the authors do not specify a method to distributively
generate the noise. We note that we use mutually distrustful computation parties to mit-
igate the computational effort from the users, but that we could in principle let the users
directly execute the perturbation phase if external parties were to be avoided.

Supported queries. Another drawback, common to all previous models, is the restric-
tion to specific queries and perturbation mechanisms. Most of the models described
above, indeed, consider only counting queries, where the function is limited to weighted
sums or even only supports sums, and use the Laplace or discrete Laplace mecha-
nism to perturb data. The exponential mechanism, allowing perturbation in case of non-
numerical queries, is studied in [32]. They propose a method to securely apply it using
SMC. However, the system they propose is valid only for a two-party setting, differently
from ours, that instead targets a multiparty scenario. By contrast, PrivaDA does support
all three of the above mechanisms, providing a uniform framework to answer different
kinds of queries in a differentially private manner.

Table 2. Comparison between the existing DDP schemes

ID Assumptions Utility (error)

Cryptoscheme &

Perturbation
Mechanism

Adversary

type Kind of queries

RN’10
[15]

#hon. users ≥ γN,
bidirectional

communication

O(Δ
ε (

k
γN)

2
),

worst case: O(N2)

k = real #hon. users
Paillier scheme,

Lap noise
malicious aggr.,

no failure

sum-statistics for
time-series data

(counting queries)

SCRCS’11
[16] #hon. users ≥ γN

O(Δ
εγ),

w.c.: O(
√

N)
Pollard’s Rho,

diluted∗ DLap noise
honest-but-

curious aggr. as above

AC’11
[10]

#failures ≤ αN,
several keys to
store for user

O(Δ
ε β (1

2 ,
1

1−α)
−1

),

w.c.: O(β (1
2 ,N)

−1
)

modulo-addition
scheme,

Lap noise
malicious aggr.,

failures as above

CSS’12
[12] #hon. users ≥ γN

Õ(ε−1(logN)
1.5

),

w.c: Õ(
√

N(logN)1.5)
Pollard’s Rho ,

diluted DLap noise
HbC aggr.,

failures as above

CRFG’12
[11]

no collusion
aggr.-publ.,

pre-establ. queries,
bidirectional

communication
O(

√
logN
ε)

Goldwasser-
Micali scheme,
binomial noise

HbC aggr.,
malicious publ.

SQL-style queries
(yes/no answers

per buckets)
ACHFG’12

[19] as above
O(Δ

ε)
Paillier scheme,

Lap noise as above as above

JK’12
[14]

no collusion
aggr.-auth.

O(Δ
ε)

Paillier scheme ,
Shamir’s secret

sharing ,
DLap noise

malicious aggr.,
HbC auth.,

failures
linear queries for
time-series data

PrivaDA

hon. majority
between

computation parties O(Δ
ε)

SMC,
Lap, DLap noise,

Expon. Mech. malicious aggr.
multiple kinds

of queries
∗ Diluted DLap noise: according to a certain probability p it follows the DLap distribution, otherwise it is set to 0.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy90

Over the course of this paper, we demonstrate that the usage of SMC is ideally suited
to minimize the trade-off between utility, strong non-collusion assumptions, and privacy
guarantees, inherent in existing systems.

2.4. Alternative Approaches to Privacy

Although in this chapter we focus on the notion of DP, for completeness, we refer to
some recent papers that investigate the limitations of this notion [33, 34] and propose
alternative definitions of privacy for statistical queries [35–37].

2.5. Alternative Secure Multiparty Computation Schemes for Arithmetic Operations

In addition to the SMC schemes employed in this paper, further SMC building blocks
that support integer, floating point, and fixed point functions have recently been proposed
by Kamm and Willemson [38] and Krips and Willemson [39].

3. The PrivaDA Framework

In this section we present the PrivaDA framework. We first give a general overview of
the setup and then present two mechanisms for achieving DP. A third mechanism, the
discrete version of the Laplace mechanism, was presented at ACSAC 2014 [25].

3.1. Setting

We consider a scenario with n users, β computation parties (typically β = 3, but it can
be greater), and an aggregator. Each user Pi has a private input Di from some domain D.
The aggregator would like to compute some aggregate statistics about the users’ private
inputs, represented by the function f : Dn →R. The range R of f may be a set of numer-
ical values, but not necessarily. The computing parties are responsible for computing and
perturbing the aggregate result, which is eventually returned to the data aggregator. The
users communicate with the computing parties through secure and authenticated chan-
nels. Furthermore, the computing parties are pair-wise connected by secure authenticated
channels. The users provide the computing parties with shares of their data and can then
go offline. The computing parties engage in an interactive protocol.

Privacy goals. The aggregate result should be differentially private and neither the ag-
gregator, nor the computation parties, nor the users should learn any further information
about the individual users’ data.

Attacker model. The data aggregator as well as the users may be corrupted and collude.
The SMC protocols we adopt for the realization of our approach are based on secret
sharing: such SMCs are secure in the malicious setting (i.e. the computing parties may
try to deviate from the protocol).

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 91

...

P1

Pn

C1

Cβ

AggregatorAggregator

...

[D1]β

[D1]1

[Dn]1

[Dn]β

[≈f(D1,...Dn)]1

[≈f(D1,...Dn)]β

≈f(D1,...Dn)

Figure 1. Protocol flow

3.2. Protocol Overview

The protocol proceeds in three steps. First, the users provide the computation parties with
shares of their inputs.1 Secondly, the computing parties run the SMC protocol to com-
pute the aggregate statistics and perturb the result. Finally, each computing party gives
the aggregator its share of the result, which is reconstructed by the aggregator. The pro-
tocol flow is depicted in Fig. 1. In the following we describe three different algorithms
to compute queries sanitized with the Laplace, discrete Laplace, and exponential mech-
anism, respectively. To ease the presentation, we consider a class of queries for which
f (D1, . . . ,Dn) = f (D1)+ . . .+ f (Dn). Other arithmetic queries can be implemented in a
very similar manner using minor modifications of the presented algorithms, as modern
SMC schemes provide direct support to a large class of arithmetic operations. The al-
gorithms described below do not rely on specific SMC protocols: we give one possible
efficient instantiation in Sec. 6.

3.3. Laplace Mechanism

We now describe an algorithm for the calculation of the Laplace mechanism (LM) for
n inputs. We use the following mathematical results [41, 42], which allow us to reduce
the problem of drawing a random number according to the Laplace distribution (Lap) to
the problem of drawing a uniformly random number between 0 and 1 (U(0,1]) using the
exponential distribution (Exp). It holds that the distribution Lap(λ) = Exp(1

λ)−Exp(1
λ),

where Exp(λ ′) =
− ln U(0,1]

λ ′ . Thus,

Lap(λ) = λ (ln U(0,1])−λ (ln U(0,1]). (1)

In particular, we know that λ = Δ f
ε guarantees DP. We can, thus, define our algorithm

for the addition of Laplace noise on n inputs as shown in Alg. 1. It takes as input (i)
n real numbers d1, . . . ,dn owned by P1, . . . ,Pn respectively, which correspond to locally
executing the query f on database Di (di = f (Di)) of each Pi, and (ii) the privacy budget
parameter λ , set to Δ f

ε to guarantee ε-DP. The algorithm returns the real w = (∑n
i=1 di)+

Lap(λ), which is computed by first computing the sum of all di and then drawing a
random number according to the distribution Lap(λ) (lines 2 - 3) using (1). It concludes

1Note that our work focuses on guaranteeing the privacy of user data. To solve the orthogonal problem of
pollution attacks and prevent malicious users from entering wildly incorrect input shares, we can use ZK range
proofs [40] (cf. Sec. 4).

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy92

Algorithm 1: Laplace
mechanism LM

Data: d1, . . . ,dn; λ = Δ f
ε

Result: (
n
∑

i=1
di)+Lap(λ)

1 d =
n
∑

i=1
di

2 rx ←U(0,1]; ry ←U(0,1]

3 rz = λ (ln rx − ln ry)
4 w = d + rz
5 return w

Algorithm 2: Exponential mecha-
nism EM

Data: d1, . . . ,dn; a1, . . . ,am; λ = ε
2

Result: winning ak
1 I0 = 0
2 for j = 1 to m do

3 z j =
n
∑

i=1
di(j)

4 δ j = eλ z j

5 I j = δ j + I j−1

6 r ←U(0,1]; r′ = rIm

7 k = binary search(r′,≤, I0, . . . , Im)
8 return ak

by adding the sum of the results and the noise together (line 4) and returning the result
(line 5).

Privacy of LM. As the LM algorithm implements ∑n
i=1 di+λ (ln U(0,1])−λ (ln U(0,1]) =

∑n
i=1 di +Lap(λ), by Thm. 1 it follows that LM(d1, . . . ,dn,λ) is ε-differentially private

for λ = Δ f
ε , where di = f (Di).

3.4. Exponential Mechanism

Concerning the algorithm to compute the exponential mechanism [5] (EM) for n inputs,
our approach is inspired by [32], which is, however, constrained to a 2-party setting.

Inputs and outputs. The algorithm to compute the EM on the join of n databases is
presented in Alg. 2. It outputs the candidate a ∈ R (where |R| = m ∈ N), which is the
result of locally executing the desired query f on the databases D1, . . . ,Dn that are under
the control of the participants P1, . . . ,Pn respectively and sanitizing the joint result using
the exponential mechanism. The algorithm takes the following inputs: (i) the data sets
d1, . . . ,dn belonging to the participants P1, . . . ,Pn respectively, (ii) the list of candidates
a1, . . . ,am, and (iii) the privacy parameter λ . Note that in order to guarantee ε-DP, the
parameter λ will be set to ε

2Δq . For the sake of simplicity, we assume each data set di ∈D
to be a histogram that is the result of locally executing f (Di). Each histogram is a se-
quence of m natural numbers z1, . . . ,zm that correspond to the frequency of candidates
a1, . . . ,am ∈ R. For instance, for the query f := ”What is your favorite lecture?” the se-
quence of candidates a1, . . . ,a5 might be Algebra,Logic,Security,Cryptography,Java
and the individual data set d2 of student P2 who prefers the lecture Security is a histogram
of the form 0,0,1,0,0. The algorithm outputs the winning candidate ak drawn according
to εε

q (d1, . . . ,dm).

Utility function. Our approach is general and can support any arithmetic utility func-
tion. For the sake of presentation, we focus below on the following utility function
q((z1, . . . ,zm),ai) = zi for all histograms d = (z1, . . . ,zm) and candidates a1, . . . ,am,
which returns the frequency zi of candidate ai stored in d. For instance, in the above
example q(d2,Security) = 1 and q(d2,ai) = 0 for all candidates ai, where i ∈ {1,2,4,5}.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 93

Notice that Δq = 1, so it can be omitted from the algorithm and the privacy parameter λ
is thus set to ε

2 .

Random variable. Our goal is to compute the exponential mechanism εε
q (D) for a

discrete range R, where |R| = m. The probability mass [5, 32] for the exponential
mechanism is defined as Pr

[
εε

q (D) = a
]
= eεq(D,a)

∑m
j=1 eεq(D,a j)

. As pointed out by Alhadidi et

al. [32], drawing a random value according to this distribution corresponds to mapping
the above defined probability mass onto the interval (0,1] and drawing a random num-
ber r in (0,1] to select the interval of the winning candidate. Formally, r ← U(0,1] and
r ∈ (∑ j−1

k=1 Pr
[
εε

q (D) = ak
]
,∑ j

k=1 Pr
[
εε

q (D) = ak
]
] corresponds to a j ← εε

q (D). For in-
stance, assume Pr

[
εε

q (D) = a1
]
= 0.3 and Pr

[
εε

q (D) = a2
]
= 0.7. We draw a random

number r from (0,1] and check whether r is in interval (0,0.3] or in interval (0.3,1]. In
this example, the drawing of 0.86 ←U(0,1] corresponds to a2 ← εε

q (D).
It is easy to see that by multiplying with S := ∑m

j=1 eεq(D,a j) the check

r ∈ (∑ j−1
k=1 Pr

[
εε

q (D) = ak
]
,∑ j

k=1 Pr
[
εε

q (D) = ak
]
] is equivalent to r · S ∈

(∑ j−1
k=1 eεq(D,ak),∑ j

k=1 eεq(D,ak)], as Pr
[
εε

q (D) = a
] · S = eεq(D,a). To optimize com-

plexity, our algorithm will compute the exponential mechanism using the lat-
ter version, i.e. by drawing a random number r ← U(0,1] and then checking
r · S ∈ (∑ j−1

k=1 eεq(D,ak),∑ j
k=1 eεq(D,ak)] and returning the candidate ak for which this

check succeeds. Thus, our main effort lies in computing the necessary interval borders
(∑ j−1

k=1 eεq(D,ak),∑ j
k=1 eεq(D,ak)].

Algorithm. Our algorithm consists of the following steps.2 First, initialize the interval
border I0 (line 1). Second, compute the joint histogram d = d1 + . . .+ dn (line 3) by
adding the frequencies for each individual candidate. Third, compute interval borders
for candidates (line 4 - 5). Fourth, draw a random value r in (0,1] (line 6) and multiply
this value by In = ∑m

j=1 eεq(D,a j), resulting in the scaled random value r′. Fifth, check in
which of the intervals (I j−1, I j] the random value r′ falls (line 7) by using binary search
that returns k so that Ik−1 < r′ ≤ Ik. Finally, return the winning candidate ak (line 8).

Privacy of EM. The EM algorithm implements the join of n individual histograms,
the utility function q as defined above, and the drawing of a random value ac-
cording to ελ

q (d1 + . . .+ dn), which is soundly encoded as explained above. Thus,
EM(d1, . . . ,dn,a1, . . . ,am,λ) computes ελ

q (d1+ . . .+dn), where q has sensitivity 1 and by
Thm. 2 it follows that EM(d1, . . . ,dn,a1, . . . ,am,λ) is ε-differentially private for λ = ε

2 ,
where di = f (Di).

4. Instantiation

In this section, we instantiate the two mechanisms described in the previous section using
the recently proposed SMC arithmetic algorithms over integers, and fixed and floating
point numbers [9, 21, 22, 28] that we discussed in Sec. 1.

2Note that depending on the instantiation of SMC, the steps might be slightly modified, or type conversions
added, to provide the best efficiency.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy94

Algorithm 3: Distributed Laplace mechanism

Data: Shared fixed point form (γ, f) inputs [d1], . . . , [dn]; λ = Δ f
ε

Result: w = (
n
∑

i=1
di)+Lap(λ) in fixed point form

1 [d] = [d1]
2 for i = 2 to n do

3 [d] = FPAdd([d], [di])

4 [rx] = RandInt(γ +1); [ry] = RandInt(γ +1)
5 〈[vx], [px],0,0〉= FP2FL([rx],γ, f = γ, �,k)
6 〈[vy], [py],0,0〉= FP2FL([ry],γ, f = γ, �,k)
7 〈[vx/y], [px/y],0,0〉= FLDiv(〈[vx], [px],0,0〉,〈[vy], [py],0,0〉)
8 〈[vln], [pln], [zln], [sln]〉= FLLog2(〈[vx/y], [px/y],0,0〉)
9 〈[vz], [pz], [zz], [sz]〉= FLMul(λ

log2 e ,〈[vln], [pln], [zln], [sln]〉)
10 [z] = FL2FP(〈[vz1], [pz1], [zz1], [sz1]〉, �,k,γ)
11 [w] = FPAdd([d], [z])
12 return w = Rec([w])

4.1. Secure Multiparty Computation for Distributed Mechanisms

Our protocols to compute the distributed Laplace mechanism and the distributed expo-
nential mechanism are given in Alg. 3, and 4 respectively, and they are explained below.

Number representation. We follow the representation in [9] for integers and for real
numbers in fixed point and floating point forms. For floating point form, each real value
u is represented as a quadruple (v, p,z,s), where v is an �-bit significand, p is a k-bit
exponent, z is a bit which is set to 1 when the value u = 0, s is a sign bit, and u =
(1− 2s) · (1− z) · v · 2p. Here, the most significant bit of v is always set to 1 and thus
v ∈ [2�−1,2�). The k-bit signed exponent p is from the range Z〈k〉 = (−2k−1,2k+1). We
use γ to denote the bit-length of values in either integer or fixed point representation, and
f to denote the bit-length of the fractional part in fixed point values. Every integer value
x belongs to Z〈γ〉 = (−2γ−1,2γ+1), while a fixed point number x is represented as x̄ so
that x̄ ∈ Z〈γ〉 and x = x̄2− f . Finally, it is required that k > max(�log(�+ f) ,�log(γ))
and q > max(22�,2γ ,2k). For ease of exposition, we assume that γ = 2� for integers and
fixed point numbers, and that f = γ

2 for fixed point numbers.

Input distribution and output reconstruction. We assume that prior to computation,
participants P1, . . . ,Pn create β shares of their respective integer or fixed point in-
puts d1, . . . ,dn in the (β ,β)-sharing form and distribute them amongst the β comput-
ing parties C1, . . .Cβ , so that each party Ck holds a share of each input value [di], for
k ∈ {1, . . . ,β} and i ∈ {1, . . . ,n}.

General overview. For the most part, the instantiation simply unfolds the mathematical
operations used in the algorithms presented in Sec. 3 and replaces them by the corre-
sponding SMCs for arithmetic operations that we list in Sec. 1.

Addition for both integers and fixed point numbers is very fast, while for floating
point values, the protocol is costly. We thus choose the n shared data inputs [d1], . . . , [dn]

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 95

to the mechanisms to be fixed point numbers or integers to lower the cost of adding them
together to yield the joint unperturbed query result [d1]+ . . .+[dn]. We compute the noise
values in floating point form as the required logarithm and exponentiation operations are
only available for distributed floating point arithmetic. We use the conversion operations
FP2FL, FL2Int, Int2FL whenever necessary.

Random number generation. As we have seen in the previous section, our algorithms
rely heavily on the generation of a random number in the interval (0,1] drawn according
to the uniform distribution U(0,1]. As the SMC suite we consider does not include such
a function, we encode it using the existing primitive RandInt for the generation of a
random integer. For instance, this is done in steps 4 and 5 of Alg. 3. We first generate
a shared (γ + 1)-bit integer [rx] using the random number generator RandInt. We then
consider this integer to be the fractional part of the fixed point number, whose integer
part is 0 (by choosing f = γ). Afterwards, the fixed point number is converted to floating
point form by using the function FP2FL and disregarding the shared sign bit.

Notice that strictly speaking, this generates a random number in [0,1). We can
achieve a transition to the expected interval (0,1] by slightly modifying the conversion
primitive FP2FL so that the shared [0] is replaced by the sharing of [1] in step 3 [9, Sec. 5].
We could avoid the modification of FP2FL and instead transition into the desired interval
by subtracting the random number from 1, but this requires an additional costly addition
step.

Exponentiation and logarithm. The work by Aliasgari et al. [9] provides SMC pro-
tocols for computing exponentiation with base 2 (FLExp2) and logarithm to base 2
(FLLog2). As we often require exponentiation and logarithm to a base b �= 2, we use
the following mathematical properties ba = 2a(log2 b) and logb x =

log2 x
log2 b to compute ex-

ponentiation and logarithm for any base b. For instance, lines 8 - 9 in Alg. 3 and lines 7
- 8 in Alg. 4 use the above equations to compute logarithm and exponentiation to base e
respectively.

Distributed Laplace mechanism. The protocol to compute the distributed Laplace
mechanism is shown in Alg. 3. Note that the Laplace mechanism can use the simplifi-
cation lnrx − lnry = ln rx

ry
and thus reduce the number of necessary logarithm operations

FLLog2 as well as the number of follow-up operations.

Distributed exponential mechanism. The protocol to compute the distributed exponen-
tial mechanism using SMC is presented in Alg. 4. Each shared input [di] consists of an
integer array of the size m, representing the histogram of participant Pi. The instantiation
follows the steps of the algorithm presented in Alg. 2 by using the insights and tech-
niques we presented in this section. We straightforwardly implement the binary search
to find the winning interval/candidate on lines 13 - 17. Note that we need a slightly sim-
plified version of the FLLT protocol that outputs a value {0,1} that does not need to
be shared, thus allowing us to output w jmin

immediately without reconstruction, which
would require additional interactions.

4.2. Mechanisms in the Malicious Setting

In order to achieve DP against malicious computation parties, we need to strengthen
the SMC protocols so as to make them resistant to computing parties that deviate from

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy96

Algorithm 4: Distributed exponential mechanism
Data: [d1], . . . , [dn]; the number m of candidates; λ = ε

2
Result: m-bit w, s.t. smallest i for which w(i) = 1 denotes winning candidate ai

1 I0 = 〈0,0,1,0〉
2 for j = 1 to m do

3 [z j] = 0
4 for i = 1 to n do

5 [z j] = IntAdd([z j], [di(j)])

6 〈[vz j], [pz j], [zz j], [sz j]〉= Int2FL([z j],γ, �)
7 〈[vz′j], [pz′j], [zz′j], [sz′j]〉= FLMul(λ · log2 e,〈[vz j], [pz j], [zz j], [sz j]〉)
8 〈[vδ j], [pδ j], [zδ j], [sδ j]〉= FLExp2(〈[vz′j], [pz′j], [zz′j], [sz′j]〉)
9 〈[vIj], [pIj], [zIj], [sIj]〉=

FLAdd(〈[vIj−1], [pIj−1], [zIj−1], [sIj−1]〉,〈[vδ j], [pδ j], [zδ j], [sδ j]〉)
10 [r] = RandInt(γ +1)
11 〈[vr], [pr],0,0〉= FP2FL([r],γ, f = γ, �,k)
12 〈[v′r], [p′r], [z′r], [s′r]〉= FLMul(〈[vr], [pr],0,0〉,〈[vIm], [pIm], [zIm], [sIm]〉)
13 jmin = 1; jmax = m
14 while jmin < jmax do

15 jM =
 jmin+ jmax
2 �

16 if FLLT(〈[vIjM
], [pIjM

], [zIjM
], [sIjM

]〉,〈[v′r], [p′r], [z′r], [s′r]〉) then

17 jmin = jM+1 else jmax = jM

18 return w jmin

the protocol [40, 43]. Intuitively, to maintain secrecy, one has to enforce two additional
properties. First, the protocol-instance observations of honest parties must be consistent
with each other, and second, every party must prove that each step of its computation
was performed correctly.

Given the real-world impracticality of information-theoretically secure channels and
subsequently information-theoretically secure SMC protocols, in the malicious setting
we shift to the computational setting. In particular, we employ a computational verifiable
secret sharing scheme (VSS) [44] instead of the basic secret sharing scheme to achieve
the first secrecy property. For the second secrecy property, we introduce zero-knowledge
(ZK) proofs so that a party could prove that a correct secret value is shared among the
parties [43], and that shared secret values satisfy some mathematical conditions (e.g. they
are in a pre-defined range) [40].

4.3. Limitations of Finite-Precision Instantiations

While the theoretical definition of sanitization mechanisms for DP operates on real num-
bers r ∈R (or integers z ∈ Z), the implementations of such mechanisms have to approxi-
mate these mathematical abstractions by finite-precision representations due to the phys-
ical limitations of actual machines. This mismatch has been shown to give rise to several
attacks, as pointed out by Mironov [45] and Gazeau et al. [46]. Mironov [45] shows that
the irregularities of floating point implementations result in porous Laplace distributions,

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 97

thus undermining the privacy guarantees of floating point implementations of this san-
itization mechanism. He proposes the snapping mechanism that truncates large values
and rounds the final result so as to achieve DP of the implementation. Gazeau et al. [46]
show that, in general, approximation errors of any kind of finite-precision representation
of real numbers can lead to the disclosure of secrets. They provide a solution for fixing
such privacy breaches for a large class of sanitization mechanisms. The solution is based
on the concept of closeness and uses rounding and truncation to guarantee a limited (but
acceptable) variant of DP.

We point out that the mitigation techniques proposed in these works rely on arith-
metic operations that can be implemented using our arithmetic SMC protocols, thus al-
lowing us to circumvent the known attacks based on finite-precision implementations.
For the sake of simplicity, we omitted this extension from our presentation.

5. Security Analysis

In this section we state the security model, conduct a security analysis in the honest but
curious setting, and discuss how to extend this result to a malicious setting.

We first recall the standard notion of t-secrecy for SMC, which is formulated as in [9]
except for a small modification to accommodate the computing parties. The following
definitions refer to computing parties C = {C1, . . . ,Cβ} engaging in a protocol Π that
computes function y = f (D), where D = D1, . . . ,Dn, and Di denotes the input of party
Pi, and y ∈R is the output.

Definition 4 (View) The view of Ci consists of its shares {[D]}Ci and its internal ran-
dom coin tosses ri, as well as the messages M exchanged with the other parties dur-
ing the protocol execution induced by the other parties’ random coin tosses h, i.e.
VIEWΠ(D,h)(Ci) = ({[D]}Ci ,ri,M). VIEWΠ(D)(Ci) denotes the corresponding random
function conditioned to the other parties’ coin tosses.

Definition 5 (t-secrecy) A protocol Π is t-private in the presence of honest but curious
adversaries if for each coalition I = {Ci1 ,Ci2 , . . . ,Cit} ⊂ C of honest but curious comput-
ing parties of the size t < β/2, there exists a probabilistic polynomial time simulator SI
so that {SI({[D]}I , f (D))}≡{VIEWΠ(D,h)(I),y}. Here, {[D]}I =

⋃
C∈I{[D]}C, ≡ denotes

indistinguishability, VIEWΠ(D,h)(I) the combined view of the parties in I, and h the coin
tosses of the parties in C\I.

Let VΠ be the set of all possible views for the protocol Π. We now formally define
the notion of DDP for protocols, similar to the one introduced in [47]. Here, two vec-
tors D,D′ ∈ Dn are said to be neighbors if they differ in exactly one coordinate, which
corresponds to the scenario in which exactly one user changes her input.

Definition 6 (ε-DDP) We say that the data sanitization procedure implemented by a ran-
domized protocol Π among β computing parties C = {C1, . . . ,Cβ} achieves ε-DDP with
respect to a coalition I ⊂C of honest but curious computing parties of the size t, if the fol-
lowing condition holds: for any neighboring input vectors D,D′ ∈ Dn and any possible
set S ⊆ VΠ, Pr[VIEWΠ(D)(I) ∈ S]≤ eε Pr[VIEWΠ(D′)(I) ∈ S] holds.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy98

For the malicious setting, the coalition I of honest but curious parties in Def. 5
and 6 is replaced by an equal-sized coalition IM of malicious computationally-bounded
(for a security parameter κ) parties and the protocol Π is replaced by a computational
protocol ΠM fortified against malicious attackers with the same t-secrecy property. The
above DDP relation changes to an indistinguishability-based computational DDP (IND-
DDP) [7, 12] relation with a negligible function negl(κ) so that Pr[VIEWΠM(D)(I

M) ∈
S]≤ eε Pr[VIEWΠM(D′)(I

M) ∈ S]+negl(κ).
We now state our main theorems on ε-DDP in the honest but curious model, and

ε-IND-DDP in the malicious model.

Theorem 3 (ε-DDP) Let ε > 0. In the honest but curious setting, our distributed LM
and EM protocols achieve ε-DDP with respect to any honest but curious coalition I ⊂ C
of the size t < β .

Proof sketch. We start our analysis by proving t-secrecy for our protocols and then use
this property to prove ε-DDP. The SMC arithmetic protocols over integers, fixed and
floating point numbers internally use only two basic SMC primitives over the finite
field Fq, namely, the addition and multiplication primitives for shared secret values from
Fq. Assuming secure instances of distributed addition and multiplication protocols over
Fq [43] (and secure protocols built on top of them), Aliasgari et al. [9] have proved the
correctness and t-secrecy properties of the SMC arithmetic protocols employed in our
mechanisms using Canetti’s composition theorem [48]. More formally, they suggested
that one can build a simulator for their arithmetic SMC protocols by invoking simula-
tors for the corresponding building blocks so that the resulting environment would be
indistinguishable from the real protocol execution of participants.

The proof of t-secrecy for our protocols follows along the same lines, building a
simulator for each of the distributed DP mechanisms using the simulators for the under-
lying floating point arithmetic SMC protocols and the other building blocks, so that the
corresponding environment is indistinguishable from the corresponding real distributed
DP protocol execution.

The correctness and t-secrecy properties of our SMC protocols allow us to lift the DP
analysis for the LM and EM algorithms from Sec. 3 to the corresponding SMC protocols.
In particular, the correctness property ensures that the result is perturbed as specified by
the LM and EM algorithms. The t-secrecy of the SMC arithmetic protocols ensures that
no information about user inputs and the noise is available to the adversary controlling
the t compromised computing parties.

Theorem 4 (ε-IND-DDP) Let ε > 0 and κ be a sufficiently large security parameter. In
the malicious setting, our distributed LM and EM protocols achieve ε-IND-DDP with
respect to any malicious coalition IM ⊂ C of the size t < β , under the strong RSA and
decisional Diffie-Hellman assumptions for parameter κ .

Proof sketch. As the computational verifiable secret sharing (VSS) scheme we use [44]
enjoys the perfect secrecy property, the t-secrecy analysis for the SMC protocols in the
malicious setting remains almost the same as in the honest but curious setting. Neverthe-
less, an active adversary can target the secure communication channels between honest
parties, whose security relies on the decisional Diffie-Hellman assumption (or another
stronger Diffie-Hellman variant). However, an active adversary can only break channel

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 99

secrecy and consequently the t-secrecy of SMC protocols with negligible probability (in
κ).

The correctness of the computational SMC protocols is also maintained in the ma-
licious setting up to a negligible probability in the security parameter κ . For a compu-
tational VSS scheme, correctness requires the discrete logarithm assumption [44], zero-
knowledge range proofs require the strong RSA assumption [40], and finally, the ZK
proofs for secure multiplication require the discrete logarithm assumption [43].

As a result, using the correctness and t-secrecy properties of the computational SMC
schemes we can lift the DP analysis for the LM and EM algorithms from Sec. 3 to
the corresponding SMC-based protocol by only introducing an additive negligible factor
corresponding to the event that one of the discussed assumptions is broken.

6. Performance Analysis

Aliasgari et al. [9] microbenchmarked the performance for most of the required arith-
metic SMC protocols in the honest but curious setting for three computing parties. How-
ever, we could not successfully execute several library functions and their library does
not handle the malicious setting. Hence, we developed the complete SMC library for
both the honest but curious and malicious settings from scratch. Here, we present our
SMC implementation for integer, fixed point, and floating point arithmetic and measure
the performance costs for the distributed LM and EM protocols in both settings.

6.1. Implementation

We implement all SMC protocols discussed in Sec. 1 as well as our DDP mechanisms as
multi-threaded object-oriented C++ code to support any number (≥ 3) of computing par-
ties in the honest but curious and malicious settings. Our implementation uses the GMP
library [49] for all finite field computations, the Relic toolkit [50] for elliptic curve cryp-
tographic constructions, and the Boost [51] and OpenSSL libraries for secure commu-
nication. Our numeric SMC libraries can be of independent interest to other distributed
computation scenarios, and our complete code base is available online [52].

6.2. Experimental Setup

The experiments are performed using a 3.20 GHz (Intel i5) Linux machine with 16 GB
RAM, and 1 Gbps LAN. We run experiments for the 3-party (i.e. β = 3 and t = 1), and
5-party (i.e. β = 5 and t = 2) computation setting. The floating point numbers employed
in the experiments have a bit-length of � = 32 for significands and k = 9 for (signed)
exponents, which gives a precision of up to 2−256. For integers and fixed point numbers,
we use a bit-length of γ = 64, where f = 32 for fixed point numbers. It gives a precision
of 2−32 for the latter. The experiments use finite fields of the size of 177 bits for integers,
208 bits for fixed point numbers, and 113 bits for floating point significands. For floating
point exponents, as well as sign and zero bits, significantly smaller fields suffice. In
contrast to [9], we do not employ batching (which improves average computation times)
as our distributed mechanisms call the individual arithmetic SMC functions only a few
times. To determine an average performance, we run the experiments ten times for both
parameter sets. In Table 3, we show our results for all required SMC functionalities in the

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy100

Table 3. Performance of a single 3-party and 5-party SMC operations measured in seconds

Type Protocol HbC Malicious

β = 3, β = 5, β = 3, β = 5,
t = 1 t = 2 t = 1 t = 2

Float FLAdd 0.75 1.00 7.91 16.3
FLMul 0.24 0.28 1.79 3.30
FLScMul 0.24 0.29 1.80 3.29
FLDiv 0.90 1.00 3.22 5.90
FLLT 0.19 0.22 1.46 2.76
FLRound 0.75 0.89 5.80 11.67

Convert FP2FL 1.42 1.21 12.4 25.9
Int2FL 1.07 1.44 12.4 26.0
FL2Int 1.65 2.01 13.4 26.9
FL2FP 1.67 2.08 13.6 27.5

Log FLLog2 16.56 21.44 147 296
Exp FLExp2 8.58 10.22 63.6 120

honest but curious and malicious settings. In particular, we include the computation time
for single 3-party and 5-party arithmetic SMC operations measured in seconds. Note
that as we employ Beaver’s triple technique for multiplications [26], we have an offline
(background) phase of generating those triples [23,24], and a fast online phase for every
multiplication. We only consider the online phase computation times here.

6.3. Cost Analysis (Honest but Curious Setting)

As expected, the SMC protocols for logarithm and exponentiation are the most expensive
operations, and they will drive our distributed mechanism cost analysis. Our protocols
also use Rec, IntAdd, FPAdd, RandInt, but we did not include them in Table 3 as they
are local operations that can be performed significantly faster than the rest of the proto-
cols. Next, we determine the average performance costs for our distributed LM and EM
protocols for (β = 3, t = 1) computing parties and 100,000 users. The distributed LM
protocol has a computation cost of 22.5sec. The good efficiency of the LM mechanism
is due to the fact that we halved the number of costly logarithm operations FLLog2 and
necessary follow-up operations by using the property lnrx − lnry = ln rx

ry
. The computa-

tion cost of the distributed EM protocol linearly depends on the number m= |R| of result
candidates. For instance, for m = 5, the cost of computation is 44.6sec.

For larger numbers of computing parties β , one can extrapolate the performance
from our analysis. Even for β ≈ 100, we expect the distributed LM protocol to take
about a few hundred seconds in the honest but curious setting. We also compared our
experimental results with [9]. We could not reproduce their results, possibly due to the
introduced memory management and correctness verifications.

6.4. Cost Analysis (Malicious Setting)

As expected, the computations times for the SMC operations secure against an active
adversary are around an order of magnitude higher than those of the operations secure

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 101

against an honest but curious adversary. The average performance costs for our dis-
tributed LM and EM protocols for (β = 3, t = 1) computing parties and 100,000 users
in the malicious setting are the following. The distributed LM protocol has an average
computation cost of 187sec. The cost of the distributed EM protocol, for m = 5 result
candidates, is 316sec. Here, we observe that shifting to multiplication using Beaver’s
triple-based method [26] reduced the computation cost by a factor of two as compared
to our earlier result [25].

We stress that these operations are performed by computation parties, and that there
are no critical timing restrictions on DDP computations in most real-life scenarios, such
as web analytics. Nevertheless, we expect one order of magnitude performance gain
in the honest but curious setting as well as the malicious setting by employing high-
performance computing servers. Furthermore, as users have to simply forward their
shared values to the computing parties, which is an inexpensive operation (< 1msec in
the honest but curious setting and a few milliseconds in the malicious setting), we be-
lieve that these numbers demonstrate the practicality of PrivaDA even in a setting where
clients are equipped with computationally limited devices, such as smartphones.

7. Application Scenarios

We show the flexibility of our architecture by briefly discussing how PrivaDA can be
used to improve the state of the art in two different application scenarios.

7.1. Web Analytics

Web analytics consist of the measurement, collection, analysis, and reporting of Internet
data about users visiting a website. For instance, data can include user demographics,
browsing behavior, and information about the clients’ systems. This information is im-
portant for publishers, because it enables them to optimize their site content according to
the users’ interests; for advertisers, because it allows them to target a selected population;
and many other parties, who we will refer to as analysts.

State of the art. In order to obtain aggregated user information, websites commonly use
third-party web analytics services called aggregators that track users’ browsing behavior
across the web, thereby violating their privacy. Newer systems, e.g. a series of non-
tracking web analytics systems [11, 19] proposed by Chen et al., provide users with DP
guarantees but rely on strong non-collusion assumptions. Should a collusion happen, not
only the noise but also the individual user’s data would be disclosed.

Protocol design in PrivaDA. The computing parties are operated by third parties that
are possibly paid by the aggregator. In order to avoid multiple responses by each user
without relying on a public key infrastructure, which is unrealistic in this setting, we
add an initial step to the protocol. The publisher signs and gives each visiting user a
different token, along with one or more queries and an associated expiry time (within
which the result has to be computed). The user sends the tokens to the computation
parties, together with their answer shares, so that the computation parties would be able to
detect duplicates and discard them before the aggregation. The users only have to submit
their shares and can then go offline. Finally, the support for a variety of perturbation

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy102

...

P1

Pn

C1

Cβ

AggregatorAggregator

...

token1,[f(D1)]β

token1,[f(D1)]1

tokenn,[f(Dn)]1

tokenn,[f(Dn)]β

[≈f(D1,...Dn)]1

[≈f(D1,...Dn)]β

≈f(D1,...Dn)

Publisher

f, endf, token1

f, endf, tokenn

Figure 2. Protocol flow of privacy-preserving web analytics

mechanisms enables the execution of different kinds of analytical queries, for instance,
our distributed exponential mechanism can be used to compute the average nationality
and age group of visitors. The protocol is depicted in Fig. 2.

7.2. Anonymous Surveys

Next, let us consider anonymous surveys. In this setting, it is often reasonable to tolerate
a little result perturbation in favor of strong privacy guarantees for the participating users.

State of the art. ANONIZE [53] is a recently proposed large-scale anonymous survey
system. The authors exemplify it on an anonymous course evaluation service, in which
students grade the courses they attend. However, ANONIZE does not address the prob-
lem that the survey result itself might still leak a lot of information about the individual
user, which differential privacy aims at preventing.

Protocol design in PrivaDA. As compared to ANONIZE, the usage of PrivaDA yields
differential privacy guarantees, besides avoiding the need to design and implement a
complicated ad hoc protocol. We exemplify the usage of PrivaDA for anonymous surveys
on the previously mentioned course evaluation service. Before submitting a grade for
a certain course, students have to authenticate to prove their enrollment in that class.
We envision a public key infrastructure maintained by the university, or an anonymous
credential system used by the professor to grant her students access credentials. The
computation parties will be implemented by organizations that are mutually distrustful,
but are all interested in the results of the evaluation, such as the student association, or the
university administration. The average grade is computed using the distributed Laplace
mechanism.

References

[1] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and David Irwin. Private
Memoirs of a Smart Meter. In BuildSys’10, pages 61–66, 2010.

[2] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. Learning Your Identity
and Disease from Research Papers: Information Leaks in Genome Wide Association Study. In CCS’09,
pages 534–544, 2009.

[3] Cynthia Dwork. Differential Privacy. In ICALP’06, pages 1–12, 2006.
[4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in

Private Data Analysis. In TCC’06, pages 265–284, 2006.
[5] Frank McSherry and Kunal Talwar. Mechanism Design via Differential Privacy. In FOCS’07, pages

94–103, 2007.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 103

[6] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our Data,
Ourselves: Privacy Via Distributed Noise Generation. In EUROCRYPT’06, pages 486–503, 2006.

[7] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. Computational Differential Privacy.
In Crypto’09, pages 126–142, 2009.

[8] Moritz Hardt and Guy N. Rothblum. A Multiplicative Weights Mechanism for Privacy-Preserving Data
Analysis. In FOCS’10, pages 61–70, 2010.

[9] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure Computation on Floating
Point Numbers. In NDSS’13, 2013.

[10] Gergely Ács and Claude Castelluccia. I have a DREAM! (DiffeRentially privatE smArt Metering). In
IH’11, pages 118–132, 2011.

[11] Ruichuan Chen, Alexey Reznichenko, Paul Francis, and Johannes Gehrke. Towards Statistical Queries
over Distributed Private User Data. In NSDI’12, pages 13–13, 2012.

[12] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-Preserving Stream Aggregation with Fault
Tolerance. In FC’12, pages 200–214, 2012.

[13] Slawomir Goryczka, Li Xiong, and Vaidy Sunderam. Secure Multiparty Aggregation with Differential
Privacy: A Comparative Study. In EDBT/ICDT’13, pages 155–163, 2013.

[14] Marek Jawurek and Florian Kerschbaum. Fault-Tolerant Privacy- Preserving Statistics. In PETS’12,
pages 221–238, 2012.

[15] Vibhor Rastogi and Suman Nath. Differentially Private Aggregation of Distributed Time-Series with
Transformation and Encryption. In SIGMOD’10, pages 735–746, 2010.

[16] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song. Privacy-Preserving
Aggregation of Time-Series Data. In NDSS’11, 2011.

[17] George Danezis, Markulf Kohlweiss, and Alfredo Rial. Differentially Private Billing with Rebates. In
IH’11, pages 148–162, 2011.

[18] Gilles Barthe, George Danezis, Benjaming Grégoire, César Kunz, and Santiago Zanella-Béguelin. Ver-
ified Computational Differential Privacy with Applications to Smart Metering. In CSF’13, pages 287–
301, 2013.

[19] Istemi Ekin Akkus, Ruichuan Chen, Michaela Hardt, Paul Francis, and Johannes Gehrke. Non-tracking
Web Analytics. In CCS’12, pages 687–698, 2012.

[20] Ruichuan Chen, Istemi Ekin Akkus, and Paul Francis. SplitX: High-Performance Private Analytics. In
SIGCOMM’13, 2013. to appear.

[21] Octavian Catrina and Amitabh Saxena. Secure Computation With Fixed-Point Numbers. In FC’10,
pages 35–50, 2010.

[22] Strange L. From and Thomas Jakobsen. Secure Multi-Party Computation on Integers. Master’s thesis,
University of Aarhus, 2006.

[23] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption
and multiparty computation. In EUROCRYPT’11, pages 169–188, 2011.

[24] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Crypto’12, pages 643–662, 2012.

[25] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pryvalov. Differentially
Private Data Aggregation with Optimal Utility. In ACSAC’14, 2014.

[26] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Crypto’91, pages 420–
432, 1991.

[27] Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract). In FOCS’82, pages
160–164, 1982.

[28] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share Conversion, Pseudorandom Secret-Sharing and
Applications to Secure Computation. In TCC’05, pages 342–362, 2005.

[29] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A System for Secure Multi-party Com-
putation. In CCS’08, pages 257–266, 2008.

[30] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance secure multi-party
computation for data mining applications. Int. J. Inf. Sec., 11(6):403–418, 2012.

[31] Qinghua Li and Guohong Cao. Efficient Privacy-Preserving Stream Aggregation in Mobile Sensing with
Low Aggregation Error. In PETS’13, pages 60–81, 2013.

[32] Dima Alhadidi, Noman Mohammed, Benjamin C. M. Fung, and Mourad Debbabi. Secure Distributed
Framework for Achieving ε-Differential Privacy. In PETS’12, pages 120–139, 2012.

[33] Daniel Kifer and Ashwin Machanavajjhala. No Free Lunch in Data Privacy. In SIGMOD’11, pages

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy104

193–204, 2011.
[34] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. Differential Privacy under Fire. In

USENIX’11, 2011.
[35] S. P. Kasiviswanathan and A. Smith. A Note on Differential Privacy: Defining Resistance to Arbitrary

Side Information. Report 2008/144, 2008.
[36] Raghav Bhaskar, Abhishek Bhowmick, Vipul Goyal, Srivatsan Laxman, and Abhradeep Thakurta.

Noiseless Database Privacy. In ASIACRYPT’11, pages 215–232, 2011.
[37] Johannes Gehrke, Edward Lui, and Rafael Pass. Towards Privacy for Social Networks: A Zero-

Knowledge Based Definition of Privacy. In TCC’11, pages 432–449, 2011.
[38] Liina Kamm and Jan Willemson. Secure Floating Point Arithmetic and Private Satellite Collision Anal-

ysis. IJIS, pages 1–18, 2014.
[39] Toomas Krips and Jan Willemson. Hybrid Model of Fixed and Floating Point Numbers in Secure

Multiparty Computations. In ISC’14, pages 179–197, 2014.
[40] Fabrice Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In EUROCRYPT’00,

pages 431–444, 2000.
[41] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables. Dover, 1964.
[42] Luc Devroye. Non-Uniform Random Variate Generation, 1986.
[43] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and Fact-Track Multiparty Com-

putations with Applications to Threshold Cryptography. In PODC’98, pages 101–111, 1998.
[44] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In

Crypto’91, pages 129–140, 1991.
[45] Ilya Mironov. On Significance of the Least Significant Bits for Differential Privacy. In CCS’12, pages

650–661, 2012.
[46] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. Preserving differential privacy under finite-

precision semantics. In QAPL’13, pages 1–18, 2013.
[47] F. Eigner and M. Maffei. Differential Privacy by Typing in Security Protocols. In CSF’13, 2013.
[48] Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology,

13(1):143–202, 2000.
[49] GMP: The GNU Multiple Precision Arithmetic Library. http://gmplib.org.
[50] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. http://code.

google.com/p/relic-toolkit/.
[51] The Boost C++ Libraries. http://www.boost.org.
[52] PrivaDA Project Page: Full Version + Our SMPC Library. http://crypsys.mmci.uni-saarland.

de/projects/ArithmeticSMPC.
[53] Susan Hohenberger, Steven Myers, Rafael Pass, and abhi shelat. ANONIZE: A Large-Scale Anonymous

Survey System. In S&P’14, 2014.

F. Eigner et al. / Achieving Optimal Utility for Distributed Differential Privacy 105

