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Abstract. We present a generic method for turning passively secure protocols into
protocols secure against covert attacks. This method adds to the protocol a post-
execution verification phase that allows a misbehaving party to escape detection
only with negligible probability. The execution phase, after which the computed
protocol result is already available to the parties, has only negligible overhead
added by our method.

The method uses shared verification based on linear probabilistically checkable
proofs. The checks are done in zero-knowledge, thereby preserving the privacy
guarantees of the original protocol. This method is inspired by recent results in ver-
ifiable computation, adapting them to the multiparty setting and significantly low-
ering their computational costs for the provers. The verification is straightforward
to apply to protocols over finite fields.

A longer preprocessing phase can be introduced to shorten the verification phase
even more. Beaver triples can be used to make it possible to verify the entire pro-
tocol execution locally on shares, leaving for verification just some linear com-
binations that do not need complex zero-knowledge proofs. Using preprocessing
provides a natural way of verifying computation over rings of the size of 2n.

Introduction

Any multiparty computation can be performed so that the participants only learn their
own outputs and nothing else [1]. While the generic construction is expensive in compu-
tation and communication, the result has sparked research activities in secure multiparty
computation (SMC), with results that are impressive both performance-wise [2,3,4,5]
as well as in the variety of concrete problems that have been tackled [6,7,8,9]. From
the start, two kinds of adversaries — passive and active — have been considered in the
construction of SMC protocols, with the highest performance and the greatest variety
achieved for protocol sets secure against passive adversaries.

Verifiable computation (VC) [10] allows a weak client to outsource a computation to
a more powerful server that accompanies the computed result with proof of correct com-
putation, the verification of which by the client is cheaper than performing the computa-
tion itself. VC can be used to strengthen protocols secure against passive adversaries —
after executing the protocol, the parties can prove to each other that they have correctly
followed the protocol. If the majority of the parties are honest (an assumption which is
made also by the most efficient SMC protocol sets secure against passive adversaries),

Applications of Secure Multiparty Computation
P. Laud and L. Kamm (Eds.)
© 2015 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-532-6-165

165



then the resulting protocol will satisfy a strong version of covert security [11], where any
deviations from the protocol are guaranteed to be discovered and reported. Unfortunately,
existing approaches to VC have a large computational overhead for the server/prover.
Typically, if the computation is represented as an arithmetic circuit C, the prover has to
perform Ω(|C|) public-key operations in order to ensure its good behavior, as well as to
protect its privacy.

In this work we show that in the multiparty context with an honest majority, these
public-key operations are not necessary. Instead, verifications can be done in a dis-
tributed manner, in a way that provides the same security properties. For this, we apply
the ideas of existing VC approaches based on linear probabilistically checkable proofs
(PCPs) [12], and combine them with linear secret sharing, which we use also for commit-
ments. We end up with a protocol transformation that makes the executions of any proto-
col (and not just SMC protocols) verifiable afterwards. Our transformation commits the
randomness (this takes place offline), inputs, and the communication of the participants.
The commitments are cheap, as they are based on digital signatures, and do not add a
significant overhead to the execution phase. The results of the protocol are available after
the execution. The verification can take place at any time after the execution. Dedicated
high-bandwidth high-latency communication channels can be potentially used for it. The
verification itself is succinct. The proof is generated in O(|C| log |C|) field operations, but
the computation is local. The generation of challenges costs O(1) in communication and
O(|C|) in local computation.

We present our protocol transformation as a functionality in the universal compos-
ability (UC) framework, which is described more precisely in Chapter 1. After reviewing
related work in Sec. 1, we describe the ideal functionality in Sec. 2 and its implementa-
tion in Sec. 4. Before the latter, we give an overview of the existing building blocks we
use in Sec. 3. We estimate the computational overhead of our transformation in Sec. 5.

Apart from increasing the security of SMC protocols, our transformation can be
used to add verifiability to other protocols. In Sec. 6 we demonstrate how a verifiable
secret sharing (VSS) scheme can be constructed. We compare it with state-of-the-art VSS
schemes and find that despite much higher generality, our construction enjoys similar
complexity.

In order to make the verification phase even more efficient, in Sec. 7 we propose to
push more computation into the preprocessing phase. This allows to simplify the final
zero-knowledge proofs significantly.

1. Related Work

The property brought by our protocol transformation is similar to security against covert
adversaries [11] that are prevented from deviating from the prescribed protocol by a non-
negligible chance of getting caught.

A similar transformation, applicable to protocols of a certain structure, was intro-
duced by Damgård et al. [13]. They run several instances of the initial protocol, where
only one instance is run on real inputs, and the other on randomly generated shares. No
party should be able to distinguish the protocol executed on real inputs from the proto-
col executed on random inputs. In the end, the committed traces of the random execu-
tions are revealed by each party, and everyone may check if a party acted honestly in the
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random executions. This way, in the beginning all the inputs must be reshared, and the
computation must leak no information about the inputs, so that no party can guess which
inputs are real and which are random. Hence, the transformation does not allow using
the advantage gained from specific sharings of inputs between the parties (where a party
can recognize its input), or deliberated leakage of the information that will be published
in the end anyway. The probability of cheating decreases linearly with the number of
dummy executions.

Compared to the transformation of [13], ours is more general, has lower overhead
in the execution phase, and is guaranteed to catch the deviating parties. Our transforma-
tion can handle protocols where some of the results are made available to the comput-
ing parties already before the end of the protocol. This may significantly decrease the
complexity of the protocol [8]. A good property of their construction is its black box
nature, which our transformation does not have. Hence, different transformations may be
preferable in different situations.

Many works have been dedicated to short verifications of solutions to NP-complete
problems. Probabilistically checkable proofs [14] allow verifying a possibly long proof
by querying a small number of its bits. Micali [15] has presented computationally sound
proofs where the verification is not perfect, and the proof can be forged, but it is compu-
tationally hard to do. Kilian [16] proposed interactive probabilistically checkable proofs
using bit commitments. A certain class of linear probabilistically checkable proofs [12]
allows making argument systems much simpler and more general.

In computation verification, the prover has to prove that given the valuations of cer-
tain wires of a circuit, there is a correct valuation of all the other wires so that the com-
putation is correct with respect to the given circuit. Verifiable computation can in gen-
eral be based not only on the PCP theorem. In [10], Yao’s garbled circuits [17] are ex-
ecuted using fully homomorphic encryption (see Chapter 1 for details). Quadratic span
programs for Boolean circuits and quadratic arithmetic programs for arithmetic circuits
without PCP have first been proposed in [18], later extended to PCP by [19], and further
optimized and improved in [20,21,22]. Particular implementations of verifiable compu-
tations have been done, for example, in [21,22,23].

The goal of our transformation is to provide security against a certain form of ac-
tive attackers. SMC protocols secure against active attackers have been known for a long
time [1,24]. SPDZ [4,25] is currently the SMC protocol set secure against active adver-
saries with the best online performance achieved through extensive offline precomputa-
tions (see Chapter 1 for details of SPDZ protocols). Similarly to several other protocol
sets, SPDZ provides only a minimum amount of protocols to cooperatively evaluate an
arithmetic circuit. We note that very recently, a form of post-execution verifiability has
been proposed for SPDZ [26].

2. Ideal Functionality

We use the universal composability (UC) framework [27] to specify our verifiable exe-
cution functionality. We have n parties (indexed by [n] = {1, . . . ,n}), where C ⊆ [n] are
corrupted for |C|= t < n/2 (we denote H= [n]\C). The protocol has r rounds, where the
�-th round computations of the party Pi, the results of which are sent to the party Pj, are
given by an arithmetic circuit C�

i j, either over a finite field F or over rings Zn1 , . . . ,ZnK .
We define the following gate operations for such a circuit:
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In the beginning, Fvmpc gets from Z for each party Pi the message
(circuits, i,(C�

i j)
n,n,r
i, j,�=1,1,1) and forwards them all to AS. For each i ∈ H [resp i ∈ C],

Fvmpc gets (input,xi) from Z [resp. AS]. For each i ∈ [n], Fvmpc randomly generates ri.
For each i ∈ C, it sends (randomness, i,ri) to AS.
For each round � ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C�

i j to compute the message m�
i j.

For all j ∈ C, it sends m�
i j to AS. For each j ∈ C and i ∈H, it receives m�

ji from AS.
After r rounds, Fvmpc sends (output,mr

1i, . . . ,m
r
ni) to each party Pi with i∈H. Let r′ = r

and B0 = /0.
Alternatively, at any time before outputs are delivered to parties, AS may send (stop,B0)
to Fvmpc, with B0 ⊆ C. In this case the outputs are not sent. Let r′ ∈ {0, . . . ,r−1} be the
last completed round.
After r′ rounds, AS sends to Fvmpc the messages m�

i j for � ∈ [r′] and i, j ∈ C.
Fvmpc defines M= B0 ∪{i ∈ C |∃ j ∈ [n], � ∈ [r′] : m�

i j �=C�
i j(xi,ri,m

1
1i, . . . ,m

�−1
ni )}.

Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc, with M ⊆ Bi ⊆ C. Fvmpc
forwards this message to Pi.

Figure 1. The ideal functionality for verifiable computations

• The operations + (addition) and ∗ (multiplication) are in F or in rings Zn1 , . . . ,ZnK

(ni < n j for i < j).
• The operations trunc and zext are between rings. Let x ∈ Znx , y ∈ Zny , nx < ny.

∗ x = trunc(y) computes x = y mod nx, going from a larger ring to a smaller
ring.

∗ y = zext(x) takes x and uses the same value in ny. It can be treated as taking
the bits of x and extending them with zero bits.

• The operation bits are from an arbitrary ring Zn to (Z2)
logn. This operation per-

forms a bit decomposition. Although bit decomposition can be performed by other
means, we introduce a separate operation as it is reasonable to implement a faster
verification for it.

More explicit gate types can be added to the circuit. Although the current set of gates
is sufficient to represent any other operation, the verifications designed for special gates
may be more efficient. For example, introducing the division gate c = a/b explicitly
would allow to verify it as a = b ∗ c instead of expressing the division through addition
and multiplication. In this work, we do not define any other gates, as the verification of
most standard operations is fairly straightforward, assuming that bit decomposition is
available.

The circuit C�
i j computes the �-th round messages m�

i j to all parties j ∈ [n] from the
input xi, randomness ri and the messages Pi has received before (all values xi,ri,m

�
i j are

vectors over rings Zn or a finite field F). We define that the messages received during the
r-th round comprise the output of the protocol. The ideal functionality Fvmpc, running in
parallel with the environment Z and the adversary AS, is given in Fig. 1.

We see that M is the set of all parties that deviate from the protocol. Our verifiability
property is very strong as all of them will be reported to all honest parties. Even if
only some rounds of the protocol are computed, all the parties that deviated from the
protocol in completed rounds will be detected. Also, no honest parties (in H) can be
falsely blamed. We also note that if M = /0, then AS does not learn anything that a
semi-honest adversary could not learn.
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Ftransmit works with unique message identifiers mid, encoding a sender s(mid) ∈ [n], a
receiver r(mid)∈ [n], and a party f (mid)∈ [n] to whom the message should be forwarded
by the receiver (if no forwarding is foreseen then f (mid) = r(mid)).
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from
all (other) honest parties, store (mid,m,r(mid)), mark it as undelivered, and output
(mid, |m|) to the adversary. If the input of Ps(mid) is invalid (or there is no input), and
Pr(mid) is honest, then output (corrupt,s(mid)) to all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid)
from all honest parties, store (mid,m,bc), mark it as undelivered, output (mid, |m|) to
the adversary. If the input of Ps(mid) is invalid, output (corrupt,s(mid)) to all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m,r) send
(mid,m) to Pr; mark (mid,m,r) as delivered. For each undelivered (mid,m,bc), send
(mid,m) to each party and the adversary; mark (mid,m,bc) as delivered.
Forward received message: On input (forward,mid) from Pr(mid) after (mid,m) has
been delivered to Pr(mid), and receiving (forward,mid) from all honest parties, store
(mid,m, f (mid)), mark as undelivered, output (mid, |m|) to the adversary. If the input of
Pr(mid) is invalid, and Pf (mid) is honest, output (corrupt,r(mid)) to all parties.
Publish received message: On input (publish,mid) from the party Pf (mid), which at any
point received (mid,m), output (mid,m) to each party, and also to the adversary.
Do not commit corrupt to corrupt: If for some mid both Ps(mid), Pr(mid) are corrupt, then
on input (forward,mid) the adversary can ask Ftransmit to output (mid,m′) to Pf (mid) for
any m′. If, additionally, Pf (mid) is corrupt, then the adversary can ask Ftransmit to output
(mid,m′) to all honest parties.

Figure 2. Ideal functionality Ftransmit

3. Building Blocks

Throughout this work, bold letters x denote vectors, where xi denotes the i-th coordi-
nate of x. Concatenation of x and y is denoted by (x‖y), and their scalar product by
〈x,y〉, which is defined (only if |x|= |y|) as 〈x,y〉= ∑|x|

i=1 xiyi. Our implementation uses
a number of previously defined subprotocols and algorithm sets.

Message transmission. For message transmission between parties, we use functionality
Ftransmit [13], which allows one to provably reveal to third parties the messages that one
received during the protocol, and to further transfer such revealed messages. Our defini-
tion of Ftransmit differs from that of Damgård et al. [13] Ftransmit by supporting the for-
warding of received messages as well as broadcasting as a part of the outer protocol. The
definition of the ideal functionality of Ftransmit is shown in Fig. 2. The real implementa-
tion of the transmission functionality is built on top of signatures. This makes the imple-
mentation very efficient, as hash trees allow several messages (sent in the same round)
to be signed with almost the same computation effort as a single one [28], and signatures
can be verified in batches [29]. An implementation of Ftransmit is given in [30].

Shamir’s secret sharing. For commitments, we use (n, t) Shamir’s secret sharing [31],
where any t parties are able to recover the secret, but fewer than t are not (see Chapter 1
for details). By sharing a vector x over F into vectors x1, . . . ,xn we mean that each i-th
entry xi ∈ F of x is shared into the i-th entries x1

i ∈ F, . . . ,xn
i ∈ F of x1, . . . ,xn. In this way,

for each T = {i1, . . . , it} ⊆ [n], the entries can be restored as xi = ∑t
j=1 bT jx

i j
i for certain
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constants bT j, and hence, x = ∑t
j=1 bT jx

i j . The linearity extends to scalar products: if
a vector π is shared to π1, . . . ,πn, then for any vector q and T = {i1, . . . , it}, we have
∑t

j=1 bT j〈π i j ,q〉= 〈π,q〉.
We note that sharing a value x as x1 = · · · = xk = x is valid, i.e. x can be restored

from xi1 , . . . ,xit by forming the same linear combination. In our implementation of the
verifiable computation functionality, we use such sharing for values that become public
due to the adversary’s actions.

Beaver triples. This primitive will be used in cases where we want to make the verifi-
cation phase more efficient by pushing some computation into the preprocessing phase.

Beaver triples [32] are triples of values (a,b,c) in a ring Zn, so that a,b $← R, and
c = a · b. Precomputing such triples can be used to linearize multiplications. For ex-
ample, if we want to multiply x · y, and a triple (rx,ry,rxy) is already precomputed
and preshared, we may first compute and publish x′ := x − rx and y′ := y − ry (x′
and y′ leak no information about x and y), and then compute the linear combination
x · y = (x′ + rx)(y′ + ry) = x′y′ + rxy′ + x′ry + rxry = x′y′ + rxy′ + x′ry + rxy. Differently
from standard usage (like in SPDZ), we do not use these triples in the original protocol,
but instead use them to simplify the verification phase. See Chapter 1 for details on the
generation and usage of such triples.

Linear PCP. This primitive forms the basis of our verification. Before giving its defini-
tion, let us formally state when a protocol is statistically privacy-preserving.

Definition 1 (δ -private protocol [33]) Let Π be a multiparty protocol that takes input
x from honest parties and y from adversarially controlled parties. The protocol Π is δ -
private against a class of adversaries A if there exists a simulator Sim, so that for all
adversaries A ∈ A and inputs x,y,

∣
∣Pr

[

AΠ(x,y)(y) = 1
]−Pr

[

ASim(y)(y) = 1
]∣
∣≤ δ .

Definition 2 (Linear probabilistically checkable proof (LPCP) [19]) Let F be a finite
field, υ ,ω ∈ N, R ⊆ F

υ ×F
ω . Let P and Q be probabilistic algorithms, and D a deter-

ministic algorithm. The pair (P,V ), where V = (Q,D) is a d-query δ -statistical honest
verifier zero-knowledge (HVZK) linear PCP for R with the knowledge error ε and the
query length m, if the following holds.

Syntax On input v ∈ F
υ and w ∈ F

ω , algorithm P computes π ∈ F
m. The algorithm Q

randomly generates d vectors q1, . . .qd ∈ F
m and some state information u. On

input v, u, as well as a1, . . . ,ad ∈ F, the algorithm D accepts or rejects. Let V π(v)
denote the execution of Q followed by the execution of V on v, the output u of Q,
and a1, . . . ,ad, where ai = 〈π,qi〉.

Completeness For every (v,w) ∈ R, the output of P(v,w) is a vector π ∈ F
m so that

V π(v) accepts with probability 1.

Knowledge There is a knowledge extractor E so that for every vector π∗ ∈ F
m, if

Pr
[

V π∗
(v) accepts

]≥ ε then E(π∗,v) outputs w so that (v,w) ∈ R.

Honest Verifier Zero-Knowledge The protocol between an honest prover executing
π ← P(v,w) and an adversarial verifier executing V π(v) with common input v

and the prover’s input w is δ -private for the class of passive adversaries.
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Similarly to different approaches to verifiable computation [18,19,20,21,22], in our
work we let the relation R correspond to the circuit C executed by the party whose obser-
vance of the protocol is being verified. In this correspondence, v is the tuple of all inputs,
outputs, and the used random values of that party. The vector w extends v with the results
of all intermediate computations by that party. Differently from existing approaches, v

itself is private. Hence, it is unclear how the decision algorithm D can be executed on it.
Therefore, we do not use D as a black box, but build our solution on top of a particular
LPCP [21].

The LPCP algorithms used by Ben-Sasson et al. [21] are statistical HVZK. Namely,
the values 〈π,qi〉 do not reveal any private information about π , unless the random seed
τ ∈ F for Q is chosen in badly, which happens with negligible probability for a suffi-
ciently large field. In [21], Q generates 5 challenges q1, . . . ,q5 and the state information
u with the length |v|+ 2. Given the query results ai = 〈π,qi〉 for i ∈ {1, . . . ,5} and the
state information u = (u0,u1, . . . ,u|v|+1), the following two checks have to pass:

a1a2 −a3 −a4u|v|+1 = 0, (∗)
a5 −〈(1‖v),(u0,u1, . . . ,u|v|)〉= 0. (∗∗)

Here (∗) is used to show the existence of w, and (∗∗) shows that a certain segment
of π equals (1‖v) [21]. Throughout this work, we reorder the entries of π compared to
[21] and write π = (p‖1‖v), where p represents all the other entries of π , as defined in
[21]. The challenges q1, . . . ,q5 are reordered in the same way.

This linear interactive proof can be converted into a zero-knowledge succinct non-
interactive argument of knowledge [19]. Unfortunately, it requires homomorphic encryp-
tion, and the number of encryptions is linear in the size of the circuit. We show that
the availability of honest majority allows the proof to be completed without public-key
encryptions.

The multiparty setting introduces a further difference from [21]: the vector v can
no longer be considered public, as it contains a party’s private values. Thus, we have to
strengthen the HVZK requirement in Def. 2, making v private to the prover. The LPCP
constructions of [21] do not satisfy this strengthened HVZK requirement, but their au-
thors show that this requirement would be satisfied if a5 were not present. In the fol-
lowing, we propose a construction where just the first check (∗) is sufficient, so only
a1, . . . ,a4 have to be published. We prove that the second check (∗∗) will be passed
implicitly. We show the following.

Theorem 1 Given a δ -statistical HVZK instance of the LPCP of Ben-Sasson et al. [21]
with the knowledge error ε , any n-party r-round protocol Π can be transformed into an
n-party (r+8)-round protocol Ξ in the Ftransmit -hybrid model, which computes the same
functionality as Π and achieves covert security against adversaries statically corrupting
at most t < n/2 parties, where the cheating of any party is detected with probability of at
least (1− ε). If Π is δ ′-private against passive adversaries statically corrupting at most
t parties, then Ξ is (δ ′+ δ )-private against cover adversaries. Under active attacks by
at most t parties, the number of rounds of the protocol may at most double.

Thm. 1 is proved by the construction of the real functionality Sec. 4, as well as
the simulator presented in [30]. In the construction, we use the following algorithms
implicitly defined by Ben-Sasson et al. [21]:
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Circuits: Mi gets from Z the message (circuits, i,(C�
i j)

n,n,r
i, j,�=1,1,1) and sends it to A.

Randomness generation and commitment: Let R = [t + 1]. For all i ∈ R, j ∈ [n], Mi
generates ri j for Mj. Mi shares ri j to n vectors r1

i j, . . . ,r
n
i j according to (n, t +1) Shamir’s

scheme. For j ∈ [n], Mi sends (transmit,(r share, i, j,k),rk
i j) to Ftransmit for Mk.

Randomness approval: For each j ∈ [n]\{k}, i ∈R, Mk sends (forward,(r share, i,
j,k)) to Ftransmit for Mj. Upon receiving ((r share, i, j,k),rk

i j) for all k ∈ [n], i ∈ R, Mj
checks if the shares comprise a valid (n, t +1) Shamir’s sharing. Mj sets ri = ∑i∈R ri j.
Input commitments: Mi with i ∈ H [resp. i ∈ C] gets from Z [resp. A] the input xi
and shares it to n vectors x1

i , . . . ,x
n
i according to (n, t + 1) Shamir’s scheme. For each

k ∈ [n]\{i}, Mi sends to Ftransmit (transmit,(x share, i,k),xk
i ) for Mk.

At any time: If (corrupt, j) comes from Ftransmit , Mi writes mlci[ j] := 1 and goes to the
accusation phase.

Figure 3. Initialization phase of the real functionality

• witness(C,v): if v corresponds to a valid computation of C, it returns a witness w

so that (v,w) ∈RC.
• proo f (C,v,w) if (v,w) ∈RC, it constructs a corresponding proof p.
• challenge(C,τ): returns q1, . . . ,q5,u that correspond to τ , so that:

∗ for any valid proof π = (p‖1‖v), where p is generated by proo f (C,v,w) for
(v,w) ∈RC, the checks (∗) and (∗∗) succeed with probability 1;

∗ for any proof π∗ generated without knowing τ , or such w that (v,w) ∈ RC,
either (∗) or (∗∗) fails, except with negligible probability ε .

4. Real Functionality

Our initial construction works for arithmetic circuits over a finite field F, assuming that
the only gate types are + and ∗. In Sec. 7, we show how it can be extended to a circuit
over multiple rings, so that the gates trunc, zext, and bits can be added.

The protocol Πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn doing
the work of parties P1, . . . ,Pn, and the functionality Ftransmit . The internal state of each Mi
contains a bit-vector mlci of the length n, where Mi marks which other parties are acting
maliciously. The protocol Πvmpc runs in five phases: initialization, execution, message
commitment, verification, and accusation.

In the initialization phase, the inputs xi and the randomness ri are committed. It is
ensured that the randomness indeed comes from uniform distribution. This phase is given
in Fig.3. If at any time (corrupt, j) comes from Ftransmit , each (uncorrupted) Mi writes
mlci[ j] := 1 (for each message (corrupt, j)) and goes to the accusation phase.

In the execution phase, the parties run the original protocol as before, just using
Ftransmit to exchange the messages. This phase is given in Fig.4. If at any time in some
round � the message (corrupt, j) comes from Ftransmit (all uncorrupted machines receive
it at the same time), the execution is cut short, no outputs are produced and the protocol
continues with the commitment phase.

In the message commitment phase, all the n parties finally commit their sent mes-
sages c�i j for each round � ∈ [r′] by sharing them to c�1i j , . . . ,c

�n
i j according to (n, t + 1)

Shamir’s scheme. This phase is given in Fig. 5. Let v�i j = (xi‖ri‖c1
1i‖· · ·‖c�−1

ni ‖c�i j) be the
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For each round � the machine Mi computes c�i j =C�
i j(xi,ri,c

1
1i, . . . ,c

�−1
ni ) for each j ∈ [n]

and sends to Ftransmit the message (transmit,(message, �, i, j),c�i j) for Mj.
After r rounds, uncorrupted Mi sends (output,cr

1i, . . . ,c
r
ni) to Z and sets r′ := r.

At any time: If (corrupt, j) comes from Ftransmit , each (uncorrupted) Mi writes
mlci[ j] := 1, sets r′ := �−1 and goes to the message commitment phase.

Figure 4. Execution phase of the real functionality

Message sharing: As a sender, Mi shares c�i j to c�1i j , . . . ,c
�n
i j according to (n, t +

1) Shamir’s scheme. For each k ∈ [n] \ {i}, Mi sends to Ftransmit the messages
(transmit,(c share, �, i, j,k),c�ki j ) for Mj.
Message commitment: Upon receiving ((c share, �, i, j,k),c�ki j ) from Ftransmit for all k ∈
[n], the machine Mj checks if the shares correspond to the c�i j it has already received. If
they do not, Mj sends (publish,(message, �, i, j)) to Ftransmit , so now everyone sees the
values that it has actually received from Mi, and each (uncorrupted) Mk should now use
c�ki j := c�i j. If the check succeeds, then Mi sends to Ftransmit (forward,(c share, �, i, j,k))
for Mk for all k ∈ [n]\{i}.

Figure 5. Message commitment phase of the real functionality

vector of inputs and outputs to the circuit C�
i j that Mi uses to compute the �-th message to

Mj. If the check performed by Mj fails, then Mj has received from Mi enough messages
to prove its corruptness to others (but Fig. 5 presents an alternative, by publicly agreeing
on c�i j). After this phase, Mi has shared v�i j among all n parties. Let v�ki j be the share of v�i j
given to machine Mk.

Each Mi generates a witness w�
i j =witness(C�

i j,v
�
i j), a proof p�

i j = proo f (C�
i j,v

�
i j,w

�
i j),

and π�
i j = (p�

i j‖1‖v�i j) in the verification phase, as explained in Sec. 3. The vector p�
i j is

shared to p�1
i j , . . . ,p

�n
i j according to (n, t +1) Shamir’s scheme.

All parties agree on a random τ , with Mi broadcasting τi and τ being their sum. A
party refusing to participate is ignored. The communication must be synchronous, with
no party Pi learning the values τ j from others before he has sent his own τi. Note that
Ftransmit already provides this synchronicity. If it were not available, then standard tools
(commitments) could be used to achieve fairness.

All (honest) parties generate q�
1i j, . . . ,q

�
4i j,q

�
5i j,u

�
i j = challenge(C�

i j,τ) for � ∈ [r′],
i ∈ [n], j ∈ [n]. In the rest of the protocol, only q�

1i j, . . . ,q
�
4i j, and (u�i j)|v|+1 will be used.

Each Mk computes π�k
i j = (p�k

i j ‖1‖v�ki j ) = (p�k
i j ‖1‖xk

i ‖∑ j∈R rk
ji‖c1k

1i ‖· · ·‖c
�−1,k
ni ‖c�ki j )

for verification, and then computes and publishes the values 〈π�k
i j ,q

�
1i j〉, . . . ,〈π�k

i j ,q
�
4i j〉.

Mi checks these values and complains about Mk that has computed them incorrectly. An
uncorrupted Mk may disprove the complaint by publishing the proof and message shares
that it received. Due to the linearity of scalar product and the fact that all the vectors have
been shared according to the same (n, t + 1) Shamir’s sharing, if the n scalar product
shares correspond to a valid (n, t + 1) Shamir’s sharing, the shared value is uniquely
defined by any t + 1 shares, and hence, by the shares of some t + 1 parties that are all
from H. Hence, Mi is obliged to use the values it has committed before. The verification
phase for C�

i j for fixed � ∈ [r′], i ∈ [n], j ∈ [n] is given in Fig.6. For different C�
i j, all the

verifications can be done in parallel.
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Remaining proof commitment: As the prover, Mi obtains w�
i j and π�

i j = (p�
i j‖1‖v�i j)

using the algorithms witness and proo f . Mi shares p�
i j to p�1

i j , . . . ,p
�n
i j accord-

ing to (n, t + 1) Shamir’s scheme. For each k ∈ [n] \ {i}, it sends to Ftransmit
(transmit,(p share, �, i, j,k),p�k

i j ) for Mk.
Challenge generation: Each Mk generates random τk ← F and sends to Ftransmit
the message (broadcast,(challenge share, �, i, j,k),τk). If some party refuses to par-
ticipate, its share will be omitted. The challenge randomness is τ = τ1 + . . . +
τn. Machine Mk generates q�

1i j, . . . ,q
�
4i j,q

�
5i j,u

�
i j = challenge(C�

i j,τ), then computes

π�k
i j = (p�k

i j ‖1‖v�ki j ) = (p�k
i j ‖1‖xk

i ‖∑ j∈R rk
ji‖c1k

1i ‖· · ·‖c
�−1,k
ni ‖c�ki j ), and finally computes and

broadcasts 〈π�k
i j ,q

�
1i j〉, . . . ,〈π�k

i j ,q
�
4i j〉.

Scalar product verification: Each Mi verifies the published 〈π�k
i j ,q

�
si j〉 for s ∈ {1, . . . ,4}.

If Mi finds that Mk has computed the scalar products correctly, it sends to Ftransmit
the message (broadcast,(complain, �, i, j,k),0). If some Mk has provided a wrong
value, Mi sends to Ftransmit (broadcast,(complain, �, i, j,k),(1,sh�ksi j)), where sh�ksi j is
Mi’s own version of 〈π�k

i j ,q
�
si j〉. Everyone waits for a disproof from Mk. An uncor-

rupted Mk sends to Ftransmit the messages (publish,mid) for mid ∈ {(x share, i,k),
(r share,1, i,k), . . . ,(r share, |R|, i,k),(p share, �, i, j,k),(c share,1,1, i,k), . . . ,
(c share,r′,n, i,k), (c share, �, i, j,k)}. Now everyone may construct π�k

i j and verify
whether the version provided by Mi or Mk is correct.
Final verification: Given 〈π�k

i j ,q
�
si j〉 for all k ∈ [n], s ∈ {1, . . . ,4}, each machine Mv

checks if they indeed correspond to valid (n, t + 1) Shamir’s sharing, and then locally
restores a�si j = 〈π�

i j,q
�
si j〉 for s ∈ {1, . . . ,4}, and checks (∗). If the check succeeds, then

Mv accepts the proof of Mi for C�
i j. Otherwise it immediately sets mlcv[i] := 1.

Figure 6. Verification phase of the real functionality

Finally, each party Mi sends to Z the message (blame, i,{ j |mlci[ j] = 1}).
Figure 7. Accusation phase of the real functionality

As described, the probability of cheating successfully in our scheme is proportional
to 1/|F|. In order to exponentially decrease it, we may run s instances of the verification
phase in parallel, as by that time v�i j are already committed. This will not break the HVZK
assumption if fresh randomness is used in p�

i j.
During the message commitment and verification phases, if at any time (corrupt, j)

comes from Ftransmit , the proof for Pj ends with failure, and all uncorrupted machines Mi
write mlci[ j] := 1.

Finally, each party outputs the set of parties that it considers malicious. This short
phase is given in Fig. 7. The formal UC proof for the real functionality can be found
in [30].

5. Efficiency

In this section we estimate the overheads caused by our protocol transformation. The
numbers are based on the dominating complexities of the algorithms of linear PCP of
[21]. We omit local addition and concatenation of vectors as these are cheap operations.
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The preprocessing phase of [21] is done offline and can be re-used, so we will not esti-
mate its complexity here. It can be done with practical overhead [21].

Let n be the number of parties, t < n/2 the number of corrupt parties, r the number
of rounds, Ng the number of gates, Nw the number of wires, Nx the number of inputs
(elements of F), Nr the number of random elements of F, Nc the number of communicated
elements of F, and Ni = Nw − Nx − Nr − Nc the number of intermediate wires in the
circuit. Then |v|= Nx +Nr +Nc.

Let S(n,k) denote the number of field operations used in sharing one field element
according to Shamir’s scheme with threshold k which is at most nk multiplications. We
use S−1(n,k) to denote the complexity of verifying if the shares comprise a valid shar-
ing, and of recovering the secret which is also at most nk multiplications. Compared
to the original protocol, for each Mi the proposed solution has the following computa-
tion/communication overheads.

Initialization: Do Shamir’s sharing of one vector of the length Nx in Nx ·S(n, t +1)
field operations. Transmit t +1 vectors of the length Nr and one vector of the length Nx

to each other party. Do t + 1 recoverings in (t + 1) ·Nr · S−1(n, t + 1). The parties that
generate randomness perform n ·Nr ·S(n, t +1) more field operations to compute n more
sharings and transmit n more vectors of the length Nr to each other party.

Execution: No computation/communication overheads are present in this phase,
except for those caused by the use of the message transmission functionality.

Message commitment: Share all the communication in rn(n− 1) ·Nc · S(n, t + 1)
operations. Send to each other party rn vectors of the length Nc. Do r(n−1) recoverings
in r(n−1) ·Nc ·S−1(n, t +1) operations.

Verification: Compute the proof p of the length (4 + Ng + Ni) in 18Ng + 3 ·
FFT (Ng)+ logNg + 1 field operations [21], where FFT (N) denotes the complexity of
the Fast Fourier Transform, which is c · N · logN for a small constant c. Share p in
(4+Ng +Ni) · S(n, t + 1) operations. Send a vector of the length (4+Ng +Ni) to every
other party. Broadcast one field element (the τ). Generate the 4 challenges and the state
information in 14 ·Ng + log(Ng) field operations [21]. Compute and broadcast 4 scalar
products of vectors of the length (5+Nw +Ng) (the shares of 〈(p‖1‖v),qs〉). Compute 4
certain linear combinations of t scalar products and perform 2 multiplications in F (the
products in a1a2 −a3 −a4u).

Assuming Nw ≈ 2 ·Ng, for the whole verification phase, this adds up to ≈ rn(2 ·
S(n, t +1)Ng +3FFT (2Ng)+26nNg) field operations, the transmission of ≈ 4rn2Ng el-
ements of F, and the broadcast of 4rn2 elements of F per party.

If there are complaints, then at most rn vectors of the length Nc should be published
in the message commitment phase, and at most rn vectors of length (4+Ng +Ni) (p
shares), rn2 vectors of the length Nc (communication shares), n · (t + 1) vectors of the
length Nr (randomness shares) and n vectors of length Nx (input shares) in the verification
phase (per complaining party).

As long as there are no complaints, the only overhead that Ftransmit causes is that
each message is signed, and each signature is verified.

The knowledge error of the linear PCP of [21] is ε = 2Ng/F, and the zero-knowledge
is δ -statistical for δ = Ng/F. Hence, the desired error and the circuit size define the field
size. If we do not want to use fields that are too large, then the proof can be parallelized
as proposed at the end of Sec. 4.
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Preprocessing: Parties run the Randomness generation and commitment and Random-
ness approval steps of Fig. 3, causing the dealer to learn r1, . . . ,rt . Each ri is shared as
ri1, . . . ,rin between P1, . . . ,Pn.
Sharing: The dealer computes the shares s1, . . . ,sn of the secret s, using the randomness
r1, . . . ,rt [31], and uses Ftransmit to send them to parties P1, . . . ,Pn.
Reconstruction: All parties use the publish-functionality of Ftransmit to make their shares
known to all parties. The parties reconstruct s as in [31].
Verification: The dealer shares each si, obtaining si1, . . . ,sin. It transmits them all to
Pi, which verifies that they are a valid sharing of si and then forwards each si j to Pj.
[Message commitment]
The dealer computes w = witness(C,s,r1, . . . ,rt) and p = proof (C,(s,r1, . . . ,rt),w). It
shares p as p1, . . . ,pn and transmits p j to Pj. [Proof commitment]
Each party Pi generates a random τi ∈ F and broadcasts it. Let τ = τ1 + · · ·+ τn. Each
party constructs q1, . . . ,q4,q5,u = challenge(C,τ). [Challenge generation]
Each party Pi computes a ji = 〈(pi‖1‖si‖r1i‖· · ·‖rti‖s1i‖· · ·‖sni),q j〉 for j ∈ {1,2,3,4}
and broadcasts them. The dealer may complain, in which case pi,si,r1i, . . . ,rti,s1i, . . . ,sni
are made public and all parties repeat the computation of a ji. [Scalar product verifica-
tion]
Each party reconstructs a1, . . . ,a4 and verifies the LPCP equation (∗).

Figure 8. LPCP-based verifiable secret sharing

6. Example: Verifiable Shamir’s Secret Sharing

In this section we show how our solution can be applied to [31], yielding a verifiable
secret sharing (VSS) protocol. Any secret sharing scheme has two phases — sharing and
reconstruction — to which the construction presented in this work adds the verification
phase.

To apply our construction, we have to define the arithmetic circuits used in [31]. For
i∈{1, . . . ,n} let Ci be a circuit taking s,r1, . . . ,rt ∈F as inputs and returning s+∑t

j=1 r ji j.
If s is the secret to be shared, then Ci is the circuit used by the dealer (who is one of the
parties P1, . . . ,Pn) to generate the share for the i-th party using the randomness (r1, . . . ,rt).
It computes a linear function, and has no multiplication gates. According to the LPCP
construction that we use, each circuit should end with a multiplication. Hence, we append
a multiplication gate to it, the other argument of which is 1. Let C be the union of all Ci,
it is a circuit with 1+ t inputs and n outputs.

In the reconstruction phase, the parties just send the shares they have received to
each other. A circuit computing the messages of this phase is trivial: it just copies its input
to output. We note that Ftransmit already provides the necessary publishing functionality
for that. Hence, we are not going to blindly follow our verifiable multiparty computation
(VMPC) construction, but use this opportunity to optimize the protocol. In effect, this
amounts to only verifying the sharing phase of the VSS protocol, and relying on Ftransmit
to guarantee the proper behavior of parties during the reconstruction. The whole protocol
is depicted in Fig. 8.

A few points are noteworthy there. First, the reconstruction and verification phases
can take place in any order. In particular, verification could be seen as a part of the
sharing, resulting in a 3-round protocol (in the optimistic case). Second, the activities of
the dealer in the sharing phase have a dual role in terms of the VMPC construction. They
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Rounds Sharing Reconstruction Verification

Ours 7 (n−1) · tr n ·bc (3n+ t +4)(n−1) · tr+5n ·bc

[34] 4 3n2 · tr O(n2) · tr 0

[35] 3 2n · tr+(n+1) ·bc 2n ·bc 0

[36] 2 4n2 · tr+5n2 ·bc n2 ·bc 0
Table 1. Comparison of the efficiency of VSS protocols (tr transmissions, bc broadcasts)

form both the input commitment step in Fig. 3, as well as the execution step for actual
sharing.

Ignoring the randomness generation phase (which takes place offline), the commu-
nication complexity of our VSS protocol is the following. In the sharing phase, (n− 1)
values (elements of F) are transmitted by the dealer, and in the reconstruction phase,
each party broadcasts a value. These coincide with the complexity numbers for non-
verified secret sharing. In the verification phase, in order to commit to the messages,
the dealer transmits a total of n(n− 1) values to different parties. The same number of
values are forwarded. According to Sec. 5, the proof p contains t +n+4 elements of F.
The proof is shared between the parties, causing (n− 1)(t + n+ 4) elements of F to be
transmitted. The rest of the verification phase takes place over the broadcast channel. In
the optimistic case, each party broadcasts a value in the challenge generation and four
values in the challenge verification phase. Hence, the total cost of the verification phase
is (n−1)(3n+ t +4) point-to-point transmissions and 5n broadcasts of F elements.

We have evaluated the communication costs in terms of Ftransmit invocations, and
have avoided estimating the cost of implementing Ftransmit . This allows us to have more
meaningful comparisons with other VSS protocols. We will compare our solution to the
4-round statistical VSS of [34], the 3-round VSS of [35], and the 2-round VSS of [36]
(see Table 1). These protocols have different security models and different optimization
goals. Therefore, different methods are also selected to secure communication between
the parties. Thus, the number of field elements communicated is likely the best indicator
of complexity.

The 4-round statistical VSS of [34]. This information-theoretically secure protocol uses
an information checking protocol (ICP) for transmission, which is a modified version of
the ICP introduced in [37]. The broadcast channel is also used.

In the protocol, the dealer constructs a symmetric bivariate polynomial F(x,y) with
F(0,0) = s, and gives fi(x) = F(i,x) to party Pi. Conflicts are then resolved, leaving
honest parties with a polynomial FH(x,y) that allows the reconstruction of s. The distri-
bution takes 3n2 transmissions of field elements using the ICP functionality, while the
conflict resolution requires 4n2 broadcasts (in the optimistic case). The reconstruction
phase requires each honest party Pi to send its polynomial fi to all other parties using the
ICP functionality, which again takes O(n2) transmissions.

The 3-round VSS of [35]. Pedersen’s VSS is an example of a computationally secure
VSS. The transmission functionality of this protocol is based on homomorphic commit-
ments. Although the goal of commitments is also to ensure message delivery and make
further revealing possible, they are much more powerful than Ftransmit and ICP, so di-
rect comparison is impossible. In the following, let Comm(m,d) denote the commitment
of the message m with the witness d. We note that the existence of a suitable Comm
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is a much stronger computational assumption than the existence of a signature scheme
sufficient to implement Ftransmit .

To share s, the dealer broadcasts a commitment Comm(s,r) for a random r. It shares
both s and r, using Shamir’s secret sharing with polynomials f and g, respectively. It also
broadcasts commitments to the coefficients of f , using the coefficients of g as witnesses.
This takes 2n transmissions of field elements, and (n+ 1) broadcasts (in the optimistic
case). Due to the homomorphic properties of Comm, the correctness of any share can be
verified without further communication. The reconstruction requires the shares of s and
r to be broadcast, i.e. there are 2 broadcasts from each party.

The 2-round VSS of [36]. This protocol also uses commitments that do not have to be
homomorphic. This is still different from Ftransmit and ICP: commitments can ensure
that the same message has been transmitted to distinct parties.

The protocol is again based on the use of a symmetric bivariate polynomial F(x,y)
with F(0,0)= s by the dealer. The dealer commits to all values F(x,y), where 1≤ x,y≤ n
and opens the polynomial F(i,x) for the i-th party. The reduction in rounds has been
achieved through extra messages committed and sent to the dealer by the receiving par-
ties. These messages can help in conflict resolution. In the optimistic case, the sharing
protocol requires 4n2 transmissions of field elements and 5n2 broadcasts. The reconstruc-
tion protocol is similar to [34], with each value of F(x,y) having to be broadcast by one
of the parties.

We see that the LPCP-based approach performs reasonably well in verifiable
Shamir’s sharing. The protocols from the related works have fewer rounds, and the 3-
round protocol of [35] clearly also has less communication. However, for a full compari-
son we have to take into account local computation, as operations on homomorphic com-
mitments are more expensive. Also, the commitments may be based on more stringent
computational assumptions than the signature-based communication primitives we are
using. We have shown that the LPCP-based approach is at least comparable to similar
VSS schemes. Its low usage of the broadcast functionality is definitely of interest.

7. From Finite Fields to Rings

Generalizing a finite field F to a set of rings (or even to one ring) in a straightforward
manner does not work, as we are using Shamir’s secret sharing and the LPCP based on
finite fields. However, a circuit over rings can be still represented by a circuit over a finite
field. We need to add a trunc gate (as defined in Sec. 2) after each gate whose output may
become larger than the ring size. The size of F should be large enough, so that before
applying trunc, the output of any gate (assuming that its inputs are truncated to the ring
size) would fit into the field. For example, if we want to get a ring of the size 2n, and
we have a multiplication operation, then the field size should be at least 22n. This, in
general, is not the most efficient approach, and we will not explain it in this chapter. The
verification of the operations trunc, zext, and bits is similar to the one for rings that we
will present.

In this section, we assume that the computation takes place over several rings
Z2n1 , . . . ,Z2nK . Taking a ring of a size that is not a power of 2 is possible, but less effi-
cient. Instead of Shamir’s secret sharing, we now have to use additive secret sharing (see
Chapter 1 for details). Each value is shared in the corresponding ring in which it is used.

A. Pankova and P. Laud / Verifiable Computation in Multiparty Protocols with Honest Majority178



As additive secret sharing does not support a threshold, the prover has to repeat
the proof with each subset of t verifiers separately (excluding the sets containing the
prover itself). The proof succeeds if and only if the outcomes of all the verifier sets are
satisfiable. The number of verification sets is exponential in the number of parties, but it
can be reasonable for a small number of parties.

7.1. Additional Operations for Rings

We can now define the verification for the remaining gate operations defined in Sec. 2
that we could not verify straightforwardly in F. If we need to compute z := trunc(x), we
locally convert the shares over the larger ring to shares over the smaller ring, which is
correct as the sizes of the rings are powers of 2, and so the size of the smaller ring divides
the size of the larger ring. However, if we need to compute z := zext(x), then we cannot
just covert the shares of committed z locally, as zext is not an inverse of trunc, and we
need to ensure that all the excessive bits of z are 0.

Formally, the gate operations of Sec. 2 are verified as follows:

1. The bit decomposition operation (z0, . . . ,zn−1) := bits(z):
check z = z0 + z1 ·2+ · · ·+ zn−12n−1;
check ∀ j : z j ∈ {0,1}.

2. The transition from Z2m to a smaller ring Z2n : z := trunc(x):
compute locally the shares of z from x, do not perform any checks.

3. The transition from Z2n to a larger ring Z2m : z := zext(x):
compute locally the shares of y := trunc(z) from z;
check x = y;
check z = z0 + z1 ·2+ . . .+ zn−1 ·2n−1;
check ∀ j : z j ∈ {0,1}.

As the computation takes place over a ring, we can no longer apply the LPCP used
in Sec. 3. In Sec. 7.2, we propose some other means for making the number of rounds in
the verification phase constant.

7.2. Pushing More into the Preprocessing Phase

A significant drawback of the construction presented in Sec. 4 is that the local computa-
tion of the prover is superlinear in the size of the circuit (|C| log |C|). Now we introduce
a slightly different setting that requires a more expensive offline precomputation phase,
but makes the verification more efficient. The main idea is that if the circuit does not
contain any multiplication gates, then linear secret sharing allows the verifiers to repeat
the entire computation of the prover locally, getting the shares of all the outputs in the
end. For an arbitrary circuit, we may get rid of the multiplications using Beaver triples.

Consider a circuit C�
i j being verified. For each multiplication gate, a Beaver triple

is generated in the corresponding ring Z2n . The triple is known by the prover, and it is
used only in the verification, but not in the computation itself. The triple generation is
performed using an ideal functionality FBt (see Fig. 9) that generates Beaver triples and
shares them amongst the parties. Additionally, this functionality generates and shares
random bits, which will be used similarly to Beaver triples: at some moment, b′ is pub-
lished, so that b = (b′ + rb) mod 2. These random bits are not used in multiplication,
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FBt works with unique wire identifiers id, encoding a ring size n(id) of the value of this
wire. It stores an array mult of the shares of Beaver triples for multiplication gates, ref-
erenced by unique identifiers id, where id corresponds to the output wire of the corre-
sponding multiplication gate. It also stores an independent array bit, referenced by id,
that stores the shares of random bit vectors that will be used in the bit decomposition of
the wire identified by id.
Initialization: On input (init) from the environment, set mult := [], bit := [].
Beaver triple distribution: On input (beaver, j, id) from Mi, check if mult[id] exists.

If it does, take (r1
x , . . . ,r

n
x ,r

1
y , . . . ,r

n
y ,r

1
xy, . . . ,r

n
xy) := mult[id]. Otherwise, generate rx

$←
Zn(id) and ry

$← Zn(id). Compute rxy = rx · ry. Share rx to rk
x , ry to rk

y , rxy to rk
xy. Assign

mult[id] := (r1
x , . . . ,r

n
x ,r

1
y , . . . ,r

n
y ,r

1
xy, . . . ,r

n
xy). If j �= i, send ri

x,r
i
y,r

i
xy to Mi. Otherwise,

send (r1
x , . . . ,r

n
x ,r

1
y , . . . ,r

n
y ,r

1
xy, . . . ,r

n
xy) to Mi.

Random bit distribution: On input (bit, j, id) from Mi, check if bit[id] exists. If it does,

take (b1, . . . ,bn) := bit[id]. Otherwise, generate a bit vector b
$← (Z2)

n(id) and share it to
bk. Assign bit[id] := (b1, . . . ,bn). If j �= i, send bi to Mi. Otherwise, send (b1, . . . ,bn) to
Mi.

Figure 9. Ideal functionality FBt

and they are used to ensure that b is a bit. Namely, if b′ = 0, then b = rb, and b = 1− rb
otherwise. If rb is indeed a bit (which can be proved in the preprocessing phase), then b
is also a bit.

7.3. Modified Real Functionality

Due to additional preprocessing, the real functionality becomes somewhat different from
the real functionality of Sec. 4.

Preprocessing. This is a completely offline preprocessing phase that can be performed
before any inputs are known. The following values are precomputed for the prover Mi:

• Let id be the identifier of a circuit wire that needs a proof of correctness of its bit
decomposition (proving that z j ∈ {0,1} and z= z0+z1 ·2+ · · ·+zn(id)−1 ·2n(id)−1).
Each party Mk sends query (bit, i, id) to FBt . The prover Mi receives all the shares
(b1, . . . ,bn), and each verifier just the share bk. Let b̄k

i be the vector of all such bit
shares of the prover Mi issued to Mk.

• Let id be the identifier of a multiplication gate of Mi, where both inputs are pri-
vate. Each party Mk sends a query (beaver, i, id) to FBt . The prover Mi receives
all the shares (r1

x , . . . ,r
n
x ,r

1
y , . . . ,r

n
y ,r

1
xy, . . . ,r

n
xy), and each verifier just the shares

(rk
x ,r

k
y ,r

k
xy).

Initialization. The same as in Sec. 4. The inputs xi and the circuit randomness ri are
shared.

Message commitment. The first part of this phase is similar to Sec. 4. In the message
commitment phase, all the n parties finally commit their sent messages c�i j for each round
� ∈ [r′] by sharing them to c�ki j and sending these shares to the other parties. This phase is
given in Fig. 10. Let v�i j = (xi‖ri‖c1

1i‖· · ·‖c�−1
ni ‖c�i j) be the vector of inputs and outputs
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Message sharing: As a sender, Mi shares c�i j to c�ki j according to Shamir’s se-
cret sharing scheme. For each k ∈ [n], Mi sends to Ftransmit the messages
(transmit,(c share, �, i, j,k),c�ki j ) for Mj.
Public values: The prover Mi constructs the vector b�

i which denotes which entries of
communicated values of b̄�

i (related to communication values) should be flipped. Let p�
i

be the vector of the published values c′ so that c = (c′+ rc) is a masqued communication
value. Mi sends to Ftransmit a message (broadcast,(communication public, �, i),(p�

i ,b
�
i )).

Message commitment: Upon receiving ((c share, �, i, j,k),c�ki j ) and
(broadcast,(communication public, �, i),(p�

i ,b
�
i )) from Ftransmit for all k ∈ [n], the

machine Mj checks if the shares correspond to c�i j it has already received. If only

c�si j
′ is published for some c�si j , then it checks c�si j = c�si j

′
+ rc for the corresponding

preshared randomness rc (related to the Beaver triple). If something is wrong, Mj sends
(publish,(message, �, i, j)) to Ftransmit , so now everyone sees the values that it has
actually received from Mi, and each (uncorrupted) Mk should now use c�ki j := c�i j. If the
check succeeds, then Mi sends to Ftransmit (forward,(c share, �, i, j,k)) for Mk for all
k ∈ [n]\{i}.

Figure 10. Message commitment phase of the real functionality

to the circuit C�
i j that Mi uses to compute the �-th message to Mj. After this phase, Mi has

shared v�i j among all n parties. Let v�ki j be the share of v�i j given to machine Mk.
The proving party now also publishes all the public Beaver triple communication

values: for each c = (c′ + rc), it publishes c′. It also publishes a bit b′i j for each com-
municated bit bi j that requires proof of being a bit. For the communicated values of c�i j,

publishing only the value c′�i j is sufficient, and c�i j itself does not have to be reshared.
During the message commitment phase, if at any time (corrupt, j) comes from

Ftransmit , the proof for Pj ends with failure, and all uncorrupted machines Mi write
mlci[ j] := 1.

Verification phase. The proving party publishes all the remaining public Beaver triple
values, and all the remaining bits b′i j for each bit bi j that require proof of being a bit (see
Fig. 11). For each operation where z ∈ Z2ne , the prover commits by sharing the value of
z in the ring Z2ne .

After all the values are committed and published, each verifier Mk does the following
locally:

• Let b̄k
i be the vector of precomputed random bit shares for the prover Mi, and bi

the vector of published bits. For each entry b̄k
i j of b̄k

i , if bi j = 1, then the verifier
takes 1− b̄k

i j, and if bi j = 1, then it takes b̄k
i j straightforwardly. These values will

now be used in place of all shares of corresponding bits.
• For all Beaver triple shares (rk

x ,r
k
y ,r

k
xy) of Mi, the products x′rk

y , y′rk
x , and x′y′ are

computed locally.

As a verifier, each Mk computes each circuit of the prover on its local shares. Due to
preshared Beaver triples, the computation of + and ∗ gates is linear, and hence, commu-
nication between the verifiers is not needed.

The correctness of operations (z1, . . . ,zne) := bits(z), z = zext(x), and z = trunc(x)
is verified as shown in Sec. 7.1. The condition ∀ j : z j ∈ {0,1} can be ensured as follows:
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Remaining proof commitment: The prover Mi constructs the vector b�
i that denotes

which entries of non-communicated values b̄�
i should be flipped. Let p�

i be the vector of
the published values z′ so that z = (z′+ rz) is a masqued non-communicated value. Mi
sends to Ftransmit a message (broadcast,(remaining public, �, i),(p�

i ,b
�
i )).

For each operation z = zext(x), z = trunc(x), Mi shares z to zk. Let z�ki be the vector of
all such shares in all the circuits of Mi. It sends ((z share, �, i,k),z�ki ) to Ftransmit .
Local computation: After receiving all the messages
(broadcast,(remaining public, �, i),(p�

i ,b
�
i )) and ((z share, �, i,k),z�ki ), each verifying

party Mk locally computes the circuits of the proving party Mi on its local shares,
collecting the necessary linear equality check shares. In the end, it obtains a set of shares
A1xk

1, . . . ,AKxk
K . Mi computes and publishes d�k

i j = (A1xk
1‖ . . .‖AKxk

K).
Complaints and final verification: The prover Mi knows how a correct verification
should proceed and hence, it may compute the values d�k

i j itself. If the published d�k
i j is

wrong, then the prover accuses Mk and publishes all the shares sent to Mk using Ftransmit .
All the honest parties may now repeat the computation on these shares and compare
the result. If the shares d�k

i j correspond to 0, then the proof of Mi for C�
i j is accepted.

Otherwise, each honest party now immediately sets mlcv[i] := 1.

Figure 11. Verification phase of the real functionality

using the bit rz j shared in the preprocessing phase, and z′j published in the commitment
phase, each party locally computes the share of z j ∈ {0,1} as rz j if z′j = 0, and 1− rz j

if z′j = 1. In the case of zext, the verifiers compute the shares of y locally, and take the
shares of z that are committed by the prover in the commitment phase. Now, the checks
of the form x− y = 0 and z0 + z1 ·2+ . . .+ zne−1 ·2ne−1 − z = 0 are left. Such checks are
just linear combinations of the shared values. As the parties cannot verify locally if the
shared value is 0, they postpone these checks to the last round.

For each multiplication input, the verifiers need to check x = (x′+ rx), where x is
either the initial commitment of x, or the value whose share the verifier has computed
locally. The shares of x′ + rx can be different from the shares of x, and that is why an
online check is not sufficient. As z = x ∗ y = (x′+ rx)(y′+ ry) = x′y′+ x′ry + y′rx + rxy,
the verifiers compute locally zk = x′y′+x′rk

y +y′rk
x + rk

xy and proceed with zk. The checks
x = (x′+ rx) and y = (y′+ ry) are delayed.

Finally, the verifiers come up with the shares c̄�ki j of the values c̄�i j that should be the
outputs of the circuits. The verifiers have to check c�i j = c̄�i j, but the shares c�ki j and c̄�ki j can
be different. Again, an online linear equality check is needed for each c�ki j .

In the end, the verifiers get the linear combination systems A1x1 = 0, . . . ,AKxK = 0,
where Aixi = 0 has to be checked in Z2ni . They compute the shares of dk

i := Aix
k
i locally.

If the prover is honest, then the vectors dk
i are just shares of a zero vector and hence, can

be revealed without leaking any information.
Unfortunately, in a ring we cannot merge the checks di = 0 into one 〈di,si〉 = 0

due to a large number of zero divisors (the probability of cheating becomes too high).
However, if the total number of parties is 3, then there are 2 verifiers in a verifying set.
They want to check if 0 = di = d1

i +d2
i , which is equivalent to checking whether d1

i =
−d2

i . For this, take a collision-resistant hash function and publish h�1i j := h((d1
1‖ . . .‖d1

K))

and h�2i j := h(−(d2
1‖ . . .‖d2

K)). Check h�1i j = h�2i j .

Accusation. The accusation phase is the same as in Sec. 4.
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The formal security proofs can be found in [38].

8. Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols to covertly secure
ones, where a malicious party can skip detection only with negligible probability. The
protocol transformation proposed here is particularly attractive to be implemented on top
of some existing, highly efficient, passively secure SMC framework. The framework will
retain its efficiency, as the time from starting a computation to obtaining the result at the
end of the execution phase will not increase. Also, the overheads of verification, which
are proportional to the number of parties, will be rather small due to the small number
of computing parties in all typical SMC deployments (the number of input and result
parties (see Chapter 1 for details) may be large, but they can be handled separately).

The implementation would allow us to study certain trade-offs. Sec. 5 shows that the
proof generation is still slightly superlinear in the size of circuits, due to the complexity
of FFT. Shamir’s secret sharing would allow the parties to commit to some intermediate
values in their circuits, thereby replacing a single circuit with several smaller ones, and
decreasing the computation time at the expense of communication. The usefulness of
such modifications and the best choice of intermediate values to be committed would
probably largely depend on the actual circuits.

Note that the verifications could be done after each round. This would give us secu-
rity against active adversaries quite cheaply, but would incur the overhead of the verifi-
cation phase during the runtime of the actual protocol.
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