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Abstract. In this chapter we give a very brief overview of some fundamentals from
mechanism design, the branch of game theory dealing with designing protocols to
cope with agents’ private incentives and selfish behavior. We also present recent
results involving a new, extended utilities model that can incorporate externalities,
such as malicious and spiteful behavior of the participating players. A new no-
tion of strong truthfulness is proposed and analyzed. It is based on the principle
of punishing players that lie. Due to this, strongly truthful mechanisms can serve
as subcomponents in bigger mechanism protocols in order to boost truthfulness.
The related solution concept equilibria are discussed and the power of the decom-
posability scheme is demonstrated by an application in the case of the well-known
mechanism design problem of scheduling tasks to machines for minimizing the
makespan.
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Introduction

Game theory [1] is a discipline that studies the strategic behavior of players that interact
with each other and are completely rational and selfish: they only care about maximizing
their own personal utilities. Extensive work has been done in this field over the last 60
years and various solution concepts and models have been proposed that try to explain
and predict the outcome of such games. The branch of game theory called mechanism
design (MD) was developed to have, in a way, a completely inverse goal: if we as algo-
rithm designers want to enforce a certain outcome to such a system of interacting self-
ish entities, what are the game-playing rules we should impose? Therefore, it seems that
MD and SMC share some very important common fundamental priors, that is, trying to
optimize a joint objective while dealing with players that have incentives to manipulate
our protocols. In fact, there has been a long and fruitful interaction between ideas from
game theory and cryptography, see e.g. [2,3,4,5,6].

First, we give a short introduction to the basic ideas of MD, mostly using auctions
as a working example, and discuss important MD paradigms, like the VCG mechanism
and various optimization objectives, like maximizing the social welfare or the seller’s
revenue. Next, we devote the remaining chapter to discussing some exciting recent re-
sults from [7]. We believe that these results are particularly relevant to cryptographic
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considerations, as they involve a new, extended utilities model for MD settings which
can incorporate externalities, such as malicious and spiteful behavior of the participat-
ing agents. A new notion of strong truthfulness is presented and analyzed. It is based on
the principle of punishing players that lie. Due to this, strongly truthful mechanisms can
serve as subcomponents in bigger mechanism protocols in order to boost truthfulness
in settings with externalities and achieve a kind of externalities-resistant performance.
This decomposability scheme is rather general and powerful, and we show how it can be
also adapted to the case of the well-known MD problem of scheduling tasks to unrelated
parallel machines in order to minimize the required execution time (makespan).

1. Foundations

In this section we are going to present some fundamental notions from MD, upon which
the exposition and results of subsequent sections are going to be built. We deliberately
choose to make this presentation based on a simple, single-item auction paradigm, in
order to demonstrate more clearly both the intuition and the essence of these notions and
not get lost in the technicalities of the general models which, after all, are not essential
for the needs of this book. The reader, of course, can find many good references including
more formal and general introductions to the fascinating area of algorithmic mechanism
design (see e.g. [8,9]).

1.1. Basic Notions from Game Theory and Mechanism Design

Assume the following traditional MD setting, in particular a single-item auction scenario.
We have n players (also called agents), each of whom is willing to pay ti, i = 1,2, . . . ,m,
in order to get the item. These are called the agents’ types, and t=(t1, t2, . . . , tn) is the type
profile. Let us assume that all these belong to some domain T , where in our particular
auction setting it is a natural assumption to consider T =R+. This is private information
of the players, who report it to the auctioneer in the form of bids bi, i = 1,2, . . . ,m. The
reason we discriminate between types and bids is that the players, as we will see shortly,
may have reason to lie about their true types and misreport some bi �= ti. Given the input
by the players, i.e. the bid profile b = (b1,b2, . . . ,bn), the auctioneer needs to decide who
gets the item and how much she is going to pay for it.

More formally, a mechanism M = (a,p) consists of two vectors: an allocation
vector a = a(b) = (a1(b),a2(b), . . . ,an(b)) ∈ [0,1]n and a payment vector p = p(b) =
(p1(b), p2(b), . . . , pn(b)) ∈ R

n
+. If our mechanism is deterministic, ai(b) is simply an

indicator variable of the value 0 or 1, denoting whether player i wins the item or not. If
we allow for randomized mechanisms, ai(b) denotes the probability of player i winning
the item. In the latter case, we must make sure that ∑n

i=1 ai(b) ≤ 1 for all b ∈ T n. Also,
agent i will have to submit a payment of pi(b) to the mechanism. We define the utility of
player i to be his total happiness after taking part in the auction, known as his valuation
vi(a, ti) = ai · ti, minus the payment pi he has submitted. Formally, utility is defined as:

ui(b|ti) = vi(a(b), ti)− pi(b) = ai(b) · ti− pi(b). (1)

Notice the notation ui(b|ti) and the different usage of bids and types in expression (1). In
case of truth-telling, i.e. honest reporting of bi = ti, we simplify the notation to
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ui(b) = ai(b) ·bi− pi(b). (2)

We call these utilities quasilinear, due to the special form of these expressions, and in
particular the linear-form connection between a player’s utility and the player’s own type
ti. The MD model can be defined in a more general way. The allocation function can
belong to an arbitrary set of outcomes A. For our special case of single-item bidders, the
outcomes are just the allocation vectors belonging to A = [0,1]n. A player’s valuation vi
is then defined over the set of possible outcomes and her true type ti, vi(a, ti), and does
not need to have the special linear form for the case of a single-item auction described
previously. See Sec. 1.2.2 for a more general example of a MD setting.

If we look a little closer, we can see that we have already formed a game (see
e.g. [10]): the players’ strategies are exactly their valuations and each one of them is
completely rational, and their goal is to selfishly maximize her own utility. So, we can
use standard solution concepts and in particular equilibria in order to talk about possible
stable states of our auctions. For example, the most fundamental notion that underlies the
entire area of MD is that of truthfulness (also called incentive compatibility or strategy-
proofness). Intuitively, we will say that a mechanism is truthful if it makes sure that no
agent has an incentive to lie about her true type.

Definition 1 (Truthfulness). A mechanismM= (a,p) is called truthful if truth-telling is
a dominant-strategy equilibrium of the underlying game, i.e. ui(bi,b−i|bi)≥ ui(b̃i,b−i|bi)
for every player i, all possible bid profiles b ∈ T n and all possible misreports b̃i ∈ T .

In case of randomized mechanisms, the above definitions are naturally extended by tak-
ing expectations of the utilities (truthful in expectation mechanisms). Here we have used
standard game-theoretic notation, b−i denoting the result of removing the i-th coordi-
nate of b. This vector is of one dimension lower than b. This notation is very useful for
modifying vectors at certain coordinates. For example (x,b−i) is the vector we get if we
replace the i-th coordinate bi of b with a new value of x. In particular, notice that this
means that (bi,b−i) = b.

Being implemented in dominant strategies, truthfulness is a very stable and desirable
property, which we want all our auction mechanisms to satisfy. It allows us to extract the
truth from the participating parties and, thus, be able to accurately design the protocols
for the goals we want to achieve. A celebrated result by Myerson gives us a powerful and
simple characterization of truthful mechanisms and also helps us completely determine
a mechanism simply by giving its allocation function a.

Theorem 1 (Myerson [11]). A mechanismM= (a, p) is truthful if and only if:

1. Its allocation functions are monotone nondecreasing, in the sense that

bi ≤ b′i =⇒ ai(bi,b−i)≤ ai(b′i,b−i)

for every player i, all valuation profiles b−i and all valuations bi,b′i.
2. The payment functions are given by

pi(b) = ai(b)bi−
∫ bi

0
ai(x,b−i)dx. (3)
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Based on this, one can show another elegant and concise analytic characterization
of truthful mechanisms.

Theorem 2. [Rochet [12]] A mechanism is truthful if and only if for every player i, it
induces a utility function ui (over T n) which is convex with respect to its i-th component.

1.2. Fundamental MD Problems

In this section we briefly present two of the most fundamental MD domains, namely
additive auctions (Sec. 1.2.1) and scheduling unrelated machines (Sec. 1.2.3), as well as
the associated optimization objectives. These are the predominant motivating examples
that move the entire field forward and also serve as the basis for our exposition in this
chapter.

1.2.1. Welfare and Revenue in Auctions

The fundamental single-item auction introduced in Sec. 1.1 can be generalized to the
following m-items additive valuations auction setting, where now the allocation a of a
mechanism M = (a,p) is an n×m matrix a = {ai j} ⊆ [0,1]n×m, where ai j represents
the probability of agent i getting item j, i = 1,2, . . . ,n, j = 1,2, . . . ,m. Inputs to the
mechanism are bid profiles b ∈ T n×m, T =R+, where bi j is the bid of player i for item j.
Of course, we must make sure that for every possible input b the selected outcome a(b)
must not assign any item to more than one agent, i.e.

n

∑
i=1

ai j(b)≤ 1 for all items j = 1,2, . . . ,m. (4)

When we design auction mechanisms we are usually interested in maximizing either
the combined happiness of our society, meaning the sum of the valuations of the players
that receive items, or the auctioneer’s profit, i.e. the sum of the payments he collects from
the participating agents. So, we define the social welfare of mechanismM on input b to
be

W (b)≡
n

∑
i=1

vi(a(b),bi) =
n

∑
i=1

m

∑
j=1

ai j(b)bi j .

Here we assume that the players have additive valuations, that is, the valuation for re-
ceiving a subset of items is just the sum of the valuations of the items in the bundle, and
its revenue

R(b)≡
n

∑
i=1

pi(b).

The most well-known auction is without doubt the VCG auction, named after the
work of Vickrey [13], Clarke [14] and Groves [15]. In the simple single-item setting, this
mechanism reduces to the Vickrey second-price auction that gives the item to the highest
bidding agent but collects as payment the second highest bid. In that way, it ensures
truthfulness by not giving an incentive to the wining agent to misreport a lower bid, as
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her payment is independent of her own bid and depends only on the bids of the other
players. And, above all, this mechanism maximizes social welfare by definition.

Formally, by generalizing these ideas to the setting of m items, the VCG auction is
a mechanism with the allocation rule

a(b) = argmax
α∈A

W (α(b)) = argmax
α∈A

n

∑
i=1

vi(α,bi) for all b ∈ T n×m, (5)

and payments

pi(b) = max
α∈A

∑
j �=i

v j(α(b),b j)−∑
j �=i

v j(a(b),b j) for all b ∈ T n×m. (6)

The underlying idea is that first of all, the allocation rule (5) ensures that social welfare
is the optimal one, and the payments (6) are such that they internalize the externalities of
every player i. That is, intuitively, we charge player i for the harm that her participation
in the auction causes to the rest of the society.

1.2.2. VCG Example: Buying Paths of a Network

We demonstrate the allocation and payments of the VCG mechanism through the follow-
ing example, which is slightly more complex than the single-item auction we have been
focusing on thus far. Let G = (V,E) be a 2-edge connected directed graph. Let s, t ∈ V
be two nodes of the graph. Each edge e ∈ E is a player that has as type an edge-cost
(latency) ce. We want to send a message from s to t, so the set of outcomes A in our
setting are all possible paths π from s to t in G. We will denote such a path compactly as
π : s→ t. If a player e is selected in an outcome-path, she incurs a damage of ce, so the
valuations are modeled by

ve = ve(π) =

{
−ce, if e ∈ π,
0, otherwise.

for all π : s→ t. Hence, maximizing social welfare ∑e ve(π) in our problem is equivalent
to selecting the shortest path from s to t in the weighted graph G with the edge weights
ce.

Consider the graph on Fig. 1. The outcome of our mechanism would be the shortest
path from s to t, here s → a → t that has the length of 5+ 1 = 6. Let us look at what
players (s,a) and (a, t) have to pay to get allocated. If player (s,a) was not present, the
shortest path would be s → b → t for social welfare of (−4)+ (−3) = −7. As she is
present, the welfare of the other players is v(a,t) + v(s,b) + v(b,t) = −1+ 0+ 0 = −1. So,
she should pay p(s,a) = −7− (−1) = −6. The negative sign means that we should give
money to this edge/player for using it instead of asking money from it. Similarly, the
monetary compensation to the other participating edge should be p(a,t) =−2.

1.2.3. Scheduling and Minimizing Makespan

The scheduling domain is essentially an additive multi item auction setting (see
Sec. 1.2.1) with the modification that players are not trying to maximize their utilities,
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Figure 1. An example routing graph demonstrating the execution of the VCG mechanism

but to minimize them as they are cost functions. This results in a different model, and
the exact nature of the relation between the two domains is not completely clear at the
moment. The MD version of the problem was first studied by Nisan and Ronen in their
seminal paper [8] that has arguably been the most influential paper in the area of algo-
rithmic MD. In the scheduling setting we have n machines (players) and m tasks (items).
Each machine reports to the mechanism designer the time she would need to process
every item, in the form of a time matrix (type profile) t = {ti j} ⊆ T n×m, T = R+, where
ti j is the processing time of machine i for task j. A feasible allocation is an assignment
of tasks to players, given (as in the case of additive auctions) by an allocation matrix
a= {ai j} ∈ {0,1}n×m, ai j = 1 if and only if machine i executes task j. The total valuation
of machine i is the sum of the processing times for each individual task assigned (addi-
tive valuations) ∑m

j=1 ai jti j. Each machine’s resulting cost is ci(t) =∑m
j=1 ai j(t)ti j− pi(t),

where pi(t) represents the payments with which we compensate machine i in order to
motivate it to take part in the execution.

Especially with the emergence of the Internet as the predominant computing
paradigm, it is natural to assume that these machines will act selfishly and care only
about minimizing their own costs ci(t), and possibly misreport their true processing times
to this end. Hence, a game theoretic approach to the classical task allocation problem
under the added truthfulness constraint is both interesting and necessary. The standard
objective is to design truthful mechanisms that minimize the makespan

Makespan(t) = max
i

m

∑
j=1

ai j(t)ti j,

that is, the time it would take the slowest machine to finish the processing. Again, we
will also require no task to be unprocessed, and thus (4) becomes

n

∑
i=1

ai j(t) = 1 for all tasks j and time matrices t ∈ T n×m. (7)

This is known as the scheduling problem in parallel unrelated machines [8,16]. When
we consider the fractional allocations variant of the scheduling problem [17], we allow
{ai j} ∈ [0,1]n×m, while still demanding condition (7). Fractional allocations are essen-
tially randomized mechanisms for the non-fractional version of the problem.
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2. Externalities and Challenges

In this chapter we describe the notion of externalities in MD settings and present the
game theoretic and algorithmic challenges that they introduce. The discussion is in-
evitably intertwined with challenging the fundamental notion of traditional truthfulness
itself, and thus, this section essentially forms the motivation for the main results of this
chapter, presented in Sec. 3.

2.1. Externalities in Mechanism Design

A fundamental assumption throughout game theory and mechanism design is that all par-
ticipating players (agents) are fully rational and act selfishly: they have their own well-
defined utility function (see e.g. (2)) and they only care about optimizing this function.
This can be maximizing satisfaction when they want to buy an item at an auction, or min-
imizing their cost when they are machines that get to execute tasks (as in the scheduling
problem described in Sec. 1.2.3). Usually, this utility function optimization is considered
myopic, in the sense that players do not care about variations on the achieved utilities of
other players as far as these variations do not affect their own utility levels. For exam-
ple, in a standard single-item auction setting, if some player does not get the item (thus
achieving zero utility), she is indifferent (i.e. her utility does not change) towards how
much the winning bidder is going to pay for the item and, even more, she does not care
about the bidder’s identity.

However, it can be debated whether this really is natural or expected behavior when
we think of everyday social interactions. Experiments show that bidders can overbid,
possibly risking ending up with negative utilities, just for the joy of winning in case they
get the item. Or, on the other hand, if they do not manage to win the item, overbidding
will drive prices up in order to harm the other winning agent(s), which is arguably spiteful
behavior.

In these examples, where participants in a mechanism behave seemingly irrationally,
their happiness is not only a function of their own core utility, but is also affected in
complex ways by the other players’ utilities. We will call such effects on the modeling of
our agents’ happiness externalities, to emphasize the third party nature of the interaction.
Of course, externalities are not only negative like in these examples. They can be positive,
altruistic in nature, e.g. a loving couple taking part in the same auction: one partner may
be happy to lose the item if it means that the other one wins it.

Externalities have been heavily studied in economics, not just game theory, and the
literature is extensive and diverse. For our purposes, we will approach externalities in the
context of the informal definition we gave in the previous paragraphs.

2.2. Impact on Truthfulness

Under the scope of externalities, let us revisit the canonical example of a single-item
auction. We know that the second-price paradigm, in particular the Vickrey auction that
gives the item to the highest bidding agent but collects as payment the second-highest
bid, is optimal for social welfare while also being truthful as no agent has an incentive to
lie about her true valuation no matter what the other players report (i.e. truth-telling is a
dominant strategy equilibrium). This result allows us not only to maximize the collective
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happiness of the participants, but also ensure the integrity of the extracted information,
here the agents’ bids. Furthermore, this is backed up by a very powerful notion of stability
for our solution, that of dominant strategies implementation.

However, if we consider spiteful behavior, this does not hold as the second highest
bidder, who is going to lose the item anyway, can harm the winning agent by declaring
an (untruthful) higher bid that immediately (externally) affects the payment of the other
players, and in particular increases the payment for the winning player. Our aim is to
study, model, and, if possible, prevent this phenomenon. One simple suggestion would
be to encode such possible externalities-behavior into each player’s type (some kind of
generalized valuation) and then run the powerful VCG mechanisms (see Sec. 1.2.1) on
the new extended type-profile space of all agents to get a socially efficient and dominant
strategy truthful mechanism. However, there is a fundamental problem with this approach
that conflicts all existing tools in the area of mechanism design: the players’ utilities
now also depend on other agents’ payments1. To be more precise, utilites are no more
quasilinear functions with respect to payments.

2.3. Challenges

Given the above discussion, the new challenges that are the main motive for this chapter,
are the following:

• How to incorporate these externalities properly into the existing standard utility
maximization framework of MD? We need a new model for the utility functions,
taking into consideration both the core and external utilities of each player.

• Is the standard notion of truthfulness, and in particular that of implementation
in dominant strategies, computationally and descriptively appropriate to model
this new complex framework of interactions? Can we propose a new notion of
empowered truthfulness?

• Utilizing stronger notions of truthfulness, can we design mechanisms that man-
age to somehow resist externalities that threaten the integrity of traditional truth-
fulness, the building block of the entire area of MD?

• Is there a general MD paradigm that provides construction of such externality-
resistant mechanisms?

3. Strong Truthfulness and Externality Resistance

In this section we start dealing with the challenges discussed in Sec. 2.3. For the remain-
der of this chapter our exposition is based on the main results of [7]. Further details and
missing proofs can be found in that paper.

First, under these new complex underlying interactions among players, we need to
have a solid building-block, stronger than the traditional notion of truthfulness which, as
we already have seen in Sec. 2.1, even on the simplest example of single-item auctions,
can make the powerful VCG second-price auction fail. The intuition is that we would like
to introduce a more strict notion of truthfulness, where not only players have no reason to

1This is in fact a more appropriate definition, economics-wise, of externalities themselves: utilities are ex-
ternally affected by payments to third parties, over which we have no direct control.
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lie but are punished for misreports. We want greater deviations from the true valuations
to result in greater reductions to the resulting utilities for the players who deviate.

3.1. The Notion of Strong Truthfulness

Definition 2 (Strong truthfulness). A mechanism is called c-strongly truthful, for some
c ∈ R, if it induces utilities ui such that

ui(bi,b−i)−ui(b̃i,b−i)≥ 1
2

c|b̃i−bi|, (8)

for every player i, bids bi, b̃i and all bid profiles of the other players v−i.

This notion of strong truthfulness is a generalization of the standard notion of truth-
fulness, achieved by setting c = 0. Under these definitions we can now prove an analytic
characterization of strong truthfulness, in the spirit of Thm. 2:

Theorem 3. A mechanism is c-strongly truthful if and only if the utility functions it
induces for every player are all c-strongly convex functions2.

3.1.1. Strongly Truthful Auctions

Let us give an example of a strongly truthful auction in the simplest case of a single-
buyer, single-item auction. Assume a single player with a valuation for the item drawn
from some bounded real interval [L,H]. We define the following mechanism, which we
will call linear.

Definition 3 (Linear mechanism). The linear mechanism (LM) for the single-buyer,
single-item auction setting has the allocation

a(b) =
b−L
H−L

,

where the buyer’s bid b for the item ranges over a fixed interval [L,H].

It turns out that this mechanism is in fact the strongest possible one we can hope for
in this setting.

Theorem 4. The linear mechanism is 1
H−L -strongly truthful for the single-buyer, single-

item auction setting and this is optimal3 among all mechanisms in this setting.

Notice that Thm. 4 holds only in cases where the valuations domain is a (real) in-
terval T = [L,H]. If we want to deal with unbounded domains, e.g. T = R+, we need to
define a more flexible notion of relative strong truthfulness (see [7, Sec. 2.2]).

2A function f : Rn −→ R is called c-strongly convex, where c is a nonnegative real parameter, if for all
x,y ∈ R

n: f (x)− f (x) ≥ ∇ f (x) · (y− x) + c
2 ‖y−x‖2, where the standard dot inner product and Euclidean

norm are used.
3Formally, for every c-strongly truthful mechanism in this setting c≤ 1

H−L .
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3.2. External Utilities Model

In order to model externalities, both positive (altruism) and negative (spite), we are ex-
tending our agents’ types to include not only their valuations but also some parame-
ters γ that try to quantify the interest/external-effect each agent has upon others. For-
mally, for every agent i = 1,2, . . . ,n we redefine its type ti to be ti = (vi,γi), where
γi = (γi1,γi2, . . . ,γin) with γi j ∈R, j = 1,2, . . . ,n being the externality parameter of player
i with respect to player j. In fact, parameter γii is not needed and we can safely ignore
it, setting γii = 0 for all players i, but we still keep it in the formation of γi in order to
have a vector-consistent notation. The usage of these parameters becomes apparent when
we define the utilities in our new externalities model. Intuitively, negative values of γi j
correspond to player i demonstrating spiteful behavior towards player j, positive values
correspond to altruistic behavior, and a value of zero corresponds to lack of externalities
towards player j (i.e. player i demonstrates standard game-theoretic selfish behavior).

Moving on to defining utilities, let M = (a,p) be a mechanism for our new exter-
nalities model. Our players have true types ti = (vi,γi) and they submit to the mechanism
bids (also called values) which are (possibly mis-)reports of the valuation component vi
of their true type ti. Given such a bid profile b, mechanism M again computes the allo-
cation a(b) = (a1(b),a2(b), . . . ,an(b)), where ai(b) ∈ [0,1] is the probability that agent
i receives the service4, and the payment vector p(b) = (p1(b), p2(b), . . . ,pn(b)), where
pi(b) is the payment extracted from player i.

In this setting, we define the base utility of player i under mechanism M, given the
(true) type ti = (vi,γi) and the reported bid vector b, to be the standard utility (1)

ui(b|ti) = ui(b|vi) = ai(b) · vi− pi(b)

and then we define her externality-modified utility, given also the other players’ (true)
type profiles t−i, to be

ûi(b|t) = ûi(b|v, ti) = ui(b|vi)+∑
j �=i

γi ju j(b|t j) . (9)

From now on we will refer to this externality-modified utility simply as utility, as this
is going to be the utility notion in our new externalities-included model upon which we
will also build our new notions of truthfulness and resistant mechanisms. We observe
two important things about these definitions.

First, as expected, the base utility ui(b|ti) only depends on type ti of player i and not
on the other players’ types t−i and, in particular, it depends just on the valuation com-
ponent vi of ti (i.e. the externality parameters γi = (γi1,γi2, . . . ,γin) do not play any part
in these base utilities). Therefore, we can also use the slightly lighter notation ui(b|vi)
to denote the basic utility. Essentially, this is the component of our new utility that cor-
responds exactly to the standard definition of utilities in the traditional no-externalities
setting of MD (see Sec. 1.1).

Second, the externality-modified utility needs to depend on the entire (true) type
profile t and not just the component ti of i, because the externalities-induced term of
equation (9) comprises of a sum that ranges across all other players. Furthermore, unlike

4In the single-item auction paradigm, this means agent i gets the item.
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for the base utilities, we do not just need the valuations vi but all parameters γi j for all j �=
i. However, from the parameters profile vector t we only need the externalities parameters
of player i so to make the notation more straightforward, we can write ûi(b|v,γi) instead
of ûi(b|t).

Naturally enough, if bi = vi, we can denote the base utilities ui(b|ti) by ui(b), and if
b = t, we can use ûi(b) instead of ûi(b|t) for the externality-modified utilities.

3.3. Externality Resistant Mechanisms

Definition 4 (Externality-resistant VCG). The externality resistant-VCG mechanism for
our MD setting with externalities, denoted by rVCG(δ ) and parametrized by some δ ∈
[0,1] is the following protocol:

• Ask all n players to report their bids bi, i = 1,2, . . . ,n.
• With the probability of δ

n for every player i, single out player i and run the LM
mechanism (Def. 3).

• With complementary probability 1−δ , run the standard VCG mechanism.

Theorem 5. Consider a MD setting with externalities where players’ valuations are
drawn from the unit real interval, i.e. vi ∈ [0,1] for all i = 1,2, . . . ,m. Then, for every
δ ,ε > 0, if the the externality parameters of our agents satisfy

max
i, j

γi j <
εδ

8(1−δ )2n3 ,

the externality-resistant VCG mechanism (Def. 4) induces utilities so that

urVCG(δ )
i (b)≥ (1−δ )uVCG

i (v)− ε

for every player i= 1,2, . . . ,n and all undominated strategy (bid) profiles b of the players.

The intuition behind this result is that, by randomizing over components or mech-
anisms that are known to work in simpler settings, the rVCG mechanism manages to
achieve (base) utilities that are very close to those of the corresponding VCG mechanism
in the no-externalities setting (see Sec. 1.2.1). Of course, this cannot be implemented in
dominant strategies (we have seen that truthfulness under such strong solution concepts
is doomed to fail) but under a weaker solution concept, that of undominated strategies
(see Sec. 3.4).

As an immediate result of this virtual simulation of ideal behavior where only base
utilities are taken into consideration, rVCG manages to approximate both optimal social
welfare as well as the revenue of the traditional VCG (run on base utilities).

Theorem 6. In every outcome of rVCG(δ ) implemented in undominated strategies, the
social welfare of rVCG(δ ) is within an additive error of nη from the optimal social
welfare and within an additive error of 2nη of the revenue achieved by the standard VCG
mechanism (run on base utilies without externalities), where n is the number of players
and η is a parameter so that

η ≤ 4(1−δ )
δ

n2γ
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(where γ = maxi, j γi j).

3.4. Implementation in Undominated Strategies

We briefly describe the solution concept we use in our model and under which our notion
of externality resistance is realized, namely implementation in undominated strategies.
Intuitively, we say that a given property P (here, externality resistance) is implemented in
undominated strategies if, for every agent i there is a set of strategies Di so that playing
within Di is a kind of dominant strategy for every player i. This means that no matter what
the other players’ strategies are, there is some strategy in Di that maximizes the utility
of player i. In addition, obviously P must be satisfied for all possible input strategies in
the product space ∏n

i=1 Di. For a more formal description we refer to [7, Sec. 1.4] as well
as [18] that have utilized this solution concept before. In our specific model, the idea
is that as long as the agents stay in strategies that are close enough to truth-telling they
are safe. Deviating from the set of strategies Di will be an absurd choice for agent i, a
dominated strategy.

4. Protocol Composability

In this section we explore the bigger picture behind our proposed notion and construc-
tions of Sec. 3. We discuss the underlying schema that achieves resistance towards exter-
nalities while still approximating the mechanism designer’s objective (e.g. social welfare,
Thm. 6).

4.1. Boosting Truthfulness

When we look at Thm. 5, we see that the key property of rVCG (Def. 4) is that the
following two values are approximately equal for all agents:

• the utility they end up with in the model with externalities after running rVCG,
and

• the utility they would have ended up with in an ideal no-externalities model after
running the traditional VCG mechanism.

In other words, while all agents still bid so as to maximize their new, complex externality-
modified utilities, they end up with a base utility that is approximately what it would have
been if all agents bid so as to maximize their base utility. Thus, these externally-resistant
mechanisms try to simulate the agents’ behavior in an externalities-free utopia and, as a
result, they manage to approximate optimal social welfare and revenue.

Above all, what these mechanisms achieve is boosting truthfulness by enforcing
incentive-compatibility in this challenging externalities-modified utility model. The key
design feature is that of composability. If we look at rVCG (Def. 4) we will see that it
randomizes over strongly truthful mechanisms. In particular, it uses the advantage of a
strongly truthful mechanism that punishes agents for misbehaving in order to forcefully
extract truthful reporting by the agents. It does so by running with some (small) probabil-
ity such a punishing protocol on a random agent. With the remaining probability we run
a standard truthful mechanism that performs optimally with respect to base utilities. In
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other words, we enrich mechanisms that perform well in the traditional externalities-free
model by composing them with small, powerful, strongly truthful subroutines.

Such a composable design paradigm, where different mechanisms are combined to
boost truthfulness, has been used before in MD settings, e.g. utilizing differential pri-
vacy [19], and more subtly in the scoring rules [20,21] and responsive lotteries [22].
However, in [7] the first step is made towards the systematic study of this scheme and the
quantification of the performance of the composable mechanisms. Also, this is the first
time when this design is used to achieve externality-resistance. Furthermore, our con-
struction has the advantage that it is readily applicable to multidimensional MD settings,
such as multi item auctions and scheduling jobs to machines.

4.2. Extensions and Multidimensional Domains

The externality-resistant mechanism rVCG, presented in Sec. 3.3, was applied in a sim-
ple, single-dimensional auction setting with only a single item for sale. We want to ex-
tend this powerful externality-resistant idea and the composable scheme described in
Sec. 4.1 to incorporate more involved multidimensional settings with many items, or the
scheduling problem.

It turns out that our construction is generic enough to achieve this in a very straight-
forward way. Consider, for example, the MD scheduling problem of minimizing the
makespan of unrelated parallel machines (Sec. 1.2.3). We show how to take advantage
of strongly truthful mechanisms to give an unexpected solution to this problem. We will
give a mechanism for the problem under the following assumptions:

• The execution times are bounded, in particular we assume that ti, j ∈ [L,H].
• As in the classical version of the problem, each task must be executed at least

once, but in our version it may be executed more than once, even by the same
machine 5. When a machine executes the same task many times, we assume that
it pays the same cost ti j for every execution.

• The solution concept for the truthfulness of our mechanism is not dominant strate-
gies but undominated strategies (Sec. 3.4).

The mechanism is defined by two parameters δ ∈ [0,1] and r.

• The players declare their values t̃i j that can differ from the real values ti j.
• With the probability 1− δ , using the declared values, assign the tasks optimally

to the players6.
• With the remaining probability δ , for every player i and every task, run the truth-

extracting LM mechanism (Def. 3), like in the case of the externality-resistant
VCG (Def. 4), r times using the declared values t̃i j from the first step. In fact, we
need only to simulate LM once, pretending that the execution time of every task
has been scaled up by a factor of r.

5The proofs of Nisan and Ronen that give a lower bound of 2 and an upper bound of n for the approximation
ratio can be easily extended to this variant of the scheduling problem. The same holds for the lower bound of
truthful-in-expectation mechanisms.

6Finding or even approximating the optimal allocation with a factor of 1.5 is an NP-hard problem [23], but
this is not a concern here, as we focus on the game-theoretic difficulties of the problem. We can replace this
part with an approximation algorithm to obtain a polynomial-time approximation mechanism.
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Theorem 7. For every δ > 0 and ε > 0, we can choose the parameter r so that with
probability 1− δ the mechanism has the approximation ratio 1+ ε and makes no pay-
ments; the result holds as long as the players do not play a dominated strategy. This, for
example, is achieved for every

r ≥ 8n2m
H2

L2
1

δ · ε2 .

Proof. The main idea is that if a machine lies even for one task by more than ε0 =
L
2n ε ,

the expected cost of the lie in the truth extraction part of the mechanism will exceed
any possible gain. Therefore, the truth-telling strategy dominates any strategy that lies
by more than ε0.

We now proceed with the calculations. If a machine lies about one of its tasks by at

least an additive term ε0, it will pay an expected cost of at least rδ 1
2

ε2
0

H−L . The maximum
gain from such a lie is to decrease (with the probability 1− δ ) its load from mH (the
maximum possible makespan) to 0. So the expected gain is at most (1− δ )mH ≤ mH,

while the loss is at least rδ 1
2

ε2
0

H−L . If we select the parameters so that

rδ
1
2

ε2
0

H−L
≥ mH , (10)

no machine will have an incentive to lie by more than ε0, i.e., |t̃i, j− ti, j| ≤ ε0. But then
the makespan computed by the mechanism cannot be more than mε0 longer than the op-
timal makespan: Makespan(t̃)≤Makespan(t)+mε0. We can use the trivial lower bound
Makespan(t)≥mL/n (or equivalently nMakespan(t)/(mL)≥ 1) to bound the makespan
of t̃:

Makespan(t̃)≤Makespan(t)+mε0

≤Makespan(t)+mε0
nMakespan(t)

mL

=
(

1+
nε0

L

)
Makespan(t)

= (1+ ε)Makespan(t) ,

where ε = nε0
L . We can make the value of ε as close to 0 as we want by choosing an appro-

priately high value for r. Constraint (10) shows that r = Θ(δε−2) is enough. Therefore,
with the probability 1− δ , the makespan of the declared values is (1+ ε)-approximate,
for every fixed ε > 1.
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