70 Workshop Proceedings of the 11th International Conference on Intelligent Environments
D. Preuveneers (Ed.)
© 2015 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-530-2-70

Change Impact Analysis for
Context-Aware Applications in Intelligent
Environments

Davy PREUVENEERS ! and Wouter JOOSEN
iMinds-DistriNet, KU Leuven, Belgium

Abstract. As software systems for context-aware applications and intelli-
gent environments become increasingly complex and adaptive, the need
to understand and predict the impact of changes grows. Such changes
may manifest themselves (1) as alterations in the way users behave, (2)
as software customizations to handle new requirements, and (3) as vari-
ations on the dynamic context in which intelligent environment systems
are deployed and operate. Such internal and external changes may be
anticipated or unforeseen in nature. With reliability being a key con-
cern for intelligent environments, we revisit in this work the state-of-
practice on change tmpact analysis (CIA) — a well-known methodol-
ogy in software engineering — and investigate to what extent it can be
applied and enhanced to contribute to the development of more reli-
able context-aware adaptive applications to increase the confidence in
intelligent environment systems.

Keywords. Change impact analysis, context, rapid decisions, reliability

1. Introduction

Over the past decade, intelligent environments have grown in complexity as dis-
tributed software and hardware platforms almost autonomously and collectively
operate to transparently and non-intrusively support users and address their needs
during their activities of daily living. It is inevitable that some software compo-
nents undergo changes as they are customized to correct errors or to address new
requirements. Such modifications may trigger subsequent changes in other com-
ponents and the potential consequences of these side-effects may not always be
clear upfront or desired. That is why the objective of change impact analysis [1] in
software development is to provide an accurate understanding of the implications
of changes, such that stakeholders can plan and make better informed decisions.

Change impact analysis is a well-established methodology in the software
evolution domain to manage change, usually at the level of code modifications.
However, for intelligent environments and context-aware applications, the notion

LCorresponding Author: Department of Computer Science, Celestijnenlaan 200A, B-3001,
Heverlee, Belgium; Email: davy.preuveneers.cs.kuleuven.be

D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications 71

of change imposes more far-reaching challenges. Contrary to applications that are
context agnostic, the situational awareness of intelligent software systems causes
them to change not only after modifications in the program code (i.e. internal
changes), but also when the context of the user or the operational circumstances
of the intelligent system (i.e. external changes) evolves. The key problem that
we aim to highlight in this work is the fact that state-of-practice impact anal-
ysis methodologies are not sufficiently equipped to reason upon the impact of
(un)planned changes, especially for dynamically adapting software systems such
as those that are frequently found in intelligent environments.

Recent work [2,3] has explored model checking as an approach to verify con-
sistency, safety and reliability properties of context-aware applications and intel-
ligent environments. Consistency checking for a context-aware system in a steady
state is already a non-trivial endeavor. We now step it up a notch in the sense that
we aim for reliable evolving intelligent environments and context-aware applica-
tions that are in transition. This means we must ascertain that enacting change
in complex intelligent distributed software systems causes these systems to evolve
from one consistent reliable state to the next with as little undesired side effects as
possible. It is clear that analyzing the impact of changes now becomes even more
arduous. These changes can be both internal and external in nature as they are
triggered by different stakeholders (i.e. from software developers at design time to
end-users at runtime). For context agnostic systems, the software developer has a
good understanding of the intended operational circumstances, and changes can
be planned at design time or during deployment. For applications with behavior
largely driven by external influences such as intelligent environment applications,
changes can no longer be planned but must be anticipated. This is why we claim
impact analysis evolves from a pure static design time concern towards a dynamic
runtime concern. Indeed, changes may manifest themselves (1) as alterations in
the way users behave or interact with the system, (2) as software customizations
to handle new requirements, and (3) as variations in the dynamic context in which
intelligent environment systems are deployed and operate. In this work, we re-
visit the state-of-practice on change impact analysis in the software engineering
domain and investigate to what extent it can be applied and enhanced to con-
tribute to the development of more reliable context-aware adaptive applications
and intelligent environment systems.

In section 2 we provide an overview of related work in the domain of impact
analysis and change management. To illustrate the complexity of change impact
analysis for context-aware applications in intelligent environments, we provide
a motivating example in section 3. Section 4 provides a taxonomy of changes
that a more encompassing impact analysis methodology fore reliable intelligent
environments should support. In section 5, we elaborate on our initial endeavors
in this area. We reflect back on our work in section 6 before concluding with our
final thoughts and suggestions for future work in section 7.

2. Related work

In this section, we briefly discuss relevant related work on change impact analysis
in the software evolution domain. While already almost two decades old, Arnold’s

72 D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications

book [1] on software change impact analysis highlights many of the important
topics, including the need for traceability between requirements and design ele-
ments of the software architecture, and the representation of dependencies that
determine the consequences of changes. More recently, Lenhert [4] presented a
taxonomy of impact analysis methods. Based on a broad literature review, he
presents a multitude of criteria — ranging from the scope of analysis, the granu-
larity of changes and impact, up to the availability of tool support — to classify
and compare various impact analysis approaches.

A sound representation of dependencies is instrumental to analyze and mea-
sure the impact of changes. German et al. [5] proposed the concept of change
impact graphs to determine the impact prior to the actual enactment of code
changes. Their method recursively defines the dependency graph G(f) of a func-
tion f based on the other functions that can be reached by f. Other works, such
as those by Lock et al. [6] and by Tang et al. [7], focus on how to use probabilistic
causal relationships to asses how changing requirements and design decisions may
affect design elements of a software architecture. These kinds of works go beyond
rule based inference in the analysis phase and, for example, leverage Bayesian
Belief Networks (BBN) to quantify the likelihood of change impact.

Briand et al. [8] proposed an UML-based method for impact analysis. Their
model-based methodology is used to predict the cost and the complexity of
changes in order to decide whether to actually implement these changes in a next
iteration of a software release. It first starts with a consistency validation phase
of the UML models of the system. The impact analysis itself is then carried out
between two different versions of the UML model. Their framework offers a set of
change detection rules with respect to a given change taxonomy. Model elements
that directly or indirectly undergo changes are formally represented by impact
analysis rules defined in the Object Constraint Language (OCL).

When software companies have to deal with customers with individual re-
quirements and expectations for specific features — also not that uncommon when
deploying context-aware systems adapted to the needs of individuals in an in-
telligent environment — they usually address such concerns by adopting a Soft-
ware Product Line (SPL) [9] development methodology to manage common and
variable features within a software product line. Both Diaz [10] and Angerer [11]
proposed an impact analysis method for derived variants within a software prod-
uct line or product line architecture. The objective is to measure the impact of
customized variants when merging modified features back into the original SPL.
The key contribution of these works is that they offer variability-aware program
analysis without having to analyze each and every variant of the software product
line independently. The combinatorial explosion of feature combinations in the
product line (i.e. customization towards the clients or end-users) would make this
an intractable impact analysis task.

An in-depth survey is beyond the scope of this work, but it is clear that
most of the research on this topic is on program code and design model analysis
methods in the software evolution domain. The change impact analysis phase is
still carried out at design time, i.e. prior to the actual code modifications. The
same is true even if the software engineering methodology pursues an iterative
development life cycle to support customization per client. In this work, we borrow

D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications 73

{ na SYSTEM
USER 7 . =40
- 3 =il ¢
. Ak 2 » & .
P) 4 Compute Distance Risk" 4 s
/ A\ Device 2/ Distance Measures Engine oy
~ Fingerprint K Measure Low A oy
Risk
e 1 / Context Application or
& i H Service
n 77777 - @ Fingerprint 5a :‘,QE
Log e IS ;
End-user In Network V
./ i, YR = 5.b
a m /" Authentication
L8 Success
User SMs Email D
Behavior Step-up Authentication

Figure 1. A motivating example on user-friendly context-aware authentication: the context of an
individual is used for identification and to quantify risk. If needed, the intelligent authentication
system will trigger stronger methods of authentication when the situation demands it.

concepts from the state-of-the-art on dependency graphs, application models, and
variability. We investigate to what extend these works can be enhanced for change
impact analysis where change is not only a design time concern.

3. A motivating example on user-friendly context-aware authentication

In this section, we will briefly introduce a motivating example to illustrate the im-
pact of change in a non-trivial context-aware application. The application builds
upon previous work [12] on the use of context information to offer an intelligent
platform for authentication that enables a more user friendly alternative to the
intrusive and cumbersome login/password style of authentication.

3.1. Context-aware step-up authentication

Without going into the technical details of our previous work, we provide be-
low a step-wise description of how the user-friendly context-aware authentication
works. See Figure 1 for a conceptual overview of the system. The context-aware
authentication compares context fingerprints. These fingerprints are in essence an
aggregation of various context attributes that collectively can distinguish users
or entities from one another.

1. The authentication platform uses and combines different types of context
to distinguish and identify a user (time, location, device, behavior, etc.)

2. The different context parameters are aggregated from various context
sources to establish a global context fingerprint of the user.

3. The context-aware authentication system compares the current context
fingerprint against previous fingerprints of a known individual.

4. Depending on the matching score of the context fingerprint, the authen-
tication system may be confident enough that it has identified the user
(without having to ask for credentials in a fairly intrusive way).

5. Otherwise, if the matching score is deemed too low (or alternatively the
risk score for mis-identification too high), the system may ask the users to
identify themselves with a strong form of authentication.

74 D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications

Intelligent Environment

Lives in

Interacts with

Observes

‘ Context Middleware ‘ Application

{ Consists of %

P

Customizes

P

Context-aware

Composition ‘ Behavior QoS

Component

& 8

Produces Impacts

Has

|

" Context
| Information

W ‘ Configurationw

J

Figure 2. Impact analysis on context-aware applications in intelligent environments.

The overall objective of using context for authentication is to get rid of weak
or hard to remember complex passwords. DARPA’s Active Authentication pro-
gram [13] is pursuing similar ways for a continuous authentication based on con-
text and user traits that can be observed through how people interact with the
world (e.g. keystroke patterns, mouse and eye movements, cognitive aspects).
These techniques have been demonstrated successfully, but long-term stability of
behavior patterns is a concern. Our work specifically focuses on the impact of
changes when modifying the context sources that characterize human behavior.

3.2. Generalization to context-aware applications in intelligent environments

The above user-friendly authentication system is merely an example of an ad-
vanced context-aware application. While it might not be the prototypical example
for intelligent environments, it shares a lot of similarities with applications that
are more characteristic for these areas, such as ambient assisted and independent
living scenarios. We will therefore now generalize the main characteristics of the
application, as depicted in Figure 2, to illustrate that it covers a broad range of
context-aware applications:

e Context information is exploited to create an understanding of the user,
such as his or her identity, current location and situation, activities, etc.

e The context-aware behavior of an intelligent software system is often
adapted and customized to the preferences and needs of the individual.

e The quality of the context (e.g. accuracy) and the quality of service of the
context-aware behavior (e.g. real-time reaction) play an important role.

e The acquisition and management of context is often decoupled from the
business logic (applications and services) that depends on it.

It is clear that in such an ecosystem various changes can have an unforeseen
impact on the overall reliability of a context-aware application in an intelligent
environment. Often the internal and external dependencies have not been made

D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications 75

explicit, which makes it challenging to analyze the impact of change and hence
the reliability of the system at design time.

4. A taxonomy of changes in intelligent environments

In this section, we will highlight how a variety of changes can affect the reliable op-
eration of an application or service within an intelligent environment. We will not
revisit analyzing the impact of typical changes that have already been identified
by the state-of-the-art, but mainly focus on those topics that deserve much more
attention in contemporary change impact analysis techniques and methodologies.

In the subsections below, we consider the core functionality of the authenti-
cation platform in the motivating example of section 3.1 as fixed. Its objective is
to identify and authenticate an individual in a non-intrusive way by any context
means available.

4.1. Functional changes to contextual dependencies

A functional change in the context middleware includes the addition, removal,
replacement or reconfiguration of any context sources. With context sources, we
refer to application dependencies to both the type of context information as well
as the software or hardware component that provides that context information.

A reason to modify the context middleware of our authentication platform
is that some sources no longer provide sufficient entropy, i.e. they provide too
little useful information to distinguish individuals from one another based on the
context fingerprints alone. For example, a device fingerprint obtained through a
web browser may aggregate context attributes such as the screen height and width
and the user agent string. However, for mobile devices some context-based device
fingerprints may not contain sufficient entropy to distinguish different devices, as
illustrated in our previous work [14]. Such problems can be mitigated by adding
additional context attributes in the device fingerprint, such as an HTML5 canvas
fingerprint taken by a browser to better characterize the device.

Changes in the context middleware can affect the similarity assessment with
previous context fingerprints in the application. Some context fingerprints may
still make use of old (and now removed) context sources or attributes, causing
unexpected mismatches. If this change is not taken into consideration in the com-
putation of the similarity score and the overall risk assessment, previous context
fingerprints may be discarded without valid reasons.

The change impact analysis method should account for changes in the
dependencies on context sources and attributes the application relies on.

4.2. Non-functional changes to contextual dependencies

Non-functional changes can also occur when components are reconfigured, added
to or removed from the distributed software architecture. For example, the sam-
pling rate of a context source or the amount of information it provides may evolve

76 D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications

after a change, leading to a possible performance impact on the application, es-
pecially when the latter has to process more or more frequent context updates.

For example, our context-aware authentication platform leverages location
information and exploits the fact that an individual cannot be at two different
places at the same time. Faster location updates improves the quality of the risk
assessment of our authentication platform but at the expense of a higher perfor-
mance or latency impact in the authentication platform.

Changes in the composition or configuration of the context middleware can
affect the context-aware behavior and quality of service of the application.

4.3. Changes by the end-user stakeholder at runtime

Some state-of-practice change impact analysis methodologies support traceability
between (non-)functional requirements and design elements in the software archi-
tecture. These techniques are targeted towards the developer as the stakeholder
of the system that initiated the change at design time. However, context-aware
applications often also adapt (and hence change) upon request of their users to
address their evolving needs and preferences. End-users are also important stake-
holders in the system, but the impact of end-user initiated changes is usually not
accounted for in the impact analysis methods.

For our authentication platform, a simple change such as changing ownership
of a mobile device could have an influence on the way a user is implicitly identified
by the system, because the device fingerprint will remain the same but the way
one interacts with the device will most likely change.

User initiated changes that are allowed by the system at runtime should be
represented as explicit dependencies to be able to analyze their impact.

4.4. Unanticipated contextual changes

When creating complex applications, software architects and developers make a
lot of decisions that are related to functional or quality (non-functional) require-
ments. Some of these decisions are based on expertise, budget constraints, per-
sonal experience or other assumptions that are not made explicit in the docu-
mentation. For example, the application developers may not account for the fact
that context sources may become unavailable or produce erroneous or inconsistent
values, hereby jeopardizing the functionality of their applications.

In our authentication application example, the use of location information
in the fingerprint is not mandatory. However, if a previous context fingerprint
has location information (WiFi or GPS-based), then the application assumes all
follow-up context fingerprints will contain the attributes as well to analyze the
similarity.

Assumptions about the presence of context sources, as well as the quality of
the information they produce, should be explicit context dependencies.

D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications 77

- 0OXx

D change_impact_analysis (hiip/davy.preuveneers belontologies/2015/3/change_impact_analysis) : fhome/davy/cia.owl]

File Edit View Reasoner Tools Refactor Window Help
<a| &> | ® change_impact_analysis -

Active Ontology x| Entities x | Individuals by class x|

.C\ass hierarchy | Class hierarchy (inferred)
| | Class hierarchy (inferred): Dependen

¥ @Thing
@ Application
@ Change
#-- @ Component
@ Composition
@ Configuration
@ Context
¥ @ Decision
@ Alternative
@ Assumption
¥ @ Constraint
& Trade Off
Y
@ Conflicts
@ Mandatory

Annotations | Object Property Usage

Annotations: hasCom

comment [type: string]
Every composition should have at least one component

Characteristics: hasC DEEE} Description: hasComponent

Functional Equivalent To

Inverse functional

@ Optional
© Refines

¥ @ Impact
@ Affected
@ Modified
@ Unaffected

¥ Requirement
@ FunctionalRequirement

¥ & NonFunctinnalRanuiramant

;Annotatiun property hierarchy iDatalypes

v Transitive
Symmetric rwverse Of

Asymmetric
Domains (intersection)

Reflexive N
@ Composition

Irreflexive

rsection

| Data property hierarchy

| Individuals by type

@ Com

ponent
Object property hierarchy

l[object property hierarchy: hasComponent DE®E S

s X
=seyunesLuneat — SuperPreperty OF (Chair
mhasComposition
-~ mhasDependency
m hasConfiguration
: =

Reasoner active v Show Inferences

Figure 3. Using ontologies to formally model dependencies in context-aware applications.
5. Towards change impact analysis for context-aware applications

In this section, we will discuss our first steps towards an adapted methodology
for change impact analysis for context-aware applications in an intelligent envi-
ronment. We will highlight where we build on previous work and best practices
from the literature.

5.1. Ontology-based modeling and annotation of dependencies as a graph

In our approach, we also model the knowledge we have about the intelligent sys-
tem, including its design (components and connectors), constraints, assumptions,
conflicts, as well as decisions, alternatives and the rationale driving the design
and the dependencies among design time and runtime decisions.

Rather than modeling a system in UML notation, we adopted an ontology-
based approach that offers us more formal semantics and reasoning capabilities
out of the box. Ontologies (in OWL format and edited with the Protégé tool?
as depicted in Figure 3) allow modeling of dependencies as transitive properties
to analyze direct and indirect impacts. It allows us to reason about whether a
change means a component is modified (direct change), remains unaffected, or
is affected (indirect change) because one of its dependencies has changed. The

2http://protege.stanford.edu/

78 D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications

disadvantage is that ontologies do not offer the means to quantitatively measure
the impact of changes.

5.2. Traceability of requirements and contextual variability of the system

Conceptually we model classes and properties in an ontology. As a result, the
ontology represents a meta-model for change impact analysis. If we want to apply
this meta-model to, for example, our context-aware authentication platform, we
have to instantiate the relevant classes and properties. This includes instances (or
individuals) for at least the following classes and properties:

1. Components within the application

2. Requirements, and components that fulfill them
3. Optional and mandatory context dependencies
4. Design assumptions and constraints

Once we have modeled the application with sufficient detail, we can analyze the
impact of changes.

5.3. Representing change and impact within the ontology

Representing change in a context-aware application would boil down to having
two ontology instantiations, and have tool support to automatically detect and
discover the differences between both model instantiations. Protégé offers tool
support to view the differences between two ontologies. However, to simplify
analyzing and reasoning upon change and have better traceability between the
changes and the entities that are impacted, we opted to directly model changes
as a delta in the original ontology model instance.

5.4. Verify consistency before and after change

Ontology inference engines (such as the HermiT 1.3.8.3 reasoner in Protégé 5) are
based on complex description logics, rather than the less complex rule engines.
The advantage of using description logic reasoners is that analyzing subsumption
is very straightforward. This allows to infer whether some entities in the ontology
become semantically equivalent with the owl:Nothing OWL class identifier. The
predefined class extension of owl:Thing is the set of all class instances, whereas
owl:Nothing is always the empty set. If an entity is equivalent with nothing, it
basically means that it does not exist. For optional components, it means the
component is gone. For mandatory ones, we can conclude there must be a con-
sistency issue. Furthermore, advanced tools can explain why ontologies may be
inconsistent. We exploit this capability to detect whether change instances in our
ontology trigger inconsistencies in the ontology instance of our application.

5.5. Analyze design decisions and propagation of changes
The additional advantage of semantically modeling an application with ontologies,

compared to UML, is that implicit or indirect relationships between the design
elements in the architecture, can be automatically inferred. Reflexive, transitive

D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications 79

Property Value Change ‘ Time (avg.)

classes 176 Add context fingerprint 531 msec

object properties | 39 Replace location component | 876 msec

individuals 42 Change device ownership 796 msec

DL expressivity AL+ Impact faulty component 628 msec
Table 1. Change impact ontology metrics Table 2. Change impact analysis performance

or symmetric properties are powerful characteristics in the semantic definition of
a dependency relationship when analyzing the propagation of changes.

When a design assumption or trade-off formally states that an artifact (e.g. a
component or context attribute) should not change, but the meta-properties of the
relationships infer an impact, unexpected side effects can be detected. Whether
this is a big concern, is something that should be investigated by the software
architect or developer. When a violation is detected against a design constraint,
then the proposed change would affect the consistency of our application.

6. Discussion and experience with motivating example

Our approach is still rough around the edges, and thus far, has been validated on
one use case being the context-aware authentication application in section 3.1. In
the previous sections, we highlighted benefits of our technique. In this section, we
mainly focus on the shortcomings we hope to address in future work.

6.1. Quantitative assessment of change impact

A first concern is the fact that semantic ontology reasoners are very good at
analyzing the impact of changes, but these tools cannot measure the impact or
even the likelihood of an impact. Our approach gives a fairly black and white
picture. It does not allow us to prioritize changes with respect to their impact.

When our tool infers there is a possibility of an impact, whereas our personal
experience or expertise as a developer tells us otherwise, we must model these
design assumptions into the application ontology instance.

6.2. Automating test case generation with change boundaries

Many model checker tools are able to automatically produce counter examples to
illustrate what kind of steps are needed to let the system evolve to a state that
is inconsistent with some predefined safety or reliability properties.

Unfortunately, this is not possible for our change impact analysis approach.
In theory, the number of changes that can be applied on a system are endless,
and as such there will always be changes that will jeopardize the consistency and
reliability of our application.

What is needed is either a catalogue of common changes, or way to set the
boundaries for the kind of changes that can be expected or that developers believe
should not harm the reliability of the system. The automatic generation of these
kind of test case is currently not supported.

80 D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications

6.3. Performance of the analysis

Table 1 lists various characteristics of our change impact ontology for the authen-
tication platform. It provides some statistics on the number the classes, instances
and relationships among them, as well as a characterization of the complexity of
the change impact ontology. Table 2 lists 4 simple experiments and the average
execution time of 5 runs to analyze the impact of each change:

Add context fingerprint: Add the HTML5 canvas device fingerprint
Replace location component: Replace the GPS with the WiFi component
Change device ownership: Measure similarity of stakeholders

Impact faulty component: Infer all dependent components

This example is still fairly small and simple with very reasonable performance
results. However, preliminary experiments with artificial ontologies with more
than 1000 axioms showed that the analysis of a single change — adding a context
feature in the authentication framework — can be carried out in less than a
second on a Dell Optiplex 7010 desktop machine, with 16GB of memory and an
Intel Core i7-3770 quad-core CPU running at 3.40 GHz. We have not carried out
extensive experiments, but plan to enhance the analysis tool with a SPARQL
query front-end such that benchmarking can be automated and produce more
reliable performance results.

6.4. Integration with other model checking tools

Our change impact analysis technique focuses on a key specific aspect that may
harm the reliability of a context-aware application or an intelligent environment.
There are various concerns that our technique does not detect, and for which
other tools are much more adequate.

Ideally, we should find a way to interlink all these reliability analysis tools in a
common test suite such that developers can analyze all of them with a simple click
on a button, or schedule them as part of a continuous integration and automated
test execution environment such as Jenkins.

7. Conclusion

In this work, we discussed the state-of-practice on change impact analysis in the
software evolution domain, and we investigated to what extent it can be applied
and enhanced to contribute to the development of more reliable context-aware
adaptive applications. The contribution of our work was mainly focused on exter-
nal dependencies that influence the context-aware behavior and quality of service
of an application. Additionally, we semantically modeled a variety of dependen-
cies, such that ontology reasoners can make implicit relationships explicit so that
the impact propagation can account for these hidden dependencies.

As future work, we will further explore how we can add more quantitative
data to our analysis framework such that we can measure the likelihood and size
of the impact. Additionally, a formal representation of bounded changes would
allow us to automate the generation of test cases to automatically analyze which
permitted changes would jeopardize the reliability of our applications.

D. Preuveneers and W. Joosen / Change Impact Analysis for Context-Aware Applications 81

Acknowledgment

This research is partially funded by the Research Fund KU Leuven.

References

(1]
2]

(3]

(4]

[6]

[7]

(10]

(11]

(12]

(13]
14]

R. S. Arnold, Software Change Impact Analysis, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1996.

D. Preuveneers and Y. Berbers, Consistency in context-aware behavior: a model checking
approach, In J. A. Botia, H. R. Schmidtke, T. Nakashima, M. R. Al-Mulla, J. C. Augusto,
A. Aztiria, M. Ball, V. Callaghan, D. J. Cook, J. Dooley, J. O’'Donoghue, S. Egerton, P. A.
Haya, M. J. Hornos, E. Morales, J. C. Orozco, O. Portillo-Rodriguez, A. R. Gonzalez,
O. Sandoval, P. Tripicchio, M. Wang, and V. Zamudio, editors, Workshop Proceedings of
the 8th International Conference on Intelligent Environments, Guanajuato, México, June
26-29, 2012, volume 13 of Ambient Intelligence and Smart Environments, pages 401-412,
I0S Press, 2012.

J. C. Augusto and M. J. Hornos, Software simulation and verification to increase the
reliability of intelligent environments, Advances in Engineering Software, 58(0):18 — 34,
2013.

S. Lehnert, A taxonomy for software change impact analysis, In Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th Annual ERCIM
Workshop on Software Fvolution, IWPSE-EVOL ’11, pages 41-50, New York, NY, USA,
2011, ACM.

D. M. German, A. E. Hassan, and G. Robles, Change impact graphs: Determining the
impact of prior codechanges, Information and Software Technology, 51(10):1394 — 1408,
2009, Source Code Analysis and Manipulation, (SCAM) 2008.

S. Lock and G. Kotonya, An integrated, probabilistic framework for requirement change
impact analysis, Australasian J. of Inf. Systems, 6(2), 1999.

A. Tang, A. Nicholson, Y. Jin, and J. Han, Using bayesian belief networks for change
impact analysis in architecture design, J. Syst. Softw., 80(1):127-148, January 2007.

L. Briand, Y. Labiche, and L. O’Sullivan, Impact analysis and change management of
uml models, In Software Maintenance, 2003. ICSM 2008. Proceedings. International
Conference on, pages 256—265, Sept 2003.

K. Pohl, G. Bockle, and F. J. v. d. Linden, Software Product Line Engineering: Foun-
dations, Principles and Techniques, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

J. Daz, J. Prez, J. Garbajosa, and A. Wolf, Change impact analysis in product-line archi-
tectures, In I. Crnkovic, V. Gruhn, and M. Book, editors, Software Architecture, volume
6903 of Lecture Notes in Computer Science, pages 114—129, Springer Berlin Heidelberg,
2011.

F. Angerer, Variability-aware change impact analysis of multi-language product lines,
In Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE 14, pages 903-906, New York, NY, USA, 2014, ACM.

D. Preuveneers and W. Joosen, Smartauth: Dynamic context fingerprinting for continuous
user authentication, In Proceedings of the 2015 ACM Symposium on Applied Computing
(SAC), Salamanca, Spain, April 2015.

R. P. Guidorizzi, Security: Active authentication, IT Professional, 15(4):4—7, 2013.

J. Spooren, D. Preuveneers, and W. Joosen, Mobile device fingerprinting considered harm-
ful for risk-based authentication, In Proceedings of the 2015 ACM European Workshop
on System Security, Bordeauz, France, April 2015.

