
A Preliminary Study of a Probabilistic
Risk-based Approach for Ambient
Intelligence Healthcare Systems

Giuseppe CICOTTI a,1, Antonio CORONATO a

a Institute for High Performance Computing and Networking
ICAR-CNR Napoli - Italy

Abstract. The Ambient Intelligence (AmI) paradigm applied to the healthcare sec-
tor is a promising solution to develop software-based systems capable of supporting
medical procedures and activities carried out in a close, high-regulated, and com-
plex healthcare environment. An AmI Healthcare System (AmI-HS) which may
impact on the health and life of its users (i.e. doctors, caregivers, patients, etc.) is
considered as a Medical Device (MDs), and thus subject to pass through a cumber-
some risk-based regulatory process which evaluates and certifies the system safety
before it is put on the market. Thus, a human-centred risk analysis is of paramount
importance to establish the safety level of an AmI-HS.

In this paper, we propose a dynamic probabilistic risk assessment (DPRA) ap-
proach for AmI-HS which allows the quantitative assessment of risk in different
hazard scenarios in order both to support the design and development of AmI-
HSs and to provide those objective evidences needed during the regulatory process.
In addition, to support our risk-based methodology we define a probabilistic risk
model (PRM), based on an extension of a Markov Decision Process (MDP), capa-
ble of taking into account two main peculiarities of AmI-HSs: context-awareness
and personalisation. Some preliminary results show the feasibility of our approach
and the capability of our model to assess risk of context-aware hazard scenarios.

Keywords. Probabilistic Risk Assessment, Probabilistic Model Checking, Markov
Decision Processes, Safety, Ambient Intelligence

1. Introduction

The pervasiveness of sensors and mobile technologies such as smartphones, personal
digital assistants, tablets, etc in our daily life along with the widespread use of digital
networks as the backbone by which such devices can exchange data has been allowing
the advancement and promotion of software-based components everywhere all around
people. Ambient Intelligence (AmI) systems exploit such technologies in order to sense
the context, gather situational data, elaborate information, and support human activities
in the environment in which they are carried out.
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For a wider comprehension of AmI concepts and applications we refer to [1,2,3].
Instead, in this paper we narrow down our attention to AmI Healthcare Systems (AmI-
HS) [4] which distinguishably present three features. First of all, the human factor plays
a fundamental role because of both the wide interaction between humans and digital de-
vices and the unique capabilities of humans in doing activities not performable by any
autonomous computational system, or for which humans are considered more reliable
(e.g. medical diagnosis). Secondly, AmI-HSs are distributed systems which connect and
use environmental sensors and medical devices (e.g. body sensors) with the ultimate pur-
pose of simultaneously managing and controlling both medical activities and patients’
physiology in a predefined environment such as hospitals, healthcare departments, nurs-
ing homes, etc. Finally, as such, AmI-HSs themselves are considered as medical devices
since, according to the article 1,(2)a of the European Medical Device Directive [5], a
medical device (MD) is any apparatus, along with the software with which it is equipped,
used to support human activities for the purpose of diagnosis, prevention, monitoring,
treatment of disease, compensation for an injury, investigation of a physiological process.

All these features heavily affect the design and development of AmI-HS and have
to be taken into account from the outset. Furthermore, the last point constraints manu-
facturers to follow some standards for the development of MDs (e.g. IEC 62304) since
such products are subject to pass through a regulatory process that certifies their quality
based on the safety of users. Generally speaking, medical regulations define a risk-based
certification process whose aim is to collect, evaluate and check the objective evidences
useful to prove that the MD under scrutiny either prevents or appropriately mitigates
all the risks users may face by using it. Neither regulations nor standards define how to
produce the objective evidences specific for a particular MD.

In this paper we want to present a quantitative methodology whose aim is to fill this
gap. In detail, we define a probabilistic risk model (PRM), based on Markov Decision
Process (MDP), for the purpose of performing risk assessment appropriately to AmI-
HSs. Particularly, our risk model considers two important characteristics of AmI-HSs,
i.e. context awareness and personalisation. The former refers to the contextual and situ-
ational information an AmI-HS needs for supporting users activities. The latter concerns
the presence of doctors, caregivers, nurses, patients, each one with their own roles and
capabilities which have to be taken into account to evaluate and manage risks. We will
apply our approach to a case study of an AmI-HS for a Nuclear Medicine department in
order to show the effectiveness of the methodology proposed.

To sum up, the main contributions of this work are the following:

• the definition of a quantitative risk analysis methodology, based on probabilistic
model checking (PMC) techniques, to support the AmI-HS quality assessment for
the purpose of user safety.

• the definition of a probabilistic risk model to assess risk of context-aware hazard
scenarios.

The remainder of the paper is structured as follows. Section 2 introduces (Subsec-
tion 2.1) the case study we use as a reference throughout the paper, then (Subsection 3)
it is presented the methodology we propose. Section 3 reports the definition of the prob-
abilistic risk model we have conceived specifically for AmI-HS. In Section 4 the case
study is recalled to show an application of our methodology and its feasibility. Section 5
presents a brief description of related work. Finally, Section 6 concludes the paper and
discusses future directions.
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2. The Dynamic Probabilistic Risk Assessment Methodology

2.1. Case Study

The case study we present is taken by [3]. It is an application of Ambient Intelligence to a
department of Nuclear Medicine (AmI-NM). Within the NM department the patients who
need to be examined have to take specific radiopharmaceutical, i.e. a radioactive agent,
according to the diagnostic imaging examinations to be performed (e.g., blood volume
study, bone scan, brain scan, etc.). Once such agent is taken, the patients emit radiation
and have to stay in a specific room to wait for until the radioactive agent passes through,
or is taken up by, the organs to be diagnosed. The time the patients have to wait depends
on the kind of examination to be performed and the time that the radiopharmaceutical
takes to propagate within the body so as to reach the right radioactive level. In fact,
examinations can be carried out only if the radiation level is within a certain range. After
the patient’s examination, he/she goes to the waiting room until the level of radiation
he/she is emitting falls below a specific threshold and so becomes harmless.

Currently, the patients are accompanied by nurses when moving within the depart-
ment. The goal of the AmI-NM is to have an automatic system that would guide patients
within the department and so free specialised medical staff. Thus, the system has to en-
sure that patients strictly follow the medical procedure. For this reason, it has to be able
to track patients movements in the department, and to monitor their heart rate as well as
their radioactive level so as to promptly send alarms to caregivers if something wrong
happens (e.g. possible undesired effects due to the injection, the stay of a patient in an
area either forbidden or radioactive, the change of the diagnostic procedure because of
some unforeseen circumstances).

For our purpose we abstract away from a specific NM department and then we con-
sider it as being constituted of four locations:

1. the Acceptance Room (AR), which is the room where the patients are accepted
into the department to wait for their injection.

2. the Injection Room (IR), which is the room where the patients receive the injec-
tion.

3. the Waiting Room (WR), which is the room where the patients wait for the exam-
ination after having been injected and until the radiation level reaches the correct
range.

4. the Diagnostic Room (DR), which is the room where examinations are per-
formed.

The last three rooms are equipped with short-range RFID readers so that patients can
be tracked by the system. Within the AR, an operator registers the patients and equips
them with an RFID tag, an ECG sensor, a radiation dosimeter, and a Personal Digital
Assistant (PDA). After the registration phase, the system receives data streams from
these sensors in such a way it can monitors, controls, and manages patient’s activities
and environmental conditions.

When the patient moves into an area, the system determines the presence of a new
RFID tag in a physical location by means of the RFID reader. For instance, an event like
Tag = 127; RFID Reader = 2 is produced and translated into semantic information (e.g.,
Patient = Massimo Rossi; Location = Injection Room). For the sake of brevity we refer
readers to [3] for further information about the system design and architecture.
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Figure 1. Dynamic Probabilistic Risk Assessment methodology based on Markov Chain Model Checking

2.2. Risk-based Approach

Risk Analysis (RA) and Management is of utmost importance for the MD software in-
dustry since it is the means by which assuring that unacceptable risks are avoided and
acceptable ones are mitigated for the safety of both patients and healthcare operators.

For the nature of AmI-HSs, the state of the art RA method known as Failure Mode
and Effects Analysis (FMEA) [6] is limited due to its subjective and semi-quantitative
estimation of risk severity and probability ranking, but far more because it does not take
into account the dynamics through which a negative consequence results from a hazard
event (failure).

The methodology we have conceived is based on the Dynamic Probabilistic Risk
Assessment (DPRA) [7] approach which overcomes the aforementioned issues related to
a traditional static method (see [8]). Widespread DPRA formalisms such as Event-Tree
(ET) [9] and Fault-Tree (FT) [10] are particular useful to represent and analyse hazard
scenarios of systems with the following characteristics:

• The system’s responses and/or results are influenced by the dynamics of phenom-
ena

• The process dynamics affect the behaviour of hardware/software component fail-
ure, the human operator actions, and the human-machine interactions.

• Some failure modes are related to the process dynamics.

To address the complexity of AmI-HS and to take into account both the human factor
and the context awareness, the ET/FT solution is limiting because the event order is fixed
for a hazard scenario, the temporal aspect is not considered, and it is not possible to
account for context-dependent events.

To account for such aspect we define (see Section 3) a Markov-based probabilistic
risk model (PRM) as a formal model to represent hazard scenarios. A probabilistic model
checking (PMC) technique [11] is then exploited as an automatic, efficient, and powerful
solution to perform both qualitative and quantitative risk assessment.

G. Cicotti and A. Coronato / A Preliminary Study of a Probabilistic Risk-Based Approach 61



The methodology we propose is illustrated in Fig. 1. It still takes advantage of both
FMEA and ET/FT techniques to, respectively, obtain risk information with respect to the
static elements designed into the AmI-HS (through qualitative and/or semi-quantitative
analysis) and also the dynamics of hazard scenarios.

Particularly, during the Software Development Life Cycle (SDLC) of an AmI-HS
from the intended purpose document, an FMEA is carried out to identify hazards, their
causes, and consequences, as well as to prioritise hazards on the basis of their effects on
the system users. For those hazards that needs to be examined in more detail, the “Haz-
ard Scenario Analysis” phase allows the disclosure of the actual dynamics which relate
causes and effects. The results of such a phase is a set of ETs/FTs describing the hazard
scenarios of interest. The last two phases are the real innovation of this methodology.
The input of the ”Markov-based modelling” phase is the output of the previous phase,
i.e. the set of ETs/FTs. These serve in supporting the definition of the PRMs representing
the scenarios which must be analysed.

Finally, to perform risk assessment of hazard scenarios, the PRMs are implemented
and analysed by using the probabilistic model checking tool PRISM [12]. Specifically,
the PRMs can be described in a parameterised way with respect to transition probabil-
ities. In this way, by tuning the model parameters, i.e. the transition probabilities, it is
possible to quantify the total risk for different realisations of the same scenario so to
both better support the risk analysis process and take into account the unavoidable un-
certainties that experts’ estimations or real measurements of probabilities bring in the
assessment phase. Choosing or estimating transition probabilities is not within the scope
of this paper, but references (such as [13,14]) are given in the literature .

3. Probabilistic Risk Model

In the following we present the probabilistic risk model (PRM) conceived within the
methodology we proposed in Section 2 As a starting point we have taken the formal
definition of generic AmI systems given in [2]. In that work, an AmI system is defined
as being composed of three main items: a real environment, and a set of interaction
constraints, a set of occupants, e.g. humans, pets, robots, etc.

Our insight for defining a PRM derives from focusing on the following important
aspects related to risk in the fields of both Medical Devices and AmI:

• take into account those interaction constraints in which hazards for intended users
can be present

• formalise those interaction rules for which the AmI system decision-making pro-
cess for supporting human activities may experience failures

• consider each category of human and non-human occupants that are involved in
hazard scenarios

• model the physical spaces within the whole environment - hereafter we call them
contexts, in which events of interest for evaluating hazard situations may be gen-
erated

• represent only those human actions that contribute in some way to hazard situa-
tions

For the last point it is worth emphasising that the set of human actions vary according
to the type of people as well as to the space in which occupants are immersed. For
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instance, as we will see in the example presented in Section 4, in our reference case study
patients or caregivers act differently if they are in the injection room compared with the
diagnostic room.

We thus formally define a PRM for an AmI-HS as follows:

PRM = 〈C,O,{MCi}〉

where:

C : is the state space, i.e. the set of contexts making up the environment in which the
AmI-HS gives support to human activities. To the purpose of analysing hazard
scenarios, we augment such space with two virtual contexts “Not Allowable” and
“Unknown” which aggregate, respectively, all the other contexts in which an occu-
pant should not be and the possibility that the system fails to determine the context
in which an occupant is.

O : is the set of occupants2denoted by O = {1, . . . ,n}
MCi : is what we define a Context Markov Decision Process (Ctx-MDP) for each occu-

pant i ∈ O, i.e. an MDP which allows us to model both the behavioural movements
and the possible sequences of actions performed across and within contexts by an
occupant

In detail we define a Ctx-MDP MCi for an occupant i ∈ O as an extension of a MDP in
the following way:

MCi = 〈{mc},Act,P,R〉

in which:

{mc} : is the MDP modelling the stochastic and non-deterministic behaviour of the oc-
cupant i within the context c ∈C.

Act : is the set of actions, composed of {move-in, move-out}, which allow modelling
of when an occupant comes into or moves out of a context.

P : is the probability distribution that captures the stochastic aspect of an agent’s be-
haviour. It is defined upon the transition function T : C×Act ×C → [0,1].

R : is the reward function R : C×Act → R which, given a context c ∈ C and an action
a ∈ Act, specifies a real number. In particular, we assume positive numbers are
rewards, whereas negative ones are costs.

Intuitively, a Ctx-MDP is an MDP which models the stochastic behavioural move-
ments of an occupant within the environment, partitioned in the set of contexts C. More-
over, for each c ∈C, mc is the MDP which represents the behaviour an occupant exhibits
when he/she is within that context.

2without loss of generality, an occupant i ∈ O can represent either a single person or a category of people,
e.g. patients having the same pathology
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Failure Cause Consequence

Contrast agent has passed its peak
in the patient’s body

accelerated heart rate Patient fails to follow the
examination procedure

Table 1. Failure Case from FMEA

Figure 2. Dynamic Probabilistic Risk Assessment methodology Example

4. Preliminary Experiment and Results

To validate the feasibility of our PRM and DPRA methodology, in the following we
present a preliminary experiment conducted on the case study described in Section 2.1.

For the sake of brevity, we will focus our attention on the last two stages of our
methodology with respect to the instantiation of the PRM and its evaluation by means of
the probabilistic model checker PRISM[12]. We refer readers to our previous work [8]
to see a practical application of our approach in the generic context of Medical Devices.

With regard to the AmI-HS for a nuclear medicine (NM) department, we choose to
analyse the failure case shown in table 1 and taken as a results of an FMEA. It is straight-
forward to infer that such situation can only happen subsequently to when the radioac-
tive agent has been administered to the patient. What is not inferable is where the patient
could be located when this hazard event occurs. In fact, the probability of the patient fail-
ing to following his/her examination procedure may change if, for instance, the patient
is still in the WR rather than being in the DR and ready for examination. The AmI-HS of
our case study deals with automatising and managing the examination procedure within
the NM department. Therefore, we assume that by means of the dosimeter sensor, the
system knows when to send a command to the patient’s PDA that suggest to him/her to
move onto the DR for examination. An FMEA is not sufficient to analyse the dynamics
of such situation, hence this is where, by using the ET/FT formalism, a DPRA approach
is of great benefit.

Fig. 2 shows a hazard scenario in which an ET/FT analysis helps in identify-
ing the sequences of events that from the occurrence of the hazard state leads to suc-
cess/unsuccess end states.
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Figure 3. Context-MDP for patients

As it is clear, the ET scenario abstracts away from the spatial aspect related to where
patients and caregivers are located. Such information differentiates various scenarios all
having as a reference model that pictured in Fig. 2. A hazard scenario is then a means
which drives the construction of the associated PRM.

In [8] we have already proposed how a hazard scenario can be mapped into a pure
Markov Decision Process (MDP) risk model and, also, we have discussed the advantages
in using an MDP model such as the introduction of the temporal aspect, and the capability
of representing more complex scenarios due to the presence of loops and arbitrary reward
functions on states and transitions. In this work we have defined a PRM based on an MDP
extension we call Context MDP, or Cxt-MDP for short. Fig. 3 shows the Cxt-MDP which
captures the behavioural movements of patients in the NM department case study. The
states IR, WR, and DR represent the three rooms within the MN department. The two
states ”NA” and ”UNK” model the fictitious spaces ”Not Allowable” and ”Unknown”,
respectively. The former allows us to take into account the cases in which an AmI-HS
user either is within a not permitted area or is not in the area expected by the specific
medical procedures encoded into the system. The latter considers all cases in which the
AmI-HS is not able to determine the user’s position within the department. This Ctx-
MDP can be easily instantiated and adapted to model the stochastic process of moving
from one place to another for each category of occupants. Moreover, our PRM allows us
to also model the occupant’s behaviour according to each context taken into account. In
doing so we are able to minimise the model complexity with respect to the case in which
a unique MDP is used. In our case study, for instance, the operator that receives patients
in the AR is qualified to register them and to provide them with their RFID bracelet,
whereas a nurse located in the IR is in charge of administrating the radiopharmaceutical
to patients. Therefore, we can “personalise” the model by representing what is really
needed for the purpose of risk assessment.

To model the hazard scenario of Fig. 2, we consider only two categories of occu-
pants, i.e. caregivers and patients, and the three contexts of the IR, WR, and DR. To build
a PRM we can abstract away details not needed to compute the risk. Thus, we choose
to model the caregivers’ states by considering not the real actions they can perform but
rather the effects such actions have on the caregivers in terms of their availability to
be engaged in corrective actions for mitigating risks. As a consequence, we model the
caregivers’ MDP with three states: Available (AV), Interruptable (INT), Uninterruptable
(UNINT). To simplify the whole PRM, we instantiate this MDP for every context. We
only adapt the transition probabilities according to the usual behaviour caregivers exhibit
with respect to the activities they carry out in that context. As for the patients’ model,
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Figure 4. Probability of reaching a hazard state in either the IR or DR context

we differentiate it with respect to the context IR, WR, and DR. In all we consider to
model the radioactivity level according to whether it is increasing (INC), in the appropri-
ate range for examination (READY), out of range but not below a safe threshold (OFR),
or of a safe level and decreasing(SLAD). In addition, in the IR context we also encode
the states denoting whether the injection has been executed (INJ) or not (NOTINJ), by
which in turn it is determined if the patient can leave the IR to move on into the WR.

We have realised our PRM by mapping it into a parallel composition of reactive
modules[15] described and processed by the PRISM model checker. We want to warn the
readers that the evaluations are obtained with respect to a stochastic model whose tran-
sition probability distribution does not represent actual measures taken by real situations
of a nuclear medicine department.

Fig. 4 shows the probability, we denote Pc, that a hazard end state (which rep-
resents the occurrence of its negative consequences) is reached, given that the failure
shown in table 1 happens. The Probability Computation Tree Logic [11] is the formal
language used to express properties related to MDPs. In our case to compute Pc we
define in the PRISM language the following expression Pmax=?[F<=T "viol_state"

AND "viol_ctx"] which intuitively means “what is the maximum probability of reach-
ing the state viol_state (negative consequence) of the context viol_ctx within T time
units?” The graphs of Fig. 4 plots the value of Pc by considering for viol_ctx with re-
spect to both the IR (green line) and DR (red line) contexts, respectively. In the model we
take into account the delay between the time wherein a decision regards a human-based
command is taken by the system and when it is actually performed by humans, i.e. in this
case the patient moves on towards the DR. In fact, the picture shows a zero probability in
the first time units in both graphs. Then Pc increases more in case when the patient stays
in IR than when in DR because in this latter case the patient is already in the room where
the examination can be promptly performed without waiting any longer.

5. Related Work

As far as in our knowledge only Grunke et. al in [16] define a Risk Analysis approach
which combines a probabilistic model checking (PMC) technique with a traditional Fail-
ure Mode and Effects Analysis (FMEA). Particularly, in the broadest context of system
safety the authors define a probabilistic FMEA, they call pFMEA, by using a Continuous-
Time Markov Chain (CTMC) as a model for formally specifying the system and its in-
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teractions with the environment. As such, their focus is on analysing a stochastic fail-
ure model of system components, and the FMEA is used as a risk analysis technique to
mainly identify and relate system components and failures.

In contrast, the methodology we presented is based on a Dynamic Probabilistic Risk
Assessment approach which focuses on formally specifying risk scenarios and perform-
ing quantitative evaluation of risks in the specific context of Ambient Intelligence Heath-
care Systems (AmI-HS). In detail, we defined a formal probabilistic risk model (PRM),
based on a Markov Decision Process (MDP), to capture two important aspects of such
systems, i.e. the context-awareness and the human factor. We also exploit a Probabilistic
Model Checking (PMC) technique as a means to both specify the PRM and conduct risk
assessment. We emphasise that our attention is on risk scenarios centred on the safety of
patients and medical staff, thus considering not only the system itself, but also human
actions, event concurrency, and non-deterministic situations.

Other works [1,17,18] in the context of AmI systems are more focused on verifi-
cation and validation techniques and, as such, the approach is system-centred and not
human-centred. Verification techniques presented by Augusto, and McCullagh [1] are
based on modelling the behaviour of each device composing the AmI system as an au-
tomaton. In particular the authors discuss the use of timed automata and then the verifi-
cation of behavioural properties written in Timed Computation Tree Logic to be checked
by using a model checker. They also use temporal properties and finite state automata
to, respectively, specify the properties and model the devices of an Intelligent Domotic
Environment (IDE) system in order to verify its functional correctness.

Muñoz et al. [17] address the problem of AmI system security and dependability by
focusing on a formal description and automatic verification of all possible interactions
which may arise among system components. Specifically, the authors’ research aims at
studying and analysing the use of the AVISPA (Automated Validation of Internet Se-
curity Protocols and Applications) model checker to model and validate protocols in
AmI environments. Neither the human factor nor the context-awareness are taken into
account.

In [18] a design-time methodology is proposed to formally verify IDEs. The ap-
proach is based on using UML 2.0 State Charts as a formalism to model the behaviour of
devices, the network, and the algorithms which control the system; the model is then ver-
ified against some logical properties expressed in UML computation tree logic (UCTL)
by exploiting the UML Model Checker (UMC).

6. Conclusion and Future Work

In this paper, we have described a Dynamic Probabilistic Risk Assessment (DPRA)
methodology which better addresses the problem of identifying and evaluating hazard
scenarios for those Ambient Intelligence Healthcare Systems (AmI-HS), which are con-
sidered as Medical Devices (MDs), i.e. systems subject to an extensive regulatory pro-
cess. Our approach takes advantage of traditional risk analysis and assessment techniques
such as Failure Mode and Effects Analysis (FMEA) and and Event Tree/Fault Tree Anal-
ysis (ETA/FTA). The former useful for identifying hazards, whereas the latter to capture
the dynamics of hazard scenarios, i.e. the sequence of events and actions which give a
representation of how the system can manage problematic situations as a consequence
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of an occurred failure. Hazard scenarios are then encoded into a formal probabilistic risk
model (PRM) we defined in this work and on which we concentrated our attention. Par-
ticularly, the PRM extends a Markov Decision Process (MDP) in order to capture two
distinctive characteristics AmI-HSs exhibit: context-awareness and personalisation.

We applied the proposed methodology to a case study of an AmI-HS for a Nuclear
Medicine department. In using a PRM we shown how risk can change with respect to
both in which physical place the hazard happens and which are the actual conditions
of all the occupants to be taken into account in the hazard scenario. A model for this
case study has been defined and the risk assessed by exploiting the probabilistic model
checker PRISM as a powerful tool both to implement the PRM and to assess the risk.
As a result, our methodology seems to be promising in supporting risk analysis and
management for AmI-HSs.

There are some aspects which we would like to consider as future work. As for the
methodology, investigating the interaction among multiple scenarios is a first research
activity we would like to conduct for consolidating the safety evaluation of AmI-HSs. For
this purpose, an interesting point we are going to investigate is the automatic generation
of variants of risk scenarios by appropriately combining those identified as fundamental
ones. A further issue concerns the severity factor which usually is considered dependent
only on the final consequences of hazards, without taking into account other variables of
interest. As a first step, we would consider the two dimensions treated in this work, i.e.
the spatial and the human ones. With regards to our PRM, it could be of great benefit to
implement a tool by which a PRM can be formalised and analysed directly so as to allow
us to conduct a stronger and deeper campaign of experiments.
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