
PyMedTermino: an open-source generic
API for advanced terminology services

Jean-Baptiste LAMYa,1, Alain VENOTa and Catherine DUCLOSa

a
 LIMICS, Université Paris 13, Sorbonne Paris Cité, Université Paris 6, INSERM

UMR_S 1142, 74 rue Marcel Cachin, 93017 Bobigny, France

Abstract. The integration of terminologies is still a challenging problem in
medical informatics research and software applications, due to the high number of
heterogeneous terminologies. In this paper, we present a generic API (Application
Programming Interface) for a multi-terminology multilingual terminology service,
and PyMedTermino, its open-source implementation in Python with 5
terminological resources (ICD10, SNOMED CT, MedDRA, CDF, VCM iconic
language) and the UMLS compendium. This service has been designed for
research and educational purpose. It offers various advanced functionalities rarely
present in terminology services.

Keywords. Terminology as Topic, Medical Informatics/education, Unified
Medical Language System

Introduction
Terminological resources play a crucial role in medical informatics research and
software applications. However, the integration of terminologies is still a challenging
problem, due to the high number of terminologies and their heterogeneity: monoaxial
or multiaxial, single language or multilingual, pre-coordinated or post-coordinated,
textual or graphical such as the VCM icons (Visualization of Concept in Medicine [1] is
an iconic terminology).

Most terminologies are available from SQL databases or tabulated text files
intended to be imported into a database. However, SQL requests do not allow loop nor
recursion, which limits its use in training sessions. Moreover, databases are not
appropriate for post-coordinated terminologies such as VCM icons: in VCM, an icon is
created by combining up to 10 components (pictograms, colors, shapes,...) and the
number of possible combinations is very high in theory (> 4 millions). Therefore, a
generic database model is not a solution.

In this paper, we present the design of a generic API for a multi-terminology
multilingual terminology service, and PyMedTermino, its open-source implementation
in Python with 5 health terminologies, and the UMLS terminology compendium. It has
been designed mainly for research purpose, e.g. batch processing of terminologies, and
educational purpose, being simple enough to be used by students. It also proposes some
advanced operations rarely present in terminology services.

1Corresponding Author.

Digital Healthcare Empowering Europeans
R. Cornet et al. (Eds.)

© 2015 European Federation for Medical Informatics (EFMI).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-512-8-924

924

1. Materials and methods
First, a generic terminology model and a generic API were designed, with the objective
of representing the elements and operations that are common to all terminologies. The
model and API were based on previous research projects on VCM integration with
other terminologies [2] involving four terminological resources and compendium:
ICD10 (International Classification of Diseases, version 10-2010), SNOMED CT
(Systematized NOmenclature of MEDicine - Clinical Terms, version 2014-01-31),
UMLS (Unified Medical Language System [3], version 2012AA), and VCM. We did
not try to include every operation in the generic API: terminology-specific attributes or
operations were integrated into a terminology-specific API. For example, “Obtain
parent concepts” is a generic operation that can be applied to any terminology, while
“Obtain the dagger and star statuses of a concept” is ICD10-specific. We also tried to
separate the conceptual part (natural language-independent) from the linguistic part.

In the generic model, we considered two types of operations. Basic operations have
a terminology-dependent implementation, usually consisting in database requests or
specific algorithms (for post-coordinated terminologies). An example is the “Obtain
parent concepts” operation. Derived operations are implemented using the basic
operations; they are terminology-independent and depend only on the type of
terminology: monoaxial, multiaxial with or without cycles. For example the “Iterate
over ancestor concepts” operation can be implemented using recursive calls to the
“Obtain parent concepts” operation; however for multiaxial terminologies with cycles,
the cycles must be broken to avoid infinite recursions.

Second, six terminologies were integrated: the four previously mentioned, and,
later, MedDRA (Medical Dictionary for Regulatory Activities, version 17.1) and CDF

Figure 1. General architecture of the service.

Figure 2. UML class diagram of the generic terminological model.

J.-B. Lamy et al. / PyMedTermino 925

(CoDiFication from the Thériaque French drug databank, http://theriaque.org). The
proposed model and API were implemented in Python (version 3.4). For each
terminology, we implemented the basic operations and the terminology-specific
operations, and we selected the appropriate implementation for derived operations
(monoaxial, multiaxial with or without cycles).

UMLS was divided in two terminologies: CUI (Concept Unique Identifier: a
concept in UMLS, e.g. “C0085580 essential hypertension”) and AUI (Atom Unique
Identifier: a concept in a given UMLS source terminology, e.g. “A0930328 Essential
(primary) hypertension (ICD10)”). We also made it possible to extract a terminology
from UMLS and to query it using source codes instead of UMLS AUI codes. This
allows to create dynamically new terminologies such as “ICD10 from UMLS”, which
is considered as a different terminology from the original ICD10.

VCM was divided in three terminologies: VCM primitives (pictogram lexicon, e.g.
“heart pictogram”), VCM concepts (concepts represented by primitives, e.g. “heart
organ”), and VCM icons (which are a combination of up to 10 VCM primitives, e.g.
“current color (red)” + “pathology shape (square)” + “heart pictogram”). Basic
operations on VCM icons were implemented as post-coordination algorithms.

Mappings were implemented either using UMLS, or a specific database format
supporting exact and partial matches (if a partial match is found for a concept, its
parents are also mapped) and mapping for sets (e.g. {A, B} mapped to C).

The resulting implementation has been used in research projects and education.

2. Results
The general architecture of the system is shown on Figure 1. Basic and terminology-
specific operations are implemented for each terminology, while derived operations
implementations depend only on the structure of the terminology. Figure 2 shows the
generic model and Table 1 the list of basic and derived operations. We defined
advanced operations on sets of concepts, which are usually absent in existing
terminology services. For example, the “lowest common ancestors” operation could be
used to obtain a more general and simpler view on a long list of concepts, e.g. it could
simplify the set of concepts {“angina”, “heart failure”, “valvulopathy”} into {”cardiac
disorder”}. We also propose derived operations for reversing or chaining mappings
(common tasks in research projects).

MedDRA and CDF have been integrated without modifying the generic model and
API designed before. This argues in favor of the genericity of the model and API.

The terminology service has been implemented in Python and named
PyMedTermino. It is available as open-source software (GNU LGPL licence) and can
be downloaded at http://pypi.python.org/pypi/PyMedTermino. As terminologies cannot
be freely redistributed, PyMedTermino does not include terminological contents. User
has to obtain the appropriate rights, download terminologies and then PyMedTermino
includes scripts for installing and building databases.

Figure 3 shows an example of Python script using PyMedTermino for searching
SNOMED CT for concepts with “hemorrhag” in their wording but not related to the
“hemorrhage” morphology (or one of its descendants). The concepts found include
concepts with no hemorrhage (e.g. “ulcer without hemorrhage”) but also concepts for
which the morphology is missing (e.g. “viral hemorrhagic fever”). Performances are
good and the script is executed in a fraction of seconds on a recent computer. Notice

J.-B. Lamy et al. / PyMedTermino926

that the script could be even simpler and shorter using set of concepts and the “Find all
concepts in the set that are another concept” operation.

PyMedTermino has been successfully used by the author in training sessions with
students in master of biomedical informatics, with either a computer science
background or a medical background. The example of Figure 3 was initially an exercise
for the students. The generic API is interesting from an educational point of view,
because it provides an exhaustive list of the various operations available on any
terminology. Students can compare the various terminologies and e.g. see the
differences between ICD10 and SNOMED CT. Terminology-based tools have a role to
play in medical education [4]; for students in biomedical informatics, the generic API
we propose can give them a more technical view on terminologies than the simple
navigation in a terminology browser.

Script:
from pymedtermino.snomedct import *
for concept in SNOMEDCT.search("hemorrhag*"):
 if not concept.is_a(SNOMEDCT[404684003]): continue
 has_hemorrhage = False
 for hemorrhage in SNOMEDCT[50960005].self_and_descendants_no_double():
 if hemorrhage in concept.associated_morphology:
 has_hemorrhage = True
 break
 if not has_hemorrhage: print(concept)
Output:
SNOMEDCT[37442009] # Peptic ulcer without hemorrhage AND without perforat
ion (disorder)
SNOMEDCT[240523007] # Viral hemorrhagic fever (disorder)
... (154 concepts listed)

Figure 3. Example of Python script using PyMedTermino. This script searches for all concept in SNOMED
CT with “hemorrhag” in one of their terms but not associated with the “hemorrhage” morphology (id
50960005) or one of its descendants. Additionally, only clinical findings (id 404684003) are considered.

 On a Iterate over all concepts
terminology Obtain the first level concepts

Obtain a concept from its code
Search for a concept (free-text search)

 On a Obtain the code of the concept
concept Obtain the preferred term in a given language

Obtain all the terms (preferred term and synonyms) in a given language
Obtain parent concepts
Obtain children concepts
Obtain the lists of available (non is-a) relations (including inverse relations)
Obtain the values of a given relation
Test if a concept is a descendant of another concept (including the other concept itself)
Iterate over ancestor concepts, with or without doubles, including or not the concept itself
Iterate over descendant concepts, with or without doubles, including or not the concept itself

 On a set Find all concepts in the set that are, or are not, another concept (is-a relation)
of concepts Keep only the most generic or the most specific concepts in the set

Computes the lowest common ancestors
Test if set A is a semantic subset of set B (taking is-a relation into account)
Perform usual set operations (union, intersection, difference, etc)

 On a Map a concept from the start terminology to the end terminology
mapping Map a set of concepts (and remove resulting doubles, if any)

Create the reverse mapping
Chain the mapping to another mapping, resulting in a new mapping

Table 1. List of the basic (on white background) and derived (gray) terminological operations.

J.-B. Lamy et al. / PyMedTermino 927

3. Discussion and conclusion
Many terminology services have been proposed. HeTOP (Health multi-Terminology
and Ontology Portal) [5] is a multilingual portal for browsing medical terminologies; it
is linked to the CiSMEF medical search engine and it proposes webservices. Other
terminology services are aimed at hospital and industrial applications. Open
Terminology Services (OTS) [6] is a generic open-source API for terminology services,
but seems unmaintained. LexGrid [7] is a generic framework for storing and querying
various terminologies. D. Luna [8] proposed a terminology service oriented toward text
search. UTS (UMLS Terminology Services) allows to query UMLS via webservices.

All terminology services propose similar functionalities, as noted by J. Pathak et al.
on drug-related services [9], corresponding to the basic operations and some of the
derived operations we presented (ancestors, descendants). On the contrary, the other
derived operations (lowest common ancestors, etc) are rarely proposed. Most services
also share a common architecture: a single database with a generic model that supports
several terminologies. We proposed a different architecture, with a separate database
and implementation for each terminology. This architecture allows to better preserve
the original terminology. It also makes possible the integration of post-coordinated
terminologies, which require combination algorithms in addition to a database.

The main limitation of this work is that the API is currently available only in
Python. Webservices could be developed to make it usable with any programming
language, however the performance would be reduced. Other limitations are the
absence of support for OWL ontologies, and the quality of the UMLS mappings.

In conclusion, we presented a generic API for a terminological service aimed at
research and education, and its implementation in Python. This service includes 6
heterogeneous terminological resources and compendium, and provides the usual
terminological operations but also more advanced operations. The perspectives are the
inclusion of additional terminologies and mappings.
Acknowledgement
This work was partly funded by the French research agency (ANR, Agence Nationale de la Recherche)
through the SiFaDo project (ANR-11-TECS-0014), and French drug agency (ANSM, Agence Nationale de
Sécurité du Médicament et des produits de santé) through the VIIIP project (AAP-2012-013).

References

[1] Lamy JB, Duclos C, Bar-Hen A, Ouvrard P, Venot A. An iconic language for the graphical representation
of medical concepts. BMC Medical Informatics and Decision Making. 2008;8:16.
[2] Lamy JB, Tsopra R, Venot A, Duclos C. A Semi-automatic Semantic Method for Mapping SNOMED CT
Concepts to VCM Icons. Stud Health Technol Inform. 2013;192:42–6.
[3] National library of medicine. Unified Medical Language System (UMLS) knowledge source; 1997.
[4] Grosjean J, Merabti T, Griffon N, Dahamna B, Darmoni SJ. Teaching medicine with a
terminology/ontology portal. Stud Health Technol Inform. 2012;180:949–53.
[5] Grosjean J, Merabti T, Dahamna B, Kergourlay I, Thirion B, Soualmia LF, et al. Health multi-terminology
portal: a semantic added-value for patient safety. Stud Health Technol Inform. 2011;166:129–38.
[6] Solbrig HR, Armbrust DC, Chute CG. The Open Terminology Services (OTS) project. AMIA Annual
Symposium proceedings / AMIA Symposium AMIA Symposium. 2003;p. 1011.
[7] Pathak J, Solbrig HR, Buntrock JD, Johnson TM, Chute CG. LexGrid: a framework for representing,
storing, and querying biomedical terminologies from simple to sublime. JAMIA. 2009;16(3):305–15.
[8] Luna D, Lopez G, Otero C, Mauro A, Casanelli CT, González Bernaldo de Quirós F. Implementation of
interinstitutional and transnational remote terminology services. AMIA Symposium. 2010;2010:482–6.
[9] Pathak J, Peters L, Chute CG, Bodenreider O. Comparing and evaluating terminology services application
programming interfaces: RxNav, UMLSKS and LexBIG. JAMIA. 2010;17(6):714–9.

J.-B. Lamy et al. / PyMedTermino928

