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Abstract. A care/clinical pathway (CP) is a standardized care process where 
temporal and data constraints of clinical activities are defined to ensure quality of 
care. In actual care practice, various situations of compliance and non-compliance 
with CPs can be observed. Analysis of these CP variation patterns (CPVPs) can 
help improve care quality and enhance decision support. In this paper, we propose 
an automatic method to detect CPVPs in electronic medical records (EMR), and 
statistically examine their correlation with patient outcomes. From each CP 
constraint, we first derive a CPVP tree, where each pattern is represented using 
first-order linear temporal logic and translated into a Büchi automaton for pattern 
detection. Then we identify the CPVPs that are evidently correlated with a patient 
outcome by examining the odds ratios. The method has been applied to a CP for 
congestive heart failure and real world EMR to demonstrate the effectiveness.  
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Introduction 

A care/clinical pathway (CP) is a complex intervention for the decision making and 
organization of care processes for a well-defined patient group during a well-defined 
period [1]. The aim of a CP is to enhance the quality of care by improving patient 
outcomes and promoting patient safety. A CP consists of various clinical activities such 
as diagnoses, medications and laboratory tests, as well as their constraints that describe 
temporal dependencies, data preconditions and contraindications. 

Real world clinical scenarios, however, are more complex than those defined in 
CPs, and various situations of compliance and non-compliance can be observed in 
actual care practice. Variance analysis [2] is the process of collecting and analyzing 
these variations, aimed at improving the quality of future care. In variance analysis, it is 
inadequate to roughly detect the non-compliance with CP constraints. Detailed care 
pathway variation patterns (CPVPs), which represent the detailed execution situations 
of a constraint, should also be identified, especially for a complex constraint with 
multiple temporal and data relations. Moreover, the correlation between CPVPs and 
patient outcomes should be analyzed. The detection and analysis of CPVPs can help 
clinicians identify which detailed patterns lead to positive/negative outcomes, and can 
be used to provide additional decision support during future CP execution. 
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It is a challenging problem, however, to identify and analyze detailed CPVPs in 
electronic medical records (EMR). Firstly, CPVPs should be defined in formal 
semantics that is not only detectable by machine but also understandable by clinicians. 
Manually formulating the patterns can be tedious and error-prone. Furthermore, for 
examining the correlation between CPVP and patient outcome, the relationships among 
the patterns must be explicitly defined. An existing tool [3] and our previous work [4] 
both focused on the detection of deviations from CPs. But these methods can neither 
detect the detailed variation patterns, nor analyze their correlation with outcomes. 

In this paper, we address these issues by proposing an automatic method to detect 
and analyze CPVPs in EMR. The CPVPs are defined using first-order linear temporal 
logic (FO-LTL [5]), which can represent both temporal and data relations, and can be 
translated into Büchi automatons for the pattern detection in EMR. From each CP 
constraint, we first syntactically derive a CPVP tree where each node contains the FO-
LTL formula of a variation pattern. Then we identify the patterns that are statistically 
correlated with a given patient outcome by examining the odds ratios in a patient group, 
based on the relationships defined in the CPVP tree. The analysis results can provide 
meaningful evidence for clinical practice improvement and further decision support. 

1. Methods 

Our method takes as input a set of patient traces from EMR and a set of constraints 
from a CP. A patient trace is a sequence of care events for a specific patient, sorted by 
time. Though there is no agreed standard for modeling a CP [3], temporal dependencies 
and data preconditions of activities should be defined in a CP format. In this paper, we 
use a general logic language FO-LTL [5] to represent a CP constraint, which has the 
capability to model both temporal and data relations. A FO-LTL formula is constructed 
by combining first-order formulas with temporal operators, which include the next 
operator X, the always operator G, the eventually operator F, the until operator U and 
the release operator R.  For example, the following FO-LTL constraints 

                                 �k. (EL � �(k  > 5.0)) R �ACEI, (1) 
                �k. G (ACEI � XG ((EL � k > 5.5) � G �PSD)), (2) 
               �k. G (ACEI � XG ((EL � k > 6.0) � G �ACEI)), (3) 

mean that “(1) check electrolytes (EL) and ensure potassium (k) is not > 5.0 (mmol/L) 
before initiating angiotensin-converting enzyme inhibitors (ACEI); (2) after using ACEI, 
if k rises to > 5.5, check for use of potassium-sparing diuretics (PSD) and stop; (3) if k 
rises to > 6.0, stop ACEI immediately” [6]. Figure 1 shows these constraints in a CP 
based on the CMMN (case management model and notation) standard [7]. 

Our method consists of two phases: CPVP detection and outcome correlation 
analysis. The output of our method is the identified patterns and their outcome statistics. 

 
Figure 1. Example constraints from a care pathway 
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1.1. Variation Pattern Detection 

Essentially, a CPVP represents a specific state of a FO-LTL constraint, where some 
subformulas of the constraint are satisfied, some subformulas are violated, and the 
others are irrelevant. We first define irrelevant conditions of a constraint. Given a 
constraint � and a subformula � of �, the irrelevant condition of � with respect to � is 
represented as �[���], which is obtained from � by replacing � with true or false [8], 
depending on the operators on �. Then a CPVP � is defined as one of the Boolean 
conjunctions of the original constraint � and a set of irrelevant conditions.  

Notice that not all CPVPs are unique, valid and meaningful. To address this 
problem, we propose a tree-based algorithm to generate and prune the patterns. First we 
build a binary subformula tree TSF for a constraint � by decomposing the FO-LTL 
formula according to the binary operators (�, �, U and R), where each node represents 
a subformula of �. Fig. 2(a) shows the subformula tree of the above constraint (1).  

Then we build a binary CPVP tree TVP, which is expanded in steps according to 
every inner nodes �1, …, �n in TSF. In iteration i, an irrelevant condition � is generated 
by replacing one subformula (child node in TSF) of �i with �. Each formula generated 
in the previous iteration �i-1 is decomposed into two formulas �i-1�� and �i-1���, 
which will be added into TVP as the children of �i-1. After the iterations, we combine 
each leaf node �L with �, and add �L�� and �L��� that are not equivalent to false (i.e., 
valid patterns) into the CPVP set. Since FO-LTL has clearly defined semantics, the 
patterns are understandable. For example, the CPVP tree of the constraint (1) is shown 
in Figure 2(b), where the pattern (1.I) means that “never use ACEI”, (1.II) means that 
“initiate ACEI without checking electrolytes before”, (1.III) means that “initiate ACEI 
after checking electrolytes and confirming that potassium is not > 5.0”, and (1.IV) 
means that “initiate ACEI after checking electrolytes, but when potassium is > 5.0”.  

 
Figure 2. (a) Subformula tree; (b) CPVP tree: � � (E � �K5) R (�A), E � EL, K5 � �k. k > 5.0, A � ACEI 

Given a CPVP �, we can detect whether � is fulfilled in a patient trace �. We first 
evaluate the truth value of each variable in � at every time point in �, yielding a 
sequence of truth value vectors �. The FO-LTL formula � can be automatically 
translated into a Büchi automaton A� [9], which is a non-deterministic finite automaton 
with acceptance conditions for input sequences. If A� accepts the sequence �, then 
equivalently the pattern � is identified in �. Otherwise, � is not fulfilled in �. Figure 3 
illustrates the Büchi automatons derived from the patterns in the above example. In this 
work, the above approach is implemented using Java based on the ltl2ba tool [9]. 
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Figure 3. Büchi automatons of the example CPVPs in Figure 2 

1.2. Outcome Correlation Analysis 

After the CPVP detection, we statistically examine the correlation between each pattern 
and a patient outcome in a group of patients. Let N(�, �) be the number of traces where 
the CPVP � is identified and the outcome equals � (� = true for positive outcome, � = 
false otherwise), and Sib(�) be the sibling of � in the CPVP tree. Then we compute the 
odds ratio (OR) to quantify to what extent � is associated with the outcome: 

OR(�) = (N(�, true) /  N(�, false)) / (N(Sib(�), true) / N(Sib(�), false)). 
OR(�) > 1 means that � is identified more in positive cases compared with its sibling 
pattern, and OR(�) < 1 means that � appears more in negative cases. This method can 
evaluate the contribution of every detailed condition of a CP constraint. We also use  
two-tailed Fisher’s exact test to test the hypothesis of OR(�) = 1. If p-value is < 0.05, 
then the correlation between the pattern � and the outcome is statistically significant. 

2. Results  

We performed a case study using our method on a CP and real world EMR. The CP is 
derived from a clinical guideline for management of congestive heart failure (CHF) [6]. 
22 constraints are defined in the CP to describe the temporal dependencies and 
contraindications of multiple pharmacological therapies, which include ACEIs (e.g., 
the constraints shown in Figure 1), angiotensin receptor blockers (ARBs) and diuretics. 
The EMR contains over 6 million care events from a cohort of 8193 CHF patients. The 
outcome associated with the patients is whether they are hospitalized or not after the 
CHF diagnosis. In this cohort, 4945 patients are negative ones whose patient traces are 
extracted beginning with their first diagnosis date of CHF to their first hospitalization 
date, while 3248 are positive patients who were not hospitalized after the diagnosis.  

In the study, we generated 101 CPVPs from the constraints, detected every pattern 
in the EMR, and distinguished the negative patterns (OR < 1) from the non-negative 
ones. As shown in Table 1, most of the variation patterns (94%) can be identified in the 
EMR, and the majority of them (68%) tend to result in a negative outcome. 

Table 1. Statistical results of the CPVP analysis 

Treatment #Constraints #CPVPs #Undetected 
CPVPs 

#Non-negative 
CPVPs 

#Negative 
CPVPs 

ACEIs 6 27 1 8 18 
ARBs 6 27 3 7 17 

Diuretics 10 47 2 15 30 

(1.I)  
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true 
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�A�E��K5 

true 
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The quantitative analysis of the CPVPs provided meaningful evidence for the 
improvement of care practice. For example, in actual care, serum potassium is not 
always monitored on schedule for CHF patients and the related contraindications may 
also be ignored. However, as shown in Table 2, the variation patterns that violate the 
example constraints (1) and (3) are evidently prone to lead to a bad outcome, which 
reveals that potassium should be strictly monitored during ACEI therapy in the future. 

The analysis results can also be used to provide additional decision support during 
future CP execution. For example, if a clinician tried to prescribe an ACEI to a CHF 
patient with historical records […, ACEI, EL(k = 6.5)], a suggestion for discouraging 
this action would be given because the negative CPVP (3.V) would be identified. 

Table 2. Detailed results of the example CPVPs. (A � ACEI, E � EL, K5 � �k. k > 5.0, K6 � �k. k > 6.0) 

Constraint CPVP FO-LTL formula Interpretation OR 

(1) (1.II) (�E) U A initiate ACEI without checking electrolytes 0.27 
(1.IV) (E R �A) � (K5 U A) initiate ACEI when potassium > 5.0 0.33 

(3) (3.II) FA � G(A � G�E) not re-check electrolytes after using ACEI 0.15 
(3.V) F(A � XF(E � K6 � FA)) use ACEI despite potassium has risen to > 6.0 <0.01 

3. Discussion 

In CP utilization, the analysis of detailed variation patterns, which can be positive or 
negative for patient outcomes, is critical for the quality improvement of care. In this 
paper, we proposed an automatic method to detect and analyze CPVPs in EMR. The 
results showed that our method can provide useful evidence for promoting care practice 
and enhancing decision support. Besides, the proposed approach has a potential to 
provide timely and evidence-based recommendation for future amendments of CPs. 

One limitation of our current method is that the time interval conditions (e.g., 
“within 2 weeks”) between activities are not defined in FO-LTL formulas. These 
conditions, however, are very common in CPs and should be taken into account during 
variance analysis. A potential solution is to model them using interval temporal logic, 
where the time intervals can be naturally defined.  
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