
Meta-Modelling In Document-Oriented
Databases

Vilius OKOCKIS a and Linas BUKAUSKAS a

a Faculty of Mathematics and Informatics, Vilnius University, Lithuania

Abstract. With the appearance of massive databases the ever changing data sets
are becoming increasingly important. Storage of massive data sets is always led
by changes issued not only to actual data but meta-data that describes the struc-
ture. Meta-data is the foremost element to understand the information in databases
when designing data storage and its change over long period of time. Thus there is
no higher level system to comprehend unstructured data that falls into document-
oriented databases. We present the Meta-model that documents itself and docu-
ment, manages, and creates by using generic or universal meta-modelling con-
structs. The introduced method allows a flexible document structure that evolves
itself over the time, reduces model creation time on the application level. We im-
plement a novel meta-model prototype where the complexity of a model growth is
proportional to its expansion scope.

Keywords. meta-modelling, meta documents, document-oriented databases

Introduction

Vast amount of technological innovations has a significant impact on the amount of in-
formation. Notion of big data introduces detection and storage of ever changing data.
Thus, large quantities of data makes it harder to maintain changes of meta data. The gen-
eral practice of database design and creation is one of the approaches to organise and
maintain information. Databases must conform to the requirement specification of both
specified users and potential future users [1,2]. This involves requirement specification
gathering phase very important and non ambiguous. Relational database model require
specific notion of the domain and all changes in schema are very limited during later
usage of data.

The natural question for the developer when designing changes in schema or schema
that is capable of changes is: How to store this structure in database as well as previous
one? There are several ways to deal with this problem. Denormalization and Normaliza-
tion. If we use denormalization (see Figure 1), old records and meta data will have Δ+

attributes and new records will have Δ− elements attributes which are just empty val-
ues, though they still hold data NULL reserved space. If we would have millions of data
records, then the overhead of empty values would be huge. If we would use normaliza-
tion, the complexity of databases would grow exponentially, which furthermore would
influence application level complexity.

The key prerequisite is to enable users to understand information stored in databases
and its evolution over the time. In most cases the user works with relational database

Databases and Information Systems VIII
H.-M. Haav et al. (Eds.)
© 2014 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-458-9-57

57

Figure 1. Relational table with change

schema that is designed for particular tasks in mind and is not flexible enough to cope
with changes [3,4,5]. Changes in highly structured and predefined data world is possible
by snapshoting data sets and continuing to support backward compatible views to previ-
ous schema. Another important requirement is a continuous integration and evolution of
multi-version systems in SaaS (Sofware as a service) setting [6] by maintaining interme-
diate schema. Such a stringent requirement brings forward described resources and infor-
mation map or schema in an agreed form [7]. Such a map usually is reflected in database
schema. A schema is a structure of meta-data describing how data, for example, data in-
stances can be stored, accessed, and interpreted by users and applications [8]. Meta-data
is a fundamental ground in facilitating effective resource discovery, access, and sharing
across ever-growing distributed digital collections [9]. Meta-data describing data is also
fundamental to integrate several heterogeneous data resources. NoSQL databases do not
have effective meta-data level that helps the user to understand data and relationships in
databases.

In this paper we introduce a Meta-model and a key prototype to describe and main-
tain evolving data. The presented prototype describes itself by supporting a flexible
schema management and creation of data schema procedures. We achieve such flexibility
by generic and universal meta-modelling constructs that helps us gradually build up the
whole data set.

The main purpose of this work is to introduce a novel meta-model for continu-
ously evolving and highly structured data. Meta-model manages and creates document-
oriented databases that are chosen with regard to flexible and dynamic data. To prove the
concept of the model, the program prototype was developed. It achieved partial system
creation using meta-modelling aspects. The Meta-model creation demonstrated that its
complexity growth is proportional to its expansion.

The structure of the paper is as follows. Section 1 presents related work that touch
the approaches to cope with a problem and accentuate the need of universal meta-model.
Section 2 describes meta-model and architecture. Section 3 presents structure of the
meta-data. The discussion of model implementation with a case example is in Section 4.
Conclusions and guidelines for the future work are in Section 5.

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases58

1. Related Work

The process of creating schema design is rather complex and time consuming [10]. Our
proposed model aids in continuous relational [5,4] model evolution, Data Warehouse
schema design creation process. Such evolving model even if it does not pin point self-
documenting meta-model creation, stores data about user actions. That implies storing
meta-data, user level and meta-data evolution pattern. Anchor [11] modelling distin-
guishes model evolution and usage. Data Warehouse schema can be incrementally modi-
fied after initial creation, however usage of such modelling is restricted to specific type of
data schema and does not go beyond Relational Model to Document-oriented Databases.
Our proposed method allow us to keep track of data and meta-data versions over the
course of data set modification.

An alternative idea of schema design assistant is presented in [12]. Automated
schema creation application for novice database designers in a way of tab-complete prin-
ciple is discussed in that work. Auto-completion algorithm for schema is implemented
using probabilities from collected Attribute Correlation Statistics Database (ACSDb).
Such ACSDb acts as an assistant that provides suggesting features for attributes that
would further strengthen our implementation if known or statistically defined paths for
changes of meta-data would be used. This assistant can provide semantic assistance, such
as suggesting features for attributes and relations. We can agree to some degree with that
if we would need to create uncomplicated database schema, however ACSDb probability
information is suited for low level data only.

Joseph Fong and others [13] in their work describe a semantic meta-data to preserve
database constraints for data materialisation to support the user’s view of database on
an ad hoc basis. Data schema semantics can tell about behaviour and relational func-
tionality of the object. Thus, translating different data model semantics into semantic
meta-data enables us to translate it in to entirely different data model. Semantic data con-
sist of classes: headers, attributes, methods, constraints. Header class contains informa-
tion about the object and describes the structure and relations. Attribute class represents
contents of the object—values, pointers to other objects or procedures characterised in
methods part. Real data are stored in separate classes. Having semantic data detached,
we have a mechanism for data structuring, sharing, rules and methods, which operates
on information in databases. Having said that, there is no mention if this method can
describe itself. The proposed meta-model solution has a disadvantage for not allowing
to have more complex inner structures and does not mention about frame meta-model
expansion. Our solutions lets users with base knowledge about the model, to view and to
find all required information for using the database.

Self-describing models are those, that let users with basic knowledge about the
model, to view and to find all required information for using the database [1]. Self-
documenting models are those, that can document database evolution during long op-
eration time. There are two main prerequisites for integrating data, schema and meta-
schema. We need to create meta-schema design and data model DML. Meta-schema is
the description of time invariant and general aspects how we describe schemas [2]. Nick
Roussopoulos and Leo Mark presents conceptual meta-data model, which can describe
itself and document evolution over the time, but it does not have possibilities to manage
more complex data structures.

Yaser Karasneh and others [8] in their work states the necessity to identify syn-
tactic suitability and semantic matching between meta-data structures for integration of

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases 59

database schema. Authors proposes a general framework, which facilitates integration
of local schemas to global schemas. For the integration, autonomous together with het-
erogenous data resources are used. Its process regards to correspondence of schemas:
attribute-attributes scoring and schema-schema scoring. Such method distinguishes from
other methods by doing comparisons among more than two schemas. Name standardi-
sation and ontology dictionaries are tailored by differentiating schema names, attribute
names, amount of the attributes, data types and constraints. The likelihood to find simi-
larities between schemas, which will define the successful integration, is equal to 1

2 . Our
proposed method differs that we keep track of the history of changes in meta-data and
continuously apply schema integration procedures as they occur.

Habela [7] proposes a radically simplified, flattened meta-model structure for object
DBMS. By using general methods to manipulate database meta-data instead of a big set
narrowly specialised operators defined by ODMG standard. Flattening enables the cre-
ation of more universal operators on meta-data in a way of simplifying its use by database
designers and developers. Moreover, such model gives an opportunity to expand as it is
easier to extend the dictionary than to change meta-structures. Nevertheless, meta-model
becomes faster to operate and easier to maintain. Even thought, meta-data is manipulated
in database level and is defined for ODBMS, our model is also applicable for creation of
the meta-model for document-oriented databases.

Current meta-data or meta-schema creation practices [9,14,15] in digital repositories
and collections are explored by professionals or naive users. Some implementation sug-
gest controlled vocabularies for subject access and meta-data along with their propaga-
tion of creation directives. RAND Meta-data management system (RMMS), which con-
trols meta-data descriptional and denotational information about databases. These works
discusses standardised database schema documentation, tracking and management of
different database versions, storing changes of tables, schemas and data values. The goal
of complex data types, derivatives, composites, arrays, matrixes, abstract data structures
is not reached by other works but is fully implemented in ours.

2. Meta-Model

Model-View-Controller (MVC) is a software pattern for implementing user interfaces.
There is a number of programming frameworks based on MVC. Most of such frame-
works provides quick generation of initial models, controllers and views for applications.
Moreover, MVC frameworks have extensive libraries which cover complex actions un-
der high level API. Document-oriented databases (DOD) provide schema-less database
design and flexible data structure. Such pattern can be applied to produce meta-data and
data management framework.

We utilised rich MVC base and DOD advantages to abstract to higher level of MVC.
In Figure 2 MVC model is virtualised using Meta-data definitions. Virtual Model reduces
its programming. We enabled to do that by implementing generic/universal CONTROLLER
and VIEW methods. As a result, application code is enforced to be reusable and easy to
refactor.

Objects in our method are identified by a sequences of pairs of id and Meta-key

(mid1,oid1), . . . ,((midn,oidn)) (see Figure 2). Such pair identifies id of an instance ob-
ject and meta data that describes the structure. In that way using documents we describe

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases60

Figure 2. Meta-Model MVC concept

the structure of data, keep track a hierarchy of changes and allow minimisation of meta-
data quantities at data instances. Also sequences enable us to SEARCH Meta-data of ob-
jects by pointing to the latest version of the structure, analyse it in case changes must be
done, find exact data objects in database, and PREPARE the data for use as a global data
view.

3. Meta-Data Structure

Document-oriented databases are perfectly tolerant of incomplete data. Each document
has own meta-data and data attached. A collection of same type documents might have
different structure that varies over the time. Thus data is hard to push to normal-form
and require from the developer special application level development. Unlike DOD, re-
lational databases hide all the complexity by having high level SQL query language that
produces data-sets and collection of records according predefined rules. The key concept
of DOD regards to the term of document, which places meta-data to the lower record
level. Whereas relational databases place meta-data in higher table level. Document-
oriented databases works with records of varied structure, whereas relational model has
stringent requirement that all records are of the same structure. In that case changing
meta-data in relational databases causes global table changes applied to all records. On
the other hand DOD guarantees each and every record change with superfluous meta
data. Document-oriented databases usually uses JSON standard for storing data and for
representing data. It results to flexible record structure and therefore in terms of self-
documentation it allows more freedom in model growth.

[7] Habela’s proposed concept of flattened meta-model is split into three parts. As
DOD is based on the term of document, we can state meta-data is stored as meta-
document. Meta-documents and documents act as the very same documents and they can
be built in recurrent manner using universal/generic methods. In Figure 3 such a self-

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases 61

Figure 3. Generalized Meta-Model documentation structure abbreviated

documentation is proposed. We introduce Metadocument Class that is a part of Metadoc-
ument ClassFamily where both these main structural elements are recursively describing
Meta-documents structure and associated data-sets.

Therefore, such Meta-data is self-documenting and stored as documents in Meta-
documents collection. We propose a minimal set of Meta-Documentation Object (MDO)
in Figure 4. Figure describes attributes that is a minimal set of elements. Arrows rep-

Figure 4. Meta-Model documentation structure

resent relationship to MetaDocument Class and Metadocument ClassFamily, which is
needed for the model to describe itself and documents. Lines with bubbles represent
MDO containment. As seen in Figure 4 left hand side, every MDO consists of unique ID,
Interface name, Kind, Position number, Type, and optional Show field. Meta-Documents
MDO has ClassFamily type, that express distinct model group. Meta-Document MDO
has Class kind, which describes actual object’s meta-information, membership of model
group and enables to have varying record structures for the same model. Meta-documents

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases62

MDO embeds meta-information consisting of multiple MDO’s (simple lines in Figure 4
with bubbles). Id MDO gives unique object’s identification. In Figure 4 right hand side
attributes describe possible relationships to keep track of changes. Meta Key MDO asso-
ciates object with meta-document which describes it. Thick lines with an ending arrow
seen in Figure 4 represent mentioned relations. As the model has many fields, we de-
fine meta-documents of simple field kind, complex dropbox and checklist kinds. Meta-
documents of dropbox and checklist kind enables us to describe meta-document creation
form. Type MDO represents data type or other additional interpretation and management
information (Table 1). In general the proposed MDO composes treelike structure with
loops and tree node notion of siblings. Such general structure can be used for different
applications. The reusability of elements enable us to have minimal meta-vocabulary [7].

Table 1. Types of meta-documents.

Element type Description

parentClass root model of the parent or the parent of the current model
childClass one version of a model

String textual data type
Number numerical data type
Boolean logical data type
ObjectID object identification type

ObjectIdsArray inner array of document ids that assemble document from smaller components

In order to evolve meta-document, we only create new meta-document/element and
assign relations. Relations are created through marking meta-document fields child ids
and parent ids. Dropbox allow us to choose one of meta-documents for desirable needs
such as choosing meta-key. Users can decide which data-structure to choose in appli-
cation level. However, an application should have sophisticated universal and generic
methods, which could understand and interpret meta-documents.

Meta-model concept is primitive and does not contain meta-information about con-
straints, procedures, functions. Despite this, the main idea is flexible, can adapt to the
needs and focus on data documentation along with self-documentation.

4. Implementation

We structure our prototype in three tier architecture. In Figure 5 the general architecture
is shown. Data store that store documents is a Document oriented database. MVC appli-
cation is higher level add-on for DOD that implements handling, creation, preparation,
searching functionality of meta-models. The application that implements usage of data
is having a view over the REST API.

4.1. Tools

For the prototype implementation we chose Ruby on Rails, that is open source web ap-
plication framework. The framework emphasises the use of well-known patterns such
as MVC, convention over configuration (CoC), don’t repeat yourself (DRY) and runs
via the Ruby programming language. Ruby code can change aspects of its own struc-

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases 63

Figure 5. Implementation architecture

ture at run-time that would be pre-compiled in more rigid languages, such as class and
method definitions. This sort of meta-programming can be used to write more concise
code and effectively extend the language architecture. Proposed meta-model uses meta-
programming extensively to code generic/universal methods, that dynamically generate
objects from documented meta-data.

We implemented generic CONTROLLER, VIEW, PREPARE and SEARCH meth-
ods shown in Figure 2. Model implementation is left empty in Figure 2 as it is dy-
namically generated using generic/universal methods. There is no single way of imple-
menting such methods using proposed meta-model’s process pattern. We covered only
well-known CRUD operations, so we exclude implementation details and provide only
SEARCH methods pseudocode (Algorithm 1).

MongoDB was chosen for storing data. The justification for our choice of database
are:

• schema-less database design and flexible data structure—allows easy and fast
improvement of data model;

• document-oriented database—an object has described set of attributes. Therefore
it is enough to store just one whole document. There is a possibility to distribute
information across separate collections.

MongoID Object-Document-Mapper (ODM) was selected, because it provides fa-
miliar API for Ruby developers. ODM, as well as ORM [16], greatly facilitates creation
of meta-model. ODM realises conversion layer between database and application.

The minimal meta-data set (see Fig. 4) was inserted into database meta-documents
collection. From that point, we tested not only discussed case example (Section 4.2), but
also more complex document structures like study programs, courses and subjects.

Every CRUD and other management actions employs simple meta-information
SEARCH Algorithm 1, which traverses through meta-documents and actual documents.

The metakey with (or without) id is a pair. A set of such pairs forms a path to a
structure of specified document or to actual document. Search method looks for meta-
document and its parent meta-document by using provided path from variable param.
The method depends on the meta-key provided in actual document. This makes us aware
how the record is really structured as documents in DOD stores field names at the record
level. As documents can be embedded, you can not find such document without having

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases64

Algorithm 1 SEARCH Algorithm
Require: IN: params— > 1 size array where every element in odd position is meta-

model ID and in every even position is document ID
Ensure: OUT: @model, @document, @parentdocument, @parentmodel

1: @model ← nil { object’s meta-model}
2: @document ← nil { document’s object }
3: @parentmodel ← nil { object’s parent meta-model}
4: @parentdocument ← nil { document’s parent object}
5: for element in params do

6: if OddPositionInPath(element) then

7: @parentmodel ← @model
8: @model ← Metadocument.find(element)
9: else

10: if @document.nil? then

11: @document ← CastAsClass(@model.name).find(element)
12: else

13: @parentdocument ← @document
14: @document ← @document.CastAsAttribute(@model.name).find(element)
15: end if

16: end if

17: end for

full path from root model. If the last pair of the path contains both elements, the method
will find actual document and if not—all documents described by provided meta-key.
The returning results are meta-document of the document, actual document, parent meta-
document and parent document of actual document. Information about parent is needed
if we want create, update or delete actual document.

Algorithm 2 prepareAll prepares meta information about each and every document
based on their meta-data.

4.2. Case Study

Evolution of data used by users is natural process. It is based on documenting status and
change, and is suitable for use of proposed document-referring meta-model. Consider
invoice and shopping cart models to test our proposed meta-documentation. Both con-
sists of specific quantity of attributes and have their documents, that is able to grow and
evolve.

Let us consider invoice example in Figure 6. Red rectangles depict various attributes
of invoice such as company details, customer details, service name, projects, hours,
rate, and amount. This is very simple structure and can be easily stored using relational
databases. However, companies change requirements and usually need different kind of
invoice structures to be supported at the same time as well as to store old and new data
associated with invoices. As the change is requested in the future (Figure 7), one would
have to have different structure of invoice. Instead of customer details, we have Bill To
and Ship To details. Also, instead of services—items that have description, quantity, Unit
price, and amount. This illustrates how complex change might be. New meta-data and

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases 65

Algorithm 2 PrepareAll Algorithm
Require: IN: @documents
Ensure: OUT: @alldata

1: @alldata ← []
2: @model ← nil { meta model of the object }
3: for document in @documents do

4: if @model.id not equal to document.metakey then

5: @model ← Metadocument.find(document.metakey)
6: @childs ← Metadocument.findWhere(id in @model.childs)
7: end if

8: @data ← []
9: for child in @childs do

10: if document.hasField(child.name) then

11: @ f ield ← []
12: @ f ield[0]← child.api name
13: @ f ield[1]← document[child.name]
14: @ f ield[2]← child.posnr
15: @ f ield[3]← child.id
16: @ f ield[4]← child.metakey
17: @ f ield[5]← child.name
18: @ f ield[6]← child.showability
19: @data.push(@ f ield)
20: end if

21: end for

22: @data.sort(|x,y| (x[2]⇔ y[2]))
23: @alldata.push(@data)
24: end for

Figure 6. Invoice example at the initial state

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases66

Figure 7. Invoice example with requested change

data in database as well as previous meta-data with data historically represented would
be linked and would be siblings of the more general Invoice ClassFamily.

Figure 8 presents already evolved and documented both invoice and shopping cart

Figure 8. Invoice and shopping carts meta-documentation

models. All MDO’s are denoted by rectangles. Thick lines with arrows represent rela-
tions. Three Class kind MDO’s have different type of lines which separates embedding
of MDO’s. Observable relations from documentation enables us to see the story behind
evolution of data structures.

Firstly, Invoices ClassFamily MDO were created with Invoice Class member as the
first version of meta-documentation. Then, Id, Meta Key attributes were added to Invoice.
The analogical actions are executed for shopping carts. Then, attributes Serial and Com-

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases 67

pany were added to Invoice. Respectively, Shopping cart was extended with VAT code
and Serial attributes. Taking this extension into account, we have the starting data struc-
tures. Although, it is clear that after some time from first Invoice structure documenta-
tion, there was a need to relate invoice and shopping carts while maintaining old records.
Our proposed meta-documentation model enables us to create new Invoices member In-
voice, which reuse the same attributes of 1 version Invoice and includes new MDO for
one-to-many relation with shopping carts. All of such actions can be performed by using
graphical user interface only.

Using created meta-documentation, we can store data of invoices and shopping carts
as shown in Table 2. Physical data of new document is stored in the same collection
as the old document without changing anything else in the collection. Thus two differ-
ent documents in Invoices. This way of improving meta-information and adding new at-
tributes is much simpler than in relational models where we need to change table’s struc-
ture or create complex designs. A user does not need to program and change the schema
of database. Database records all the history and its associated meta-data.

Table 2. Collections of invoices and shopping carts.

Invoices

{ id:1, metaky:33, a0:”DB-2013”, a1:”Amazon shop” }
{ id:2, metaky:44, a0:”IS-2014-02”, a1:”Safari shop”, shopc ids:[555] }
Shopping carts

{ id:555, metaky:77, a0:”Groceries and NoSQL”, a2:”LT” }

Also, one should notice that simple data elements have shorter inner names. This
is implemented due to memory limitations. Document-oriented databases store attribute
name on every field and this controls memory usage. Attribute naming convention is im-
portant if we would like t reduce storage overhead in DOD. Instead of repeating long/full
attributes data is annotated with fewest number of characters. Meta-documents allow us
to have a map of fields, optimise storage, and leave actual documents less touched by
modification of field names. For example, in the document that describes meta-data we
have relationship that attribute Company is defined as a1, thus every data entry instead
of repeating full attribute name will have only a1 defined.

4.3. Implementation Issues

Proposed model is designed for document-oriented databases instead of relational object
databases. In this paper we shed some light on prototype implementation and specific
problems we have met while implementing meta-model:

• Implementation was limited to one-to-many relationships, where N object are in
a separate collection. many-to-many relationship implementation is an analogy to
one-to-many relationship. MongoID ODM provides one-to-one relationship type,
though it is managed differently and now works only at meta-document creation
process. Moreover, there exists storing of embedded documents inside of parent
documents. However, method principles are partially identical for embedded doc-
uments. They have some peculiarities, such as adding and removing from parent
document, more complex access to the field of parent document. We need to cre-
ate relation type and kind (embedded or referenced) descriptors into meta-model.

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases68

It could enable model feature to become embedded and referenced at the same
time dependently by described field;

• Working data types—textual, numerical, real number, logical. Textfield, number-
field, floatfield, checkbox, dropbox are special Ruby on Rails framework elements,
that have input equivalents in HTML. The latter two checkbox and dropbox fields
are reserved for creation of meta-documents. Array type variable is implemented
only partially to support addition of multiple occurrences of meta-data. The man-
agement of Array type acts as a set to store various models inside;

• Habela in his work [7] raises one disadvantage of model implementation in appli-
cation level. It is hard and sometimes impossible to implement identical applica-
tions by using different tools. There is a possibility that Ruby on Rails framework
is not suitable for the implementation of this model. Comparing implementation
by different tools can be backbreaking work.

• Implemented algorithms work statically as a layer—the interpreter of meta-data
is implemented to know how meta-model is structured and how to use it. De-
spite this limitation, creation of actual documents is not affected. This does not
reflect full dynamic expansion. Changing the model through its operation is lim-
ited to interpreter level. To tackle with such limitation, interpreter should have
self-learning feature.

5. Conclusion and Future Work

There are limited meta-model proposals found for document-oriented databases, but we
can lean upon existing relational solutions. It should be pointed out that Document-
oriented databases and relational paradigms are suited for different purposes and they
have different rigidity of data structures. As Document-oriented databases provides more
flexible data structures, there is a possibility to be lost in data chaos. Our proposed meta-
model allows us to document data during their growth and change. Moreover, self de-
scribing and documenting data is a greatly useful feature of this model. The proposed
model manages evolving dynamic meta information structures and does self documenta-
tion. It also provides generic approach of information management.

In future we will explore and analyse the remaining relation types, embedded doc-
ument management, and constraints documentation. In addition to this, the idea of this
work can shift to other aspects: meta-model expansion to support relational higher level
languages by including different modelling principles as well as graphical modelling
techniques, to change the concept of meta-model to support geographical and bitemporal
aspects of data.

References

[1] Roussopoulos N., Mark L. Schema manipulation in self-describing and self-documenting data models.
International Journal of Parallel Programming, 1985, 14(1), 1–28.

[2] Mark L., Roussopoulos N. Metadata Management. IEEE Computer Magazine, 1986, 19(12), 26–36.
[3] Moon H. J., Curino C., Ham M., Zaniolo C. PRIMA: archiving and querying historical data with evolv-

ing schemas. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of
data. New York, USA: ACM, 2009. 1019–1022.

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases 69

[4] Guttorm O. J., Böhlen M. H., Multitemporal Conditional Schema Evolution. ER (Workshops), 2004.
441–456.

[5] Guttorm O. J., Böhlen M. H. Evolving Relations. FMLDO, 2000. 115-132.
[6] Yan J., Zhang B. Support Multi-version Applications in SaaS via Progressive Schema Evolution. In:

Proceedings of the 25th International Conference on Data Engineering, Shanghai, China: IEEE, 2009.
1717-1724.

[7] Habela P. Metamodel for Object-Oriented Database Management Systems[phd thesis]. Warsaw, Poland,
2002.

[8] Karasneh Y., Ibrahim H., Othman M., Yaakob R. A Model for matching and integrating heterogeneous
relational biomedical databases schemas. In: Proceedings of the 2009 International Database Engineer-
ing & Applications Symposium. New York, USA: ACM, 2009. 242–250.

[9] Park J. R., Tosaka Y. Metadata creation practices in digital repositories and collections: Schemata, se-
lection criteria, and interoperability. Journal of Technology and Libraries, 2010, 29(3), 104–116.

[10] Arfaoui N., Akaichi J. A Data Warehouse Assistant Design System Based on Clover Model. Interna-
tional Journal of Database Management Systems, 2010, 2(2), 57–71.

[11] Ronnback L., Regardt O., Bergholtz M., Johannesson P., Wohed P., Anchor modeling Agile informa-
tion modeling in evolving data environments, Data & Knowledge Engineering, Volume 69, Issue 12,
December 2010, Pages 1229–1253.

[12] Cafarella Michael J., Alon H., Jayant M. Structured Data on the Web. Journal of Communications of the
ACM, 2011, 54(2), 72–79.

[13] Fong J., Shiu H., Fei Yeung Y. Concurrent Data Materialization for XML-Enabled Database with Se-
mantic Metadata. International Journal of Software Engineering and Knowledge Engineering, 2010,
20(3), 377-422.

[14] Cammarata S., Kameny I., Lender J., Replogle C. The RAND Metadata Management System (RMMS).
A Metadata Storage Facility to Support Data Interoperability, Reuse, and Sharing. Santa Monica, CA:
Rand, 1995. 50 p.

[15] Richardson C., ORM in dynamic languages. Journal of Communications of the ACM - A Direct Path to
Dependable, 2009, 52(4), 48–55.

[16] O’Neil E. J. Object/relational mapping 2008: hibernate and the entity data model (edm). In: Proceedings
of the 2008 ACM SIGMOD international conference on Management of data. New York, USA: ACM,
2008. 1351-1356.

V. Okockis and L. Bukauskas / Meta-Modelling in Document-Oriented Databases70

