
Requirements Engineering for Service-
Oriented Enterprise Systems:

Quality Requirements Negotiation
Audrone LUPEIKIENE1 and Albertas CAPLINSKAS

Institute of Mathematics and Informatics, Vilnius University, Lithuania

Abstract. Service-oriented systems engineering (SoSE) counts its two-decade
history. Nowadays it is a way of developing and deploying applications as well as
the whole enterprise systems. Service-oriented requirements engineering (SoRE)
as an integral part of SoSE and as a new requirements engineering subdiscipline
faces a number of different kinds of challenges. The early SoRE approaches were
derived from the initial phases of traditional software development methodologies,
and the later ones are original, taking into account the specific characteristics of
service-oriented systems. This paper discusses the specifics of service-oriented
systems, describes the paradigm related SoRE issues and provides an overview of
the characteristics of service-oriented enterprise systems. All these specifics and
issues entail different methodological approaches to SoRE. The special attention is
given to requirements negotiation activity. The paper presents a view-based
approach to derive the balanced service quality requirements from an initial set of
stakeholders’ needs.

Keywords. Service-oriented requirements engineering, service-oriented software
development, service-oriented enterprise systems, service quality requirements,
requirements negotiation

Introduction

Service-oriented software engineering emerged in the last decade of previous century
[1, 2, 3, 4, 5, 6, 7], as a response to the challenges of integration of heterogeneous
applications, including legacy ones, to the cross-platform interoperability, bridging the
gap between business models and software architectures and implementing the on-
demand solutions. It has its roots in object-oriented software engineering, component-
based software engineering, open distributed processing and business modelling
techniques. SoSE is still growing research and development area.

The efforts towards service orientation had their impact on the whole enterprise
system. So called service-oriented architecture (SOA) entailed the methodological
changes in enterprise architecture (EA) domain. The synergy resulted in service-
oriented enterprise architecture (SoEA) – an architectural style where enterprise system
consists of service users and service providers, and any system’s activity is treated as a
service [8]. Therefore, there are at least two kinds of service-oriented systems –
internet-wide and enterprise-centered.

1 Corresponding Author: Audrone Lupeikiene, VU Institute of Mathematics and Informatics, Akademijos 4,
LT-08663 Vilnius, Lithuania; E-mail: audrone.lupeikiene@vu.mii.lt.

Databases and Information Systems VIII
H.-M. Haav et al. (Eds.)
© 2014 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-458-9-27

27

Service-oriented requirements engineering (SoRE) as an integral part of SoSE
emerged at the very beginning of the 21st century. The first publications discussed the
nature of this discipline, the differences between SoRE and traditional requirements
engineering (RE), the structure of service-oriented requirements lifecycle, and possible
approaches to address the identification and handling of functional and non-functional
requirements for software systems of service-oriented architectural (SOA) style [9, 10,
11]. The discipline has quite short history and many challenging issues still remain
open. B. Verlaine, I. Jureta and S. Faulkner assert that even the question “Does service-
orientation need new RE methodologies, or would the specialisation of existing ones be
enough?” is still not answered [12].

The number of open SoRE problems including reduced utilization of service
performance metrics, unclear, incomplete or static service specifications, and
significant but yet unexplored socio-technical issues in negotiating conflicting
requirements has been reported by many authors, including [10, 13, 14]. SoRe is
steadily growing research and development area.

The aim of this paper is to discuss the specific characteristics of service-oriented
systems, describe the paradigm related SoRE issues and provide an overview of the
characteristics of service-oriented enterprise systems. All these specifics entail different
methodological approaches to SoRE and pose new challengers. The special attention is
given to requirements negotiation activity. A view-based approach, which enables to
derive the agreed service quality requirements from an initial set of stakeholders’
requirements, taking into account different viewpoints and perspectives on service
quality, is presented.

The remainder of the paper is organised as follows. Section 1 discusses the
innovations of service-oriented paradigm. Section 2 gives a brief list of service-
oriented paradigm related requirements engineering issues focusing on SoRE process,
requirements types, and service variability specification activities. Section 3 considers
the differences between two kinds of service-oriented systems. Section 4 presents a
view-based approach to take into consideration different attitudes and agree on the
service quality requirements, and, finally, Section 5 concludes the paper.

1. Specifics of Service-Oriented Paradigm

From business point of view a service is a unit of work carried out by a service owner
for a service consumer. In an enterprise context they can reside at all enterprise levels –
the units of business functionality, business specific applications, platform and
hardware functionality can be offered as services.

From technological point of view a service is a mechanism to enable access to one
or more capabilities [15]. According to [16] such the definition emphasises
“...capability as the notional or existing business functionality that would address a
well-defined need. Service is therefore the implementation of such business
functionality such that it is accessible through a well-defined interface”. The other
emphasis here can be done on the mechanism as an enabler to access to one or more
capabilities. The term which is commonly used to designate such the mechanism is an
infrastructure. By definition, infrastructure consists of essential common resources
shared by any set of otherwise independent users.

Two most important innovations of service-oriented paradigm are associated with
a specialisation of system engineering principles separation of concerns and

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems28

abstraction when developing software system. The innovative separation of concerns
for service-oriented paradigm entails the following:

� different viewpoints are required to develop the whole service-oriented
system;

� specification is split into those that concern the consumers’ domain and those
that characterise the required behaviour of the solution system;

� redistribution of functionality between system constituents is required.
The innovative specialisation of general abstraction principle entails the following:
� the paradigm related concept system includes a business service concept and a

business process concept, and
� decisions can be postponed, systems can be composed at runtime.
Lets discuss these innovations in more detail.

1.1. Viewpoints and Perspectives

The use of viewpoints in the requirements engineering activities is well known [17, 18].
This approach recognises that all requirements cannot be discovered by considering
system from a single point of view; it is essential to collect requirements from different
classes of system end-users and other stakeholders, to collect information of different
types – about the application domain, system environment and system development.
There are a number of different models of viewpoints. We consider a viewpoint to be a
role performed by a stakeholder when examining a system.

A perspective defines some aspect of service system on which any viewpoint in
principle may be focused. For example, it can be matched with some component of
service system. It does not mean that all perspectives cross-cut all the viewpoints. As a
rule, any perspective is related with a set of characteristics that are observed from some
viewpoint.

The viewpoint based approach to requirements engineering has been approved in,
let us call it a traditional software systems development context. The service-oriented
systems are analogous to a federation; i. e., a system consists of several constituents,
which remain independent in internal and sometimes even in external matters. In other
words, the constituents are under control of different stakeholders, which can have
quite different goals. There are at least three paradigm related roles: service consumer,
service infrastructure owner, and service owner. The goals of service consumer are
aligned with the business goals. The goals of infrastructure owners are related to the
development and maintenance of a service system infrastructure [9]. The goals of
service owner concern the realisation of capabilities.

1.2. System and its Effect

By definition, a service is a unit of work carried out by a service owner to its consumer.
The result of this work is a real world effect which is produced by service-oriented
system2. M. Jackson points out that developers focuses their “attention on the artefact,
not on the problem it is intended to solve” [19]. So, software development should be
thought of as building a machine to solve a problem in a real world, i. e., to produce an
effect. The application of Jackson’s problem frame theory in our context entails the
following:

2 It should be remembered here that intangible service differs from tangible product.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems 29

� Methods and tools for examining, analysing and describing real world
problems are required. “The main message here is that you need to get outside
of the system boundary to identify services” [20].

� Clear differentiation between application domain description and service
system description should be done.

� Business process modelling is essential; in addition, the specific techniques
for business process modelling should be compatible with the techniques for
interaction with service system modelling. So, use-case description is a second
step and on a lower level [11].

1.3. Redistribution of Functionality

Various forms of infrastructure like networks, communication protocols, database
management systems, etc. are well known. These are designed to provide the basic
foundations for various systems within different domains. The separation between such
underlying support and system using it enables to reduce complexity, to open up a field
for future extensions. Service-oriented paradigm causes the situation to become more
intense – it entails the move of functionality from applications to infrastructure [9],
supports sharing and integrating at a global and an enterprise system level. This notable
add-on fills the gap between needs and capabilities (Figure 1). The infrastructure
underlying a service-oriented system plays mediator’s, integrator’s and some other
roles. As pointed out in [21] its functionality covers discovery, composition, and
invocation of services. This functionality will be broaden in coming years to include
additions, for example, service monitoring, service evaluation at runtime.

This trend was foreseen 30 years ago. T. Capers Jones estimated that less than 15%
of the code written in 1983 was “unique, novel and specific to individual applications.
The remaining 85% appears to be common, generic, and concerned with putting
applications into computers” [22]. His prediction, made in 1984 [22], was the
following:

� 1990 – 50% of all code will be reused, 50% will be unique among leading-
edge enterprises;

� 1990 – 25% of the applications in the industry will be new (i. e., will cover the
business fields which have not previously been subject to automation);

� 2000 – 10-15% of the applications in the industry will be new.

Figure 1. The main high-level types of constituents of service-oriented system

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems30

1.4. Abstractions

Many service-oriented systems are developed on an object-oriented infrastructure,
which is concerned with object abstractions. Despite the fact that objects can
correspond to real-world entities, this abstraction is low-level one in an enterprise
context.

Service-oriented paradigm provides the native support for enterprise
conceptualisation – it introduces two high-level abstractions, namely a service and a
business process. These concepts can be used not just in SoSE, but also at all other
levels of the enterprise system. Processes are the abstractions of the overall functioning.
They are considered as orchestrations of services. As a result, service-oriented system
is thought of as a set of interacting services, which are coordinated by business process.
From service consumer’s point of view a business process specification is an input for
and can be executed by virtual machine.

1.5. Informational Content of Products

Instances of service-oriented system are usually produced at runtime. It means that in
service-oriented systems development there is a trend towards increasing so called
informational content (requirements, specification documents, design specification
documents, etc.) of the “products”. Since such the descriptions are easier to change
than physical systems (i. e., software code in use), developers try to keep system under
development in these abstraction forms as long as possible. So, development is divided
into two phases: first is a phase, which creates different descriptions and models; and
second is a phase, which produces the concrete implemented instances and which can
be extremely short.

In summary, all the mentioned issues cause a number of new problems in the
service-oriented systems engineering. Therefore, a new requirements engineering
subdiscipline – service-oriented requirements engineering (SoRE) – comes into view.
While for the previous paradigms we have well-known and stable requirements
engineering processes and methods, in SoRE such processes, methods and techniques
are still open research area.

2. Service-Oriented Paradigm Related Requirements Engineering Issues

The SoRE approaches proposed in recent years can be partitioned into two groups: the
first group refer to slightly revised traditional approaches (e. g., [23]), and the second
one includes innovative approaches [24, 25, 26, 27, 28, 29, 30]. In any case, because of
the specifics of service-oriented systems, SoRE differs from traditional requirements
engineering. Let us shortly discuss its characteristics and challenging issues focusing
on a SoRE process, the categories of requirements, and on the continually updating a
requirements specification to ensure its adequacy to service’s variations.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems 31

2.1. SoRE Process Models

Requirements engineering covers requirements elicitation, analysis, specification,
verification, and management. SoRE process defines how to specialise these classical
RE activities in a service-oriented context.

The difference between traditional and SoRE activities is essentially in performing
the service and workflow discovery [31], identifying the service requirements specified
in service level agreements (SLA), identifying and specifying the dynamic
requirements that may vary at runtime.

The requirements engineering process dovetails with the software design process.
To be more precise, it is rather process initiated at the beginning and continuing
throughout the whole life cycle. Service-oriented paradigm causes the more difficult
decoupling of requirements process and the other ones in different life cycle stages,
including runtime. Specification and use of policies and contracts can be given as the
argument and example. Policies and contracts need to be specified separately, however,
need to be evaluated together with the functional components. Policies are realised as
computational constraints and enforced at runtime. A SLA is part of the contract
between the service consumer and service owner. To enable the dynamic provisioning
of services, all the phases of SLA life cycle should occur at runtime [32]. On the one
hand, the activities include, among others, identification of service consumer needs and
service characteristics, negotiation, evaluation. On the other hand, high level SLAs
need to be translated to software level rules and measurable properties.

In summary, a number of end-to-end development process models described in the
literature follow the classical waterfall model with some modifications that are
particular to service-oriented computing [33]. Besides, all the methodologies consider
SoRE issues only in passing, so SoRE process model(s) is the challenging issue in
service-oriented systems theory.

2.2. Types of Requirements

Requirements can be categorised in several ways on a number of dimensions. SoRE
needs the relevant requirements taxonomy, which is still under development.

Early and late requirements engineering has been adopted for service-oriented
systems and is presented in [24, 25, 28, 34, 35, 36]. Early requirements are expressed in
terms of high level concepts and correspond to the stakeholders’ goals and needs [37].
Late requirements describe service or system within its operational environment, along
with functionality and qualities. Late requirements define coarse grained business
processes, which are refined to obtain workflows at the workflow level for Web
services development [28].

SoRE covers requirements which are static and dynamic, i. e., of different
variability over time [38], including variations at runtime. So, the questions “How
extensive the initial specification should be?”, “What type of requirements and to what
extent can vary throughout the whole life cycle?” should be answered. As pointed out
in [38], service requirements and services coordination requirements vary less
frequently, while quality characteristics and priorities over qualities vary more
frequently. Early requirements are the most stable in a specification document.

New types of requirements follow from “native” functionality of service oriented
systems. Adaptation requirements include the circumstances, in which software should
be adapted, priorities of these circumstances and the objectives of the adaptation

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems32

activity [37]. It should be noted, that specification of adaptation requirements needs an
answer to the question “What situations and to what extent should be anticipated and
specified in advance?”. Monitoring requirements concern the situations that may
trigger the adaptation of software or the situations when reaction to detected problems,
including errors, is required. Monitoring requirements in some cases can be derived
from the adaptation requirements [31]. This list of functional requirements is not
complete, as infrastructure of service-oriented systems is still evolving.

2.3. Requirements Management

In almost all cases, a significant proportion of the requirements changes as
development proceeds and requirements are revised in the late life cycle stages. This is
due to “traditional” reasons, such as errors, continuously evolving understanding of
requirements and changes in the business environment. In addition, a requirements
specification of services and service-oriented systems includes requirements that are of
different variability over time. In other words, new services can appear at runtime and
the degree to which they satisfy the initial requirements may vary at runtime. Therefore,
the initial requirements specification should be continually updated to reflect the
variations [38]. This leads to the permanent revisions of requirements after deployment.

Changes have to be managed by ensuring an appropriate review and approval
process. The methods and techniques to update the requirements at runtime to reflect
all the changes are required as well.

3. SoRE vs - Service-Oriented Enterprise Systems RE

Service-oriented systems are characterised as crossing organisational boundaries, i. e.,
services and their control may be distributed in multiple independent units. Distributed
ownership, despite the service contracts, makes a system and value delivered by a
service to its consumers highly uncertain. The uncertainty can be minimised within an
enterprise, where system may represent a more constrained and predictable operational
environment and service contracts as a rule are long lasting. The conceptual,
technological and technical differences between two kinds of service-oriented systems
are presented in Table 1.

Table 1. Service-oriented systems vs service-oriented enterprise systems3.

Service-Oriented Systems Service-Oriented Enterprise Systems

Internet-wide open system. Developed in a
bottom-up manner.

Relatively closed enterprise-wide system controlled
on an enterprise-wide level. Developed in a top-
down manner.

Not purported to support a particular business
strategy and to implement predefined business
processes.

Business-driven, i. e., support enterprise’s business
strategy and objectives. Enterprise business process
coordinates a set of interacting enterprise business
services (EBS).

Services published in the internet-wide
registers.

Enterprise service inventory. Process logic is
separated from business logic [41].

3 A service-oriented enterprise system is also called an enterprise service-oriented architecture [39, 40].

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems 33

Any business services. No ability to normalise4
business services.

Normalised enterprise business services aligned
with the enterprise business functions.

No ability to define global data types and use
naming conventions.

Use of global data types and standard naming
conventions [41] enabling simplified data exchange
between services.

Some services are situation-aware but only in
rare cases are context-aware because the context
as a rule is ill-defined.

All services are context-aware because they run in
the well-defined enterprise context.

Direct pear-to-pear communication between
consumer and provider. UDDI for service
registration and discovery.

Enterprise service bus as a mediator between
consumers and providers.

Service level agreement is negotiated between
provider and consumer at the run time.

Service level agreement is mandated (mostly) at the
enterprise-wide system at the design time.

Neither service provides, nor consumers can
control the SOA infrastructure including
communication networks.

The whole infrastructure, including intranet,
enterprise service bus, servers and other elements,
are under control by the enterprise.

No guide on a set of services, on how they are
built and deployed. No control over changes in
services.

EBSs are developed and deployed in compliance
with the enterprise-wide standards. All changes are
under control.

The structure of messages is standardized (e.g.
by SOAP) but not unified. EBS interfaces are
standardized (by WSDL), but not clearly
defined, not stable. No ability to use global data
types in the interfaces.

The structure of messages is unified.
EBS interfaces are clearly defined, stable, and make
use of global data types [40].

Recommended security and safety standards. Mandatory security and safety standards.

The differences presented in Table 1 play a role of supporting evidences and we

can conclude that requirements engineering, its processes, methods and techniques
should be different for both cases. These differences offer the following analogy –
SoRE is similar to market-driven RE and service-oriented enterprise systems RE is
similar to customer-specific RE. It should be noted that in the present paper we stay in
enterprise system context.

4. Service Requirements: the Agreed Quality of Service

Stakeholders have different goals and interests, even when developing an enterprise-
wide service-oriented system, which is managed by one organisation. They play not
only the different roles, but also have the different attitudes (e.g., stakeholder wants an
excellent service or a service at an acceptable price). So, stakeholders should negotiate
to agree on a common set of requirements. A service quality specification that satisfies
the consumers’ quality requirements should be matched with the owner‘s/designer‘s
service quality requirements. It means that evaluation of service/service composition
requirements in service and workflow discovery activity is the prerequisite to avoid
system development problems. The formal model of view-based enterprise business

4 Normalisation means that each EBS should be developed with the intent to avoid similar or duplicate

bodies of business logic.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems34

service quality evaluation framework [42, 43] can be adopted here to derive service
quality characteristics and to get the preliminary evaluation of its whole quality.

A system’s quality requirements express a degree to which software system
possesses a desired combination of quality attributes [44]. All these attributes,
independently of their level, will be called quality characteristics, i. e. qualities. An
example of the set of relevant quality characteristics, to which should adhere reference
architecture necessary to facilitate the development of any ecosystem with means of
service-oriented cloud computing, is described in [30].

The qualities by which the system’s effect will be evaluated should be many-
valued, because the quality characteristics as a rule are vague. It is required for, at least,
two reasons: 1) service consumer should be allowed to describe the extent, to which the
values of quality characteristics could be tolerated, 2) service adaptation is required, or
in other words, the variations of service should be specified.

The quality characteristics are vague concepts, so, we consider them as linguistic
variables with a common set of linguistic terms:

Ltr = (unsatisfied, ... , satisfied).
For example, Ltr consists of the following terms: below low quality (synonym to
unsatisfied), low quality, average quality, high quality, perfect quality (synonym to
satisfied).

Linguistic terms are to be assigned to the bottom level qualities. The fuzzy set
approach to the set of linguistic terms provides a much better representation of these
vague terms. So, for each pair <quality characteristic, linguistic term> its own
membership function should be defined, which maps the linguistic term-related sub-
domain of this characteristic to appropriate fuzzy set. The domains of quality
characteristics can be discrete as well as continuous. The membership functions should
be defined in such a way that for the quality characteristic under consideration the
subdomain of its values, which is related to this same linguistic term, should be
mapped to the same fuzzy set or, in other words, the interpretation of linguistic terms
for any quality characteristic should not depend on a particular view. It means that the
membership function should unify the understandings of linguistic terms.

We should specify service quality requirements at least from service provider‘s
and designer‘s viewpoints. Any viewpoint �k � �, where � is a set of weighted
linguistic variables referred to as viewpoints to service quality:

� = {(�k, ��(�k)) | ��:�� Ltr, 1� k �s}. (1)

A perspective �i � � (e.g., net infrastructure, web service, application, etc.) defines a
subset of quality characteristics, which are observed from viewpoint �i, and

� = {(�i, ��(�i)) | ��:�� Ltr, 1� i �m}. (2)

As pointed out in [55], “this set of quality attributes does not characterize only the
service but any entity used in the path between the service and its client”.

Let any viewpoint is associated with a matrix:

�� � �

��	�
�
 ��	�

�

� �

��	�
�
 ��	�

�

�	 (3)

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems 35

where
�i,j

k = (�i , �j), �i � �, �j � 	, 1� k � s, 1� i � n, 1� j � m, k � N� , n � N� , m � N	 ,
(e. g., “the network should be highly reliable”, “the web service should be highly
available”, “the executable application should be perfectly recoverable”).

A finite set of linguistic variables

={(�i, �X(�i))| �X:X� Ltr, 1�i�N
, N
��} (4)

is called the service quality characteristics. We can define a labelled equilibrium
relation on that set

�����
�

�
�

�����	 ���	 ���� !
" ���	 ���	 #$%&#�'�

��� !
" () * +,	-.	 ���	 ��� �) /)	

�0���� 1 �0���� 2 3����

�45	46�
2 -	 #$%&# � �7	8	9	7 9	9 8::

. (5)

;
<=>?

�@-	@A� is an equilibrium constant, which means that a sum of the lengths of
subintervals �	(�1) and �	(�2) cannot exceed the length defined by this constant, which,
in turn, cannot exceed the length of the interval [0,1]. The label of this relation tells us
how, if it is necessary, the lengths of subintervals �	(�1) and �	(�2) should be changed
in order to preserve the equilibrium defined by Ceqlb.

Analogously, total equilibrium relations �
eqlb on the set and ��k

eqlb on the each
set �k can be defined.

Let
’=<
,<
, F«> be a ranked set on X, where <
 is a partial order relation, and
F« is a ranking function. For each element �i,j

k of the matrix �k we define a fuzzy AND
tree of the service quality characteristics:

Tand
(�i,jk) = <
’, �i,j

k , r(�i,j) >, (6)

where 1� k � s, 1� i � n, 1� j � m). The value of a linguistic variable �i,j
k describes the

�j quality characteristic of service from the perspective �i of the viewpoint �k (Figure 2
gives an example). Using the fuzzy implication relation r(�i,j) between source nodes t1, t2,
…, tn and target node t the satisfiability (or deniability) of the property can be
propagated across the whole tree (Figure 3, step 2).

Figure 2. Two viewpoints, one perspective and its quality attributes

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems36

The columns of the matrix are vectors, which for each quality characteristic give
the evaluations from each perspective defined for the viewpoint BCD� Using the total
equilibrium relations on each set �k� these quality characteristics can be balanced (i. e.,
the conflicts can be resolved) and, using relations� r(�i,j), the obtained values can be
propagated in a backward manner to the leaf nodes in each tree (Figure 3, step 4). The
unions of these balanced trees are the final service quality characteristics observed from
the viewpoints�B-, … ,�BED��

�

�
Figure 3. Conflict resolution and propagation of values in the fuzzy AND trees of service quality
characteristics

In order to evaluate the whole service quality, the values of� B-, … ,� BE� are
calculated considering the unions of trees as child nodes of the nodes B-, … ,� BED� Using
the relation� �

eqlb� the conflicts between the values of the set�� elements can be resolved.
Finally, the variable BF� with the greatest weight is to be chosen and the missing� sub-
trees (i. e., missing quality characteristics) from the trees associated with the other
viewpoints are to be appended to the tree associated with this variable BFD� The whole
service quality characteristic can be propagated in the backward manner to leaf nodes,
if the values of service quality characteristics are required. A linguistic approximation
of fuzzy values of all these variables can be done.

This approach is not adjusted to some particular service-oriented software
development methodology. It can be included to all SoRE processes. The underlying
philosophy was taken from the goal-oriented modelling and i* methodology [45, 46,
47]. As i* techniques cannot be directly applied to evaluate the quality goals, we
modified these techniques by using fuzzy set theory and fuzzy logic, and by adding the
equilibrium relations to enable conflict resolution between stakeholders’ quality
requirements.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems 37

5. Conclusions

Service-oriented systems engineering in-the-small can be considered as an integral part
software engineering. Therefore, the specifics of service-oriented systems can play a
role of supporting evidences that software engineering as a discipline continuously
matures, i. e., nowadays it includes more features which have already been approved in
systems of the other engineering branches (such as civil engineering, mechanical
engineering), which have much longer history and experience.

Service-oriented requirements engineering inherits concepts and principles from
earlier paradigms but differs from these paradigms in the manner how the separation of
concerns in software system is done. In addition, it provides two new high-level
abstractions, namely, enterprise business services and business processes. SoRE is
more complex than traditional software requirements engineering, having deal with
new specific problems. Moreover, service-oriented systems are highly uncertain and
this uncertainty can be minimised within an enterprise. However, different service-
oriented system development methodologies consider SoRE issues only in passing, no
one proposes SoRE process model. The early SoRE approaches, methods and
techniques have been derived from the initial phases of traditional software
development methodologies, and the later ones are original, but as a rule not adjusted
to particular SoRE process.

In recent years SoRE gives more attention to such areas as specification of
adaptable services, identification of requirements, which should be specified in SLAs,
and service quality requirements. The view integration and reconciliation methodology,
which is widely accepted in the software and enterprise systems requirement
engineering, can be applied in requirements negotiation activity to agree on acceptable
to all stakeholders’ requirements, as well as to preliminary evaluation of the service
quality characteristics.

Acknowledgments

This work has been supported by the project „Theoretical and Engineering Aspects of
e-Service Technology Development and Application in High-Performance Computing
Platforms“ (No. VP1-3.1-ŠMM-08-K-01-010) funded by the European Social Fund.

References

[1] Rands T. Information technology as a service operation. Journal of Information Technology, 1992, 7(4),
189-201.

[2] Leyland P. F., Watson R., Kavan C. B. Service quality: a measure of information systems effectiveness.
Management Information Systems Quarterly, 1995, 19(2), 173-187.

[3] Watson R. T., Leyland F. P., Kavan C. Measuring information systems service quality: lessons from
two longitudinal case studies. Management Information Systems Quarterly, 1998, 22(1), 61-79.

[4] Niessink F., Vliet H. Towards mature IT services. Software Process – Improvement and Practice, 1998,
4(2), 55-71.

[5] Arsanjani A. Service provider: a meta-domain pattern and its business framework implementation. In:
Proceedings of the Pattern Languages of Programms Conference [PLoP], 15-18 August, Monticello,
Illinois, USA. The Hillside Group, 1999. 1-24.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems38

[6] Nuseibeh B. A., Easterbrook S. M. Requirements engineering: a roadmap. In: Finkelstein A. C. W. (ed.)
Proceedings of the 22nd International Conference on Software Engineering, Future of Software
Engineering Track [ICSE], 4-11 June, Limerick, Ireland. ACM, 2000. 35-46.

[7] Bennett K. Layzell P., Budgen D., Brereton P., Macaulay L., Munro M. Service-based software: the
future for flexible software. In: Proceedings of the 7th Asia-Pacific Software Engineering Conference
[APSEC], 5-8 December, Singapore. IEEE Computer Society, 2000. 214-221.

[8] Bianco P., Kotermanski R., Merson P. Evaluating a Service-Oriented Architecture. Technical Report
CMU/SEI-2007-TR-015, Software Engineering Institute, 2007. 79 p.

[9] van Eck P., Wieringa R. Requirements engineering for service-oriented computing. In: Gordijn J.,
Janssen M. (eds.) Proceedings of the First International e-Services Workshop [ICEC], Pittsburg, USA,
2003. 23-28.

[10] Trienekens J., Bouman J. J., van der Zwan M. Specification of service level agreements: problems,
principles and practices. Software Quality Journal, 2004, 12(1), 43-57.

[11] Zimmermann O., Krogdahl P., Gee C. Elements of Service-Oriented Analysis and Design. An
Interdisciplinary Modeling Approach for SOA Projects. IBM developerWorks, 2004. 18p. [WWW]
https://www.ibm.com/developerworks/webservices/library/ws-soad1/ (accessed 23.04.2014).

[12] Verlaine B., Jureta I., Faulkner S. Towards conceptual foundations of requirements engineering for
services. In: Proceedings of the 5th IEEE International Conference on Research Challenges in
Information Science [RCIS], 19-21 May, Gosier, Guadeloupe, France. IEEE Computer Society, 2011.
1-11.

[13] Flores F., Mora M., Alvarez F., Garza L., Duran H. Towards a systematic service-oriented requirements
engineering process (S-SoRE). In: Quintela Varajão J. E., Cruz-Cunha M. M., Putnik G. D., Trigo A.
(eds.) ENTERprise Information Systems - International Conference [CENTERIS 2010], Part I, CCIS
109, Berlin: Springer-Verlag, 2010. 111-120.

[14] van Lamsweerde A. Requirements engineering in the year 00: a research perspective. In: Ghezzi C.,
Jazayeri M., Wolf A. L. (eds.) Proceedings of the 22nd International Conference on Software
Engineering [ICSE], 4-11 June, Limerick, Ireland. ACM, 2000. 5-19.

[15] Reference Model for Service Oriented Architecture 1.0 OASIS Standard, 12 October 2006. OASIS
Open [WWW] https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf (accessed
23.04.2014).

[16] Reference Architecture Foundation for Service Oriented Architecture, Version 01. OASIS Committee
Specification 01, 04 December 2012. OASIS Open [WWW] http://docs.oasis-open.org/soa-rm/soa-
ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf (accessed 28.07.2014).

[17] Leite J. C. P. Viewpoints analysis: a case study. ACM SIGSOFT Software Engineering Notes, 14 (3),
1989, 111-119.

[18] Sommerville I., Sawyer P. Viewpoints: principles, problems and a practical approach to requirements
engineering. Annals of Software Engineering, 3, 1997, 101-130.

[19] Jackson M. Problem architectures. In: Garlan D. (ed.) Proceedings of First International Workshop on
the Architecture of Software Systems. Technical Report CMU-CS-TR-95-151, Software Engineering
Institute, 1995.

[20] Graham I. Requirements modelling and specification for service oriented architecture. John
Wiley&Sons, 2008. 320 p.

[21] Bianco P., Lewis G. A., Merson P., Simanta S. Architecting Service-Oriented Systems. Technical Note
CMU/SEI-2011-TN-008, Software Engineering Institute, 2011. 36 p.

[22] Capers Jones T. Reusability in programming: a survey of the state of the art. IEEE Transactions on
Software Engineering, 1984, 10(5), 488-494.

[23] Papazoglou M. P., van den Heuvel W.-J. Service-oriented design and development methodology.
International Journal of Web Engineering and Technology, 2(4), 2006, 412-442.

[24] Aiello M., Giorgini P. Applying the Tropos Methodology for Analysing Web Services Requirements
and Reasoning about Qualities of Services. Technical Report DIT-04-034, University of Triento, 2004.
17 p.

[25] Lau D., Mylopoulos J. Designing web services with Tropos. In: Proceedings of the IEEE International
Conference on Web Services [ICWS’04], 6-9 June, San Diego, California, USA, IEEE Computer
Society, 2004. 306-315.

[26] Penserini L., Perini A., Sus A., Mylopoulos J. From stakeholder needs to service requirements. In:
Proceedings of the Service-Oriented Computing: Consequences for Engineering Requirements
[SOCCER'06], 12 September, Minneapolis, Minnesota, USA. IEEE Computer Society, 2006. 1-10.

[27] Lapouchnian A., Yu Y., Mylopoulos J. Requirements-driven design and configuration management of
business processes. In: Alonso G., Dadam P., Rosemann M. (eds.) Proceedings of the 5th International
Conference On Business Process Management [BPM'07], LNCS 4714, Berlin: Springer-Verlag, 2007.
246-261.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems 39

[28] Frankova G. Engineering business processes with service level agreements: from early requirements
towards business processes. LAP Lambert Academic Publishing, 2010. 176 p.

[29] Rolland C., Kirsch-Pinheiro M., Souveyet C. An intentional approach to service engineering. Journal
IEEE Transactions on Services Computing, 3(4), 2010, 292-305.

[30] Norta A., Grefen P., Narendra N. C.. A reference architecture for managing dynamic inter-
organizational business processes. Data & Knowledge Engineering, 2014, 91, 52–89.

[31] Andrikopoulos V. (ed.) Separate Design Knowledge Models for Software Engineering and Service
Based Computing. S-Cube Technical Report CD-JRA-1.1.2, 2009. 66p. [WWW] http://www.s-cube-
network.eu/results/deliverables/wp-jra-1.1/CD-JRA-1.1.2_Separate_design_knowledge_models_for_
software_engineering_and_service_based_computing.pdf (accessed 28.07.2014).

[32] Bianco P., Lewis G. A., Merson P. Service Level Agreements in Service-Oriented Architecture
Environments. Technical Note CMU/SEI-2008-TN-021, Software Engineering Institute, 2008, 40 p.

[33] Lane S., Richardson I. Process models for service based applications: a systematic literature review.
Journal Information & Software Technology, 53(5), 2011, 424-439.

[34] Frankova G., Malfatti D., Aiello M. Semantics and extensions of WS-agreement. Journal of Software,
1(1), 2006, 23-31.

[35] Frankova G., Yautsiukhin A., Seguran M. From Early Requirements to Business Processes with Service
Level Agreements. Technical Report DIT-07-037, University of Triento, 2007. 24 p.

[36] Frankova G., Seguran M., Gilcher F., Trabelsi S., Dorflinger J., Aiello M. Deriving business processes
with service level agreements from early requirements. The Journal of Systems and Software, 84, 2011,
1351-1363.

[37] Pistore M., Kazhamiakin R., Bucchiarone A. (eds.) Integration Framework Baseline. S-Cube Technical
Report CD-IA-3.1.1, 2009. 43p. [WWW] http://www.s-cube-network.eu/results/deliverables/wp-ia-
3.1/CD-IA-3.1.1_Integration%20Framework%20Baseline.pdf (accessed 28.07.2014).

[38] Jureta I., Faulkner S., Thiran P. Dynamic requirements specification for adaptable and open service-
oriented systems. In: Kramer B. J., Lin K.-J., Narasimhan P. (eds.) Service-Oriented Computing –
ICSOC 2007, LNCS 4749, Berlin: Springer-Verlag, 2007. 270-282.

[39] Enterprise Service Oriented Architecture Using the OMG SoaML Standard. A Model Driven Solutions,
Inc., 2009. 21 p. [WWW] http://www.omg.org/news/whitepapers/EnterpriseSoaML.pdf pdf (accessed
28.07.2014).

[40] Enterprise SOA Development Handbook 1.1. End-to-end Guide for Enterprise SOA Development. SAP
AG, 2008, 85 p. [WWW] http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/40db4735-
02f9-2a10-b198-a888a056bb67?QuickLink=index&overridelayout=true&32220844681654 (accessed
28.07.2014).

[41] Heidasch R. Get ready for the next generation of SAP business applications based on the Enterprise
Service-Oriented Architecture (Enterprise SOA). SAP Professional Journal, July 2007, 103-128.

[42] Lupeikiene A., Miliauskaite J., Caplinskas A. A model of view-based enterprise business service quality
evaluation framework. Informatica, 24(4), 2013, 543-560.

[43] Lupeikiene A., Miliauskaite J., Caplinskas A. A view-based approach to quality of service modelling in
service-oriented enterprise systems. In: Kirikova M., Grabis J. (eds.) Proceedings of the 2nd
International Business and Systems Conference [BSC 2013], 5 November, Riga, Latvia. Riga Technical
University, 2013. 7-19.

[44] IEEE Std 1061-1998 – IEEE Standard for a Software Quality Metrics Methodology. Institute of
Electrical and Electronics Engineers, 2005.

[45] Fuxman A., Liu L., Mylopoulos J., Roveri M., Traverso P. Specifying and analyzing early requirements
in Tropos. Requirements Engineering Journal, 9(2), 2004. 132-150

[46] Giorgini P., Mylopoulous J., Sebastiani R. Goal-oriented requirements analysis and reasoning in the
Tropos methodology. Engineering Applications of Artificial Intelligence, 18(2), 2005, 159-171.

[47] Castro J., Kolp M., Mylopoulos J. Towards requirements-driven software development methodology:
the Tropos project. Information Systems, 2002, 27(6), 365-389.

A. Lupeikiene and A. Caplinskas / Requirements Engineering for Service-Oriented Enterprise Systems40

