
Cost-Based Data-Partitioning for
Intra-Query Parallelism

Yanchen LIU a,b, Masood MORTAZAVI a,1, Fang CAO a, Mengmeng CHEN a

and Guangyu SHI a

aHuawei Innovation Center, Santa Clara, CA, USA
E-mail: {yanchen.liu, masood.mortazavi, fang.cao, mengmeng.chen,

shiguangyu}@huawei.com
bCity College, CUNY, New York, NY, USA

Abstract. Contemporary DBMS systems already use data-partitioning
and data-flow analysis for intra-query parallelism. We study the problem
of identifying data-partitioning targets. To rank candidates, we propose
a simple cost model that relies on plan structure, operator cost and
selectivity for a given base table. We evaluate this model in various
optimization schemes and observe how it affects degrees of parallelism
and query execution latencies across all TPC-H queries: When compared
with the existing näıve model which partitions the largest physical table
in the query, our approach identifies significantly better partitioning
targets thus resulting in sinificantly higher degree of resource utilization
and intra-query parallelism for most queries while having little impact
on the remaining queries in the TPC-H benchmark.

Keywords. data-partitioning, intra-query parallelism, multi-core systems,
optimization

Introduction

Peforming queries on large data-sets is the norm in many applications [1,2,3]. In
analytic query processing [4], the relative advantage of column stores has been
well-established [5,6,7]. Column-oriented databases process only the fraction of
data relevant to the query; they offer better possibilities to take advantage of com-
pression techniques; they are highly suitable for super-scalar CPU architectures
[7,8,9,10].

Chips have integrated increasingly larger number of cores [11], providing
an opportunity for innovations in parallel processing of queries. Databases lend
themselves to various kinds of parallelism: I/O, inter-query(inter-operation), and
intra-query(intra-operation) [12]. Data decomposition is a fundamental technique
in parallel computing [13]. Partitioning techniques have been used to provide
I/O parallelism through load-balancing across multiple units [14,15]. NoSQL
databases take full advantage of this method of I/O parallelism [16] as do tradi-

1Corresponding author: Masood Mortazavi, masood.mortazavi@huawei.com

Databases and Information Systems VIII
H.-M. Haav et al. (Eds.)
© 2014 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-458-9-233

233



tional and NewSQL databases that rely on “shared-nothing” system architectures
[17].

Intra-query parallelism in multi-core environments has always posed schedul-
ing and system design challenges. Because the exhaustive search of all possible
schedules is prohibitive even for relatively simple queries, scheduling systems rely
on some degree of heuristics [18]. Task to thread assignment requires data par-
titioning, thread and memory management models [19]. In distributed parallel
query processing we need to resolve an even larger set of problems. For exam-
ple, Scope extends a transformation-based optimizer for distributed systems [20].
It uses different types of data exchange operators to generate parallel execution
plans and introduces data exchange operators and rules to generate optimized
distributed query plans. The size of the dataset can significantly affect the ef-
ficiency of such optimizers. In [21], an Xchange family of operators introduce
intra-operator parallelism. This work also discusses strategies and transformation
rules to rewrite a given non-parallel query execution tree into its optimal parallel
counterpart in multi-core environments. Parallel task scheduling, except for the
most trivial cases, has been proven to be an NP-hard problem [22,23].

We propose an approach to improve intra-query parallelism, which fits well
within the tradition of parallel processing using the data decomposition model
[13]. When deciding which base table to partition, our heuristics rely on the
structure of query plans, the effective selectivity of operators, the cost of each
such operator given the size of its input, and the size of base tables used in the
query. We develop three separate data-partitioning optimizers and investigate the
effect of each across a set of standard queries. It is also verifed that our apporach
outperformes the “näıve” partitioning method which always partitions the largest
table.

The remainder of this paper is organized as follows: The system model is
described in section 1. In section 2, we describe our approach to cost-based data-
partitioning optimization. In section 3, we introduce the scope of our evaluation
and describe the metric we have used to identify the best approach. We also
summarize our implementation and testing approach and discuss our experimental
results. We conclude this paper with secion 4, where we also review some future
directions suggested by our work.

1. System Model

1.1. Problem Statement

We use (base) table, binary association table or BAT interchangeably to refer to
the objects of a query plan. The objects include fields or columns and are stored in
a database. A binary relational algebra (in this paper, also called binary algebra) is
a set of instructions (or operators) that operate on binary relationships, or BATs,
and produce other BATs. The query evaluation engine sees a query plan as a set
of instructions, starting with some input BATs and some query parameters and
ending in some resulting relation. It is possible to create semantically equivalent
plans for a given query. An optimizer selects an optimal plan from the set of
equivalent plans. It is possible to chain a set of optimizers in an optimizer pipeline.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism234



�����
�����	

���
���
��������

���������������

��������������
������������

��������
���������	��

������
�����
����

 ���	�


���!���

Figure 1. Simplified diagram of the archi-
tectural modules

	� ��

Figure 2. a) Cost accumulation chain in a query
plan; b) The impact of data-partitioning plan

Data-flow (or task-dependency) analysis provides a platform for intra-query
parallelism. An input can be data-partitioned into pieces before it is fed to a chain
of instructions. A bounded sub-plan needs to be replicated in order to perform
equivalent operations on all partitions. Data-partitioning allows the operation
(or chain of operations) to be performed on parallel threads. As query execution
progresses, these parallel threads must produce results towards a common output,
and the remaining tasks will potentially be executed with fewer threads.

1.2. System Model

Figure 1 shows the basic architectural modules involved in query formulation and
cost-based, data-partitioning optimization. In Figure 2, operators are shown as
circles, base tables are shown as squares and data flows are given as arrows. Leaf
operators act on tables (or columns) and produce intermediate results that are
used by operators higher in the plan.

Using our cost model, we rank tables involved in the query. Those with the
highest processing costs are ranked highest as potential partitioning targets. Once
ranking is complete, we can split one or more of the “costliest” tables. (See Figure
2 a) for a cost accumulation chain, and see Figure 2 b) for the impact of a split on
the plan structure.) With a “split” plan, we have a decomposed task dependency
graph that allows for parallel processing [13].

There always exists a trade-off between the sophistication of the heuristic
cost models vs. their degree of robustness on the one hand and the length of time
spent in computing these models on the other. In the current model, we have
elided issues related to overhead costs such as start-up costs, skew costs, resource
contention costs and reassembly costs [12]. The start-up costs are generally useful
to consider when there is a real choice between parallelism and single-resource
execution. For large data sets, the start-up overheads are usually justified. The raw
resource contention costs, non-uniform access to resources, and how to avoid them
are well beyond the scope of this paper. Here, we also ignore issues related to skew
costs. We assume processing occurs on arrays with relatively even distributions.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism 235



Nevertheless, there will always be some amount of skew when dealing with real,
as opposed to experimentally generated data. Our argument regarding assembly
costs is similar to our analysis of start-up costs. They are worth paying when
dealing with large data-sets. Our cost accumulation model provides a heuristic for
determining a potential critical path in the task-dependency graph [13] in a query
plan. By utilizing our data-partitioning optimizer, it is also possible to see how
partitioning multiple base tables can affect the performance.

2. Cost-based Data-Partitioning

2.1. Cost Parameters

Our model allows for several factors in cost calculation: Numi represents the
number of records in the ith table. Opj represents the relative physical cost of
the jth operator in a “cost accumulation” chain of operators. (The operators in
a given cost-accumulation chain are data-dependent.) Sj,k represents selectivity
after the kth operator in the operator chain leading to Opj .

Note that for accuracy, one can maintain and update derived values for Opj
and Sj,k based on actual execution of queries on large data-sets. We expect to
do more work in this area in the future. Here, we focus on how cost accumulates
in the plan and how this accumulated cost can be used to make parallelization
decisions.

2.2. Cost Accumulation

We use the following formula to calculate accumulated cost along an operator
chain:

costi = Numi

N∑

j=1

(Opj

j∏

k=1

Sj,k−1) (1)

Here, costi is the accumulated cost of the ith table in a relational database—it
is calculated for a particular plan—and is “accumulated” over a chain of opera-
tors in the plan. Variable N is the number of operators in the chain of operators
involving the ith table, all the way to the last-considered operation which will
benefit from data-partitioning parallelism. As noted earlier, variable Opj repre-
sents the operator “unit cost” per record. We do not put emphasis on modeling
this operator-specific cost. In our implementation environment, we can make sim-
plifying assumptions regarding relative costs of operators because they all act on
binary association tables. The product in Eq. (1) is the accumulated and effective
selectivity up to the operator j. Sj,0 is assumed to be 1 for all j.

Our algorithms accumulate cost up to an operator. Usually, this “destination”
operator is some join operator where the biggest BATs in the query meet. Figure
2 shows an example for a cost accumulation chain. There, we are accumulating
the cost of operations on Table2 as these costs add up all the way to the top of
the operator tree for the query in question.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism236



Once the accumulated cost for a table is calculated to be larger than others,
this table will be partitioned so that all related executions in the chain of operators
can run in parallel on the available compute cores. For example, as indicated in the
plan in Figure 2, if cost for Table2 is larger than the one for Table3 before JOIN1,
and cost for Table2 is larger than the one for Table1 before JOIN2, a cost-
based data partitioning optimizer would partition Table2 before SCAN2. It is
also possible to use the available processing resources to data-partition additional
tables. (We discuss this further in Section 2.4.)

Figure 2 also shows the impact of data-partitioning Table2 on the query plan.
In this case, Table2 is partitioned into n pieces. The number of partitions n is
usually determined by the the number of cores or HW threads—or whatever sym-
metric cores or symmetric resources available in the system. In the plan repre-
sented in Figure 2 b), SCAN2, JOIN1 and JOIN2 can execute in parallel. At
the end, the sub-results produced after JOIN2 operations need to be aggregated
together.

Because our optimizers seek to partition the table which represents the great-
est cost in the overall plan, the resulting parallel execution will yield less idleness
among resources and faster execution times for the query.

2.3. Cost Ranking

Multiple data-partitioning candidates can exist, and one needs to discriminate
among these candidates according to some ranking procedure.

Our candidate-tuple ranking model is given by Eq. (2).

(2)

cost(< T1,i >, ..., < Tn,i >) < cost(< T1,j >, ..., < Tn,j >)

⇐⇒
n∑

k=1

(cost(< Tk,i >)/αk) <
n∑

k=1

(cost(< Tk,j >)/αk)

Here, < Tk,i > is the kth member of the candidate tuple i whose ranking
needs to be compared with another candidate tuple and α1, ..., αn represents the
data-partitioning “distribution” policy:

(3)P ≡ < α1, ..., αn >

Note that, in general, we take αi/αj to the ratio of the number of partitions
in Ti over the number of partitions in Tj . We should emphasize here that our
cost model in Eq. (1) only helps identify candidate tuples by evaluating their
processing costs. We still need a partitioning policy such as P to determine the
number of partitions for each member of the candidate tuple.

The ranking pattern in Eq. (2) emphasizes additive cost to discover which
tuple has the largest effective cost even after each member of the tuple has been
partitioned according to policy P. Given the number of cores in our test platform,
we have only considered two-member tuples with a data-partitioning “distribu-
tion” policy of < 30, 2 >. More generally, data-partitioning distribution policy P
can be determined dynamically and per-query, and it can be adaptively adjusted.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism 237



2.4. Data-Partitioning Strategies

We explored and compared three separate data-partitioning candidate selection
strategies and a näıve strategy.

2.4.1. Näıve (Default)

The Default or Näıve (but still powerful) strategy selects the largest table as the
target for data-partitioning. The näıve approach assumes that any other table on
a longer operator chain will have a reduced size after each predicate-constraint
has been satisfied. To show that this is not an entirely unreasonable assumption,
consider the case where selectivity is uniformly distributed to be 50% across all
“predicate” operators. The longer operator chain even if it is long can only amplify
the cost of a table by at most ×2 (= 1 + 1/2 + 1/4 + ...), assuming individual
operator costs remain constant. So, whenever the second largest table is less than
1/2 the size of the largest table, one may wonder whether taking plan structure
and other large tables into account would make any difference.

2.4.2. First-Join (1st-Join)

There can be two relatively large tables, Tj and Tk, which must be joined prior
to any joins with the largest table Tl. Data-partitioning the largest table will lead
to sub-optimal distribution of cores to pieces because there will be fewer cores
available to do the combined, earlier work on Tj and Tk. To solve this problem,
the First-Join strategy selects a data-partitioning candidate that is both large
enough and that feeds the first join operation. The relative success of this strategy
depends on the proper selection of the threshold for “large enough”.

2.4.3. 1-Table Cost-Based (1-TCB)

The 1-Table Cost-Based data-partitioning strategy selects a single candidate for
data-partitioning. It uses our heuristic cost model (Eq. (1)). In this case, the
data-partitioning optimizer walks through all instructions and accumulates the
cost related to each table based on whether it or any of its dependants appear in
that instruction. A ranking comparison (Eq. (2), with tuple of order 1) can now
produce an ordering of tables with their relative costs.

2.4.4. 2-Table Cost-Based (2-TCB)

Using our heuristic cost model (see Eq. (1)), 2-Table Cost-Based strategy selects
a tuple of two candidates for data-partitioning. Algorithm given in Figure 3 de-
scribes how the candidate list of 2-TCB tuples is generated. Eq. (2) is then used
to discriminate among these generated tuples and select the two tables that need
to be partitioned.

2.5. Core Algorithm for 2-Table Cost-Based Candidate Selection

The core algorithm for 2-TCB (see Figure 3) consists of four parts:

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism238



����������	
����� ��������

��������������� InVari�������������������� InVari��������������������

����������
����������

�����������
���������������
����������

������������
���������������
����������

�������������
���������������
����������

���������������� ����
�����

���������������� ����
�����

���

��

��	
����	��
��

���

�� �� ��

���

��������������� ���������������

���

Figure 3. Identifying candidate list for data-partitioning

• Selecting potential candidates. Here, physical tables that will be bound to

variables in the relational binary algebra are being selected as seeds for

cost accumulation chains.

• Maintaining variable dependencies. Here, variable dependencies are main-

tained by ensuring that the “out” variables of an instruction are added

to variable set depending on a table as long as the “in” variables of that

instruction are also in the same variable set. (Dependent variable sets are

constructed per BAT.) It is this part of the algorithm that incorporates the

essential structural characteristics of the plan into the data-partitioning

optimizer.

• Detecting joins. When the operator chain arrives at a join operation, we

add the table pair as a candidate tuple to the list. The notation < T >

indicates not only the table but an object including its cost value and

dependent variable set. The cost value is later used in ranking. (See Eq

(2).)

• Accumulating costs. Before moving to evaluate the next relational binary

algebra instruction, we add the cost of the current operation to the cost of

the current candidate pair. We have elided a part of the algorithm which

re-initializes the “current” candidate tables after reaching a join operator.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism 239



Results in Section 3 are reported for a specialization of this algorithm: Once
the first join is detected by the current top-most tuple, we let the exploration for
candidates stop. For small plans—most of the type we were dealing with—this
policy for terminating the exploration worked well.

3. Evaluation

The heuristics used in modeling costs often leads to lop-sided improvements —
some queries may improve but others degrade significantly. In order to reduce the
bias in our optimizations, we analyzed all optimizers we implemented on all 22
TPC-H queries. We were interested in variations of 10% or more.

To explore the efficiency of our proposed algorithms and heuristic cost model,
we implemented and compared our strategies in MonetDB, an open-source,
column-oriented database management systems [6,24]. We coded our partitioning
strategies as MonetDB optimizers. Our data-partitioning optimizers are placed in
the optimizer pipeline right before MonetDB’s “mitosis” optimizer which gener-
ates the parallel instruction subgraphs for each piece of the partitioned table. We
modified MonetDB’s February 2013 SP1 code to implement and test the strategies
reported here.

3.1. Testing

While we have studied all TPC-H queries and have reported the results below,
we have paid some extra attention to Q3, Q5, Q8, Q10, and Q18. To test the
correctness and performance of our implementation, we used standard TPC-H
benchmark at scale factors SF100 and SF200. This implies approximately 100GB
and 200GB of data respectively.

3.1.1. Environment

Our laboratory environment consists of both physical machines and clusters of
Linux containers (also known as LXCs [25]). We have built this laboratory en-
vironment for both single-node and distributed query processing experimenta-
tion and analysis. Most of the experiments related to this paper were single-node
experiments executed within a Linux container.

3.1.2. Resources

Physical compute resources, within which we run our experimental Linux con-
tainers have the following configuration: Ubuntu Linux 3.5.0-17-generic x86 64,
188 GB of RAM, 2x Intel(R) Xeon(R) CPU, E5-2680 @ 2.70GHz, 32 effective
cores @ 1.2GHz, cache size: 20480 KB.

3.1.3. Measurement Tools

We used MonetDB’s Tomograph [26] and Stethoscope [27], as well as standard
Unix tools to view and measure parallelism and overall execution times. Both
Stethoscope and Tomograph provide per-operation execution times—with Stetho-

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism240



Table 1. The effect of data-partitioning strategy on TPC-H query latency for SF100 (about
100GB of data).

TPC-H Default 1st-Join 1-TCB 2-TCB

Q1 21.01 20.52 21.04 20.44

Q2 0.63 0.78 0.59 0.61

Q3 18.6 13.29 13.21 13.31

Q4 6.35 6.74 6.12 7.18

Q5 7.16 4.43 4.43 4.36

Q6 2.5 2.51 2.55 2.6

Q7 2.87 2.72 4.01 2.75

Q8 12.36 4.92 4.93 5.01

Q9 38.51 39.35 40.98 37.21

Q10 10.9 19.49 10.48 10.38

Q11 3.78 3.04 2.8 2.87

TPC-H Default 1st-Join 1-TCB 2-TCB

Q12 3.42 3.42 3.36 3.45

Q13 80.85 78.3 78.59 81.31

Q14 3.54 3.54 3.41 3.55

Q15 9.29 9.1 9.63 9.63

Q16 12.43 12.21 11.23 11.97

Q17 3 3.01 2.91 2.96

Q18 24.26 38.59 28.62 23.67

Q19 5.4 5.17 5.08 5.17

Q20 4.86 4.85 4.37 4.65

Q21 21.96 20.26 19.31 22.32

Q22 10.05 9.67 9.6 9.75

Q3 Q5 Q8 Q10 Q18
0

20

40

60

80

100

120

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

 

 

None

Default (Naive)

First−Join

1−Table CBPP

Figure 4. Latency variation with data-par-
titioning strategies—representative TPC-H
queries

Q3 Q5 Q8 Q10 Q18
0

20

40

60

80

100

P
a

ra
lle

lis
m

 D
e

g
re

e
(%

)

 

 

None

Default(naive)

First−Join

1−Table CBPP

Figure 5. Parallelism variation with data-par-
titioning strategies—representative TPC-H
queries

scope providing even more fine-grained details. We used these more fine-grained
reports as well as Tomograph’s graphic reports to be very useful tools in suggest-
ing optimization strategies.

3.2. Results

Table 1 presents an overview of the effect of various data-partitioning strategies on
TPC-H query latencies. While each of the comparisons in Table 1 can be studied
separately, we have highlighted some of the results which will guide the reader
through some further analysis we provide below. Figure 4 and Figure 5 show the
latency and the degree of parallelism obtained by each of the strategies when
applied to TPC-H queries Q3, Q5, Q8, Q10 and Q18. The degree of parallelism
is computed by summing the duration of time each HW thread has been doing
useful work and dividing it by the total time of query execution multipled by the
number of HW threads available and involved in the query execution.

3.3. Discussion

First, it is worth noting that while adding our data-partitioning optimizer, we are
still relying on MonetDB’s data flow analysis, its “mitosis” optimizer which pro-
duces “replica” sub-plans for patitions, and its thread-to-core assignment system.
Given this environment, our data-partitioning optimizers manipulate the effective
set of “replica” tasks that sub-plan “mitosis” creates and that dataflow analysis
assigns to cores as independent task graphs.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism 241



�������

���	�

��
�

��
� �����

�����

��
�

��
�

��
�
��
��
���

�����
��

���	��
��

�����
��

���	������
��������

����	��
������

Figure 6. Summary plan for TPC-H Q5

�������

����
�����

	��


����	

���

���

��� �������	������	���

����
	����

�������


�����	


����	

����
	����

������	�
���
	�����
������

Figure 7. Summary plan for TPC-H Q10

With default (or näıve) data partitioning strategy (see 2.4.1) , which chooses
the largest table for partitioning, no consideration is given to the structure of the
plan and the relative amount of work when there are other relatively large tables.
The näıve strategy only guarantees that those operations depending on data from
the largest table will be executed in parallel. For those cases where some tasks also
depend on other large tables, system resources remain idle and cannot be fully
utilized. Given the low levels of parallelism obtained with the näıve partitioning
optimizer for a large class of queries, we explored and developed the remaining
three optimizers (described in 2.4.2, 2.4.3 and 2.4.4).

For example, table “lineitem” is the largest among the tables referred in the
TPC-H Q5. As shown in Figure 6, since the default strategy data-partitions the
“lineitem” table, the “select” operation on “orders” table and “join” operation
on “customer” cannot be executed in parallel. On the other hand, since cost
calculation indicates “orders” table consumes more resource than “lineitem” table
does (before the join operation with “lineitem”), our algorithm suggests “orders”
table for data-partitioning. A similar analysis can be done for other queries where
we see a relatively large difference—queries Q3, Q5, Q10 and Q8 being most
notable.

Our 1st-Join data-partitioning strategy (see 2.4.2) always targets the first
table it encounters in a “join” operation as long as the table’s size is above our
heuristically selected threshold. The 1st-Join strategy proves effective for both Q5
and Q8 (see Table 1). Although we don’t explicitly calculate the cost in this case,
the “estimated” cost here can be said to be highest if the first table to participate
in a “join” is above a certain size. However, this 1st-Join estimation of cost proves
to be too simplistic. The strategy degrades latencies in Q10 and Q18 even as it
improves them significantly in Q5 and Q8. (See Table 1 for details.)

In our initial analysis of 1st-Join results, we noticed that, in contrast to the
case of TPC-H Q5, when the majority of physical tasks are based on the first-
joined table (in the case of Q5, the “orders” table), the 1st-Join data-partitioning
strategy no longer produces sufficient gains when the largest table suffers more
processing in some other queries. To elaborate on this concept, we considered the
case where 1st-Join data-partitioning was applied to Q10, where it degraded the

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism242



performance. As shown in the Figure 7, “orders” table is the first base table to
suffer a “join” operation in TPC-H Q10 plan. According to the rules of 1st-Join
partitioning strategy, “orders” passes the threshold criteria and becomes a target
for data-partition. However, the “select” operation on the “lineitem” table costs
more than the operations on “orders” table before the first “join” operation. In
this case, choosing “orders” table as the partitioned table will lead to reduced
parallelism. (It is worth noting that MonetDB’s Tomograph [26] was extremely
useful in this kind of analysis and in clearly visualizing these trade-offs, e.g. , the
relative cost of “select” operation on “lineitem” vs. all operations on “orders”
prior to their “join” operation.) Based on this analaysis, we added a cost-based
data-partitioning strategy. As can be observed in Table 1, in contrast to 1st-
Join, cost-based data-partitioning works well on Q10 and Q18 queries. Cost-based
data-partitioning also does well with respect to those queries where 1st-Join data-
partitioning shows significant latency improvements, i.e. Q5 and Q8. As we made
incremental improvements in optimization techniques, we observed that in the
majority of the queries, either 1−TCB or 2−TCB offered the best strategy. Only
in Q6, were neither of these strategies the best, with a worst case degredation of
4%.

4. Conclusions

We have presented four cost-based data-partitioning strategies for improving
intra-query parallelism in a column-oriented database running on multi-core pro-
cessors. Since optimal parallel scheduling on symmetric resources is NP-hard [22],
we have relied on a heuristic model to converge on a data-partitioning target.
Cost heuristics tend to have uneven impact on query performance, i.e. improving
latency for some queries while degrading it for others. As a simple guard against
this bias, we found TPC-H benchmark can be useful in evaluating and comparing
our data-partitioning optimizers.

We implemented three separate data-partitioning candidate selection algo-
rithms and compared them with the näıve algorithm which targets the largest
table for data partitioning. In contrast to the näıve selection approach, our alter-
native strategies account for plan structure, selectivity and specific operator cost.
The results (even when obtained with default unit values for per-operator cost
and selectivity) show that significant room for improvement exists over the näıve
models.

In future work, we expect to introduce specific per operator (or at least, per
operator class) cost and a dynamic system for updating selectivity statistics. We
plan to implement our multi-table scheduling heuristics over larger and varying
sets of cores, input data, and parallelism distribution policies. We will also inves-
tigate the application of adaptive scheduling and asymmetric resource configura-
tions to optimization strategies for parallel query processing.

References

[1] Melnik S., et al. Dremel: interactive analysis of web-scale datasets. Commun. ACM, 2011,
54(6), 114-123.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism 243



[2] Lamb A., et al. The vertica analytic database: C-store 7 years later. Proc. VLDB Endow.,
2012, 5(12), 1790-1801.

[3] Stonebraker M. Scientific Data Bases at Scale and SciDB. CERN Computing Colloquium,
May 2013.

[4] Chaudhuri S., Dayal U. An overview of data warehousing and OLAP technology. SIGMOD
Rec., 1997, 26(1), 65-74.

[5] Abadi D. J., Boncz P. A., Harizopoulos S. Column-oriented database systems. Proc. VLDB
Endow., 2009, 2(2), 1664-1665.

[6] Idreos S., et al. MonetDB: two decades of research in column-oriented database architec-
tures. IEEE Data Engineering Bulletin, 2012, 35(1), 40-45.

[7] Stonebraker M., et al. C-store: a column-oriented DBMS. Proc. VLDB Endow., 2005,
553-564.

[8] Abadi D. J. Query execution in column-oriented database systems [dissertation]. MIT,
2008.

[9] Boncz P. A., Zukowski M., Nes N. J. MonetDB/X100: hyper-pipelining query execution.
Proceedings of International conference on verly large data bases (VLDB) 2005, Very
Large Data Base Endowment, 2005.

[10] Zukowski M. Balancing vectorized query execution with bandwidth-optimized storage [dis-
sertation]. Universiteit van Amsterdam, 2009.

[11] Intel Teraflops Research Chip, http://www.intel.com/content/www/us/en/research/

intel-labs-teraflops-research-chip.html.
[12] Silberschatz A., Korth H., Sudarshan S. Database Systems Concepts, McGraw-Hill, Inc.,

2006.
[13] Grama A., et al. Introduction to parallel computing: design and analysis of algorithms.

Pearson Education Limited, Essex, 2003.
[14] Bischof S., Schickinger T., Steger A. Load balancing using bisectors - A tight average-case

analysis. ESA, Springer, 1999
[15] DeWitt D., Gray J. Parallel database systems: the future of high performance database

systems. Commun. ACM, 1992, 35(6), 85-98.
[16] Silberstein A., et al. PNUTS in Flight: Web-Scale Data Serving at Yahoo. IEEE Internet

Computing, 2012, 16(1), 13-23.
[17] Pavlo A., et al. A comparison of approaches to large-scale data analysis. Proceedings of

the 2009 ACM SIGMOD International Conference on Management of data, New York,
NY, USA, 2009.

[18] Krikellas K., Cintra M., Viglas S. Scheduling threads for intra-query parallelism on mul-
ticore processors. EDBT, University of Edinburgh, Edinburgh, Scotland, 2010.

[19] Viglas S. A comparative study of implementation techniques for query processing in mul-
ticore systems. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1),
3-15.

[20] Zhou J., Larson P. A., Chaiken R. Incorporating partitioning and parallel plans into the
SCOPE optimizer. Proceedings of ICDE Conference, 2010. 1060-1071.

[21] Anikiej K. Multi-core parallelization of vectorized queries [dissertation]. University of War-
saw and VU University of Amsterdam, 2010.

[22] Du J., Leung J. Y., Complexity of scheduling parallel task systems. SIAM J. Discret.
Math., 1989, 2(4), 473-487.

[23] Ganguly S., Hasan W., Krishnamurthy R. Query optimization for parallel execution. Pro-
ceedings of the 1992 ACM SIGMOD international conference on Management of data,
San Diego, California, USA, 1992. 9-18.

[24] MonetDB, http://www.monetdb.org
[25] http://lxc.sourceforge.net/

[26] Gawade M., Kersten M. Tomograph: highlighting query parallelism in a multi-core system.
Proceedings of the Sixth International Workshop on Testing Database Systems, New York,
NY, USA, 2013.

[27] Gawade M., Kersten M. Stethoscope: a platform for interactive visual analysis of query
execution plans. Proc. VLDB Endow., 2012, 5(12), 1926-1929.

Y. Liu et al. / Cost-Based Data-Partitioning for Intra-Query Parallelism244


