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Abstract. Skyline query processing and the more general preference queries be-
come reality in current database systems. Preference queries select those tuples
from a database that are optimal with respect to a set of designated preference at-
tributes. In a Skyline query these preferences only refer to minimum and maximum,
whereas the more general approach of preference queries allow a more granular
specification of user wishes as well as the specification of the relative importance
of individual preferences. The incorporation of preferences into practical relational
database engines necessitates an efficient and effective selectivity estimation mod-
ule: A better understanding of the preference selectivity is useful for better design
of algorithms and necessary to extend a database query optimizer’s cost model to
accommodate preference queries. This paper presents a survey on selectivity and
cardinality estimation for arbitrary preference queries. The paper presents current
approaches and discusses their advantages and disadvantages, such that one could
decide which model should be used in a database engine to estimate optimization
costs.
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Introduction

Preferences in databases – as shown by a recent survey [1] – are a well established frame-
work to create personalized information systems. By using well designed preference
models, users can be provided with just the information they need, thereby overcoming
the dreaded empty result set and flooding effect [2,3]. Traditional database engines or
query languages do not support preference queries. However, in the last decade some
extensions to the SQL language have been proposed, such as Skyline queries [4,5].

Skyline queries are not outside the expressive power of SQL. However, it is cum-
bersome to write Skyline-like queries in SQL. Therefore, the SKYLINE OF clause was
introduced by [4] as a useful syntactic addition to SQL. Its basic form is as follows:

SELECT ... FROM ... WHERE ...

GROUP BY ... HAVING ...

SKYLINE OF A1 [min | max | diff], ...,

An [min | max | diff];
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The Columns A1, ..., An are the attributes over which the preferences apply. Their
domains must have a natural total ordering, such as integers. The directives min and max

specify whether one prefers low or high values, respectively. The diff states that one
wants to retain the best choices with respect to each distinct value of that attribute.

A more general approach of Skylines are preference queries, which allow a more
granular specification of user wishes. Preference SQL is an extension to SQL to specify
such arbitrary user preferences [6]. Preferences in the sense of [6] are strict partial orders
and a preference query returns the maximal elements according to this order, also called
the Best-Matches Only set (BMO-set). For example, the wish for a car having the highest
power and a price around $ 34000 can be expressed in Preference SQL as follows:

SELECT id, power, price FROM car

PREFERRING power HIGHEST AND price AROUND 34000;

The PREFERRING keyword introduces a preference. The connection of two preferences
by AND is the Pareto composition and states the equal importance of preferences. If we
restrict the attention to LOWEST (min) / HIGHEST (max) as input preferences, then
Pareto preference queries coincide with the traditional Skyline queries above.

A preference or Skyline query returns only those tuples from the dataset for which
there is no other tuple that is better with respect to all preferences. Assume the sample
dataset in Table 1. Then the above query would identify the tuples with ID 3 and 5 as
best objects. The tuple with ID 3 has a perfect match concerning the price, but the power
of the tuple with ID 5 is higher. Therefore, both tuples are indifferent and form the result.

Table 1. Sample dataset of cars.

car id make power price

1 BMW 180 35000
2 Mercedes 200 38000
3 BMW 230 34000
4 Audi 170 32000
5 Mercedes 250 20000

While preferences and Skylines can be expressed in standard SQL using a rewriting
technique, it is widely recognized that an efficient implementation requires introducing
an operator inside the database engine for computing the best objects [4,7]. Several phys-
ical implementations for the Skyline operator and the more general Pareto preference
have been proposed, e.g. [4,6,8,9]. However, the integration of special Skyline or prefer-
ence operators into relational database engines also require heuristic optimization rules
[3,10] as well as cost and cardinality estimation. Following [11] a better understanding
of the selectivity of Skyline and preference queries is useful for a better design of al-
gorithms and is indispensable for a good query optimizer’s cost model to accommodate
preferences. Cost-based query optimizers generate a number of equivalent query plans,
use query size estimates to approximate query plan costs and select one which is (nearly)
optimal. Thereby the cost of the implementation algorithms is determined by the size of
the input arguments. Therefore, it is crucial to know, compute, or estimate the sizes of
arguments.
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This paper is a survey on selectivity and cardinality estimation of Skyline and prefer-
ence database queries. We introduce the background on Skylines and preference queries
in Section 1. We consider the state of the art in cardinality estimation for Skyline queries
in Section 2, and in Section 3 we present selectivity estimation methods for arbitrary
preference database queries. In Section 4 we conclude this paper.

1. Background on Skyline and Preference Database Queries

In this section, we review the definition of Skyline and preference database queries.

Definition 1 (Skyline) Assume a set of vectors D ∈ R
d. The Skyline is the subset of all

points that are not dominated:

S = {t ∈ D|¬∃t ′ ∈ D : t ≺ t ′} (1)

A point t ′ dominates t, written t ≺ t ′, iff

∀ j ∈ {1, . . . ,d} : t j ≤ t ′j ∧ ∃i ∈ {1, . . . ,d} : ti < t ′i

Thus, the Skyline consists of points where no point exists that is at least as good in all
attributes and strictly better in at least one attribute. Note that Definition 1 only holds for
maximum (analogously minimum) preferences [4].

The more general preference queries allow a more granular specification of user
wishes as well as the specification of the relative importance of these preferences [2,12,
3]. Thereby we follow the preference model of [2,12].

Definition 2 (Preference) Let R be a relational table with a list of attributes {A1, . . . ,An}
and their domain dom(Ai). A preference P = (A,<P) is a strict partial order on the at-
tribute list A, where A ⊆ {A1, · · · ,An}. The term x <P y is interpreted as “I like y more
than x”. Two tuples x and y are indifferent, if ¬(x <P y) ∧ ¬(y <P x), i.e., neither x is
better than y nor y is better than x.

The result of a preference is computed by the preference selection operator [2], also
called winnow in [3].

Definition 3 (Preference Selection, BMO-set) The result of a preference query is
called Best-Matching-Only (BMO) set and is computed by the preference selection op-
erator σ [P](R):

σ [P](R) := {t ∈ R | ¬∃t ′ ∈ R : t[A]<P t ′[A]} (2)

The BMO-set contains all tuples t from an input relation R which are not dominated w.r.t.
the preference P. A preference can also be evaluated in grouped mode, given an attribute
list B:

σ [P grouping B](R) := {t ∈ R | ¬∃t ′ ∈ R : t[A]<P t ′[A] ∧ t[B] = t ′[B]} (3)
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Obviously, Eq. (1) and Eq. (2) are equivalent when using a numerical minimum or
maximum preference. In this sense Skylines are a specialization of preference queries.

To specify a database preference, a variety of intuitive preference constructors have
been defined, cp. [6]. Preferences on single attributes are called base preferences. There
are base preference constructors for discrete (categorical) and for continuous (numeri-
cal) domains. Most of the base preferences can be specified by a SCORE function.

Definition 4 (SCOREd Preference) Given a scoring function f : dom(A) → R
+
0 , and

some d ∈ R
+
0 . Then P is called a SCOREd preference, iff for x,y ∈ dom(A):

x <P y ⇐⇒ fd(x)> fd(y)

where fd : dom(A)→ R
+
0 is defined as: fd(v) :=

{
f (v) if d = 0⌈

f (v)
d

⌉
if d > 0

In the case of d = 0 the function f (v) models the distance to the best value. That means
fd(v) describes how far the domain value v is away from the optimal value. A value d > 0
represents a discretization of f (v), which is used to group ranges of scores together. The
d-parameter maps different function values to a single number. Choosing d > 0 effects
that attribute values with identical fd(v) value become substitutable.

There are several sub-constructors of SCOREd , for example the interval preference
BETWEENd(A, [low,up]) expresses the wish for a value between a lower and an up-
per bound. If this is infeasible, values having the smallest distance to [low,up] are pre-
ferred, where the distance is discretized by the discretization parameter d. The scoring
function for example is f (v) = max{low− v,0,v−up}. Specifying low = up (=: z) we
get the AROUNDd(A, z) preference, where the desired value should be z. Furthermore,
the constructors LOWESTd(A, inf) and HIGHESTd(A,sup) prefer the minimal and max-
imal values within the distance d, where inf and sup are the infimum and supremum
of the attribute values. In the ATLEASTd(A,z) preference the desired values should be
greater or equal to z. If this is infeasible, values within a distance of d are acceptable.
ATMOSTd(A,z) is its dual preference.

In a categorical domain the LAYEREDm(A,{L1, . . . ,Lm}) preference expresses that
a user has a set of preferred values given by the disjoint sets Li, which form a partition
of dom(A). Thereby the values in L1 are the most preferred values. If they are not avail-
able in the database, than the alternative values listed in L2 are the second choice, and
so on. The scoring function equals f (v) = i− 1 ⇐⇒ x ∈ Li. For convenience there are
several sub-constructors of LAYEREDm. The positive preference POS(A,POS-set) :=
LAYERED2(A,POS-set,dom(A) \POS-set) expresses that a user has a set of preferred
values given by the POS-set. The negative preference NEG(A,NEG-set) is the counter-
part to the POS preference. It is possible to combine these preferences to POS/POS or
POS/NEG, cp. [2].

If one wants to combine several preferences into more complex preferences, one has
to decide the relative importance of these given preferences. Intuitively, people speak
of “this preference is more important to me than that one” or “these preferences are all
equally important to me”. Equal importance is modeled by the so-called Pareto prefer-
ence, whereas for ordered importance we introduce prioritization.
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Definition 5 (Pareto) In a Pareto preference P := P1 ⊗P2 = (A1 ×A2,<P) all prefer-
ences Pi = (Ai,<Pi) on the attributes Ai are of equal importance, i.e., for two tuples
x = (x1,x2), y = (y1,y2) ∈ dom(A1)×dom(A2) we define:

(x1,x2)<P (y1,y2) ⇐⇒
(x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨ (x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

If we restrict the attention to LOWEST/HIGHEST as input preferences, then Pareto
preference queries coincide with the traditional Skyline queries, cf. Definition 1.

Definition 6 (Prioritization) The Prioritization preference allows the modeling of
combinations of preferences that have different importance. Assume preferences P1 =
(A1,<P1) and P2 = (A2,<P2), then prioritization denoted by P := P1 & P2 is defined as:

(x1,x2)<P (y1,y2) ⇐⇒ x1 <P1 y1 ∨ (x1 = y1 ∧ x2 <P2 y2)

Note that a generalization of Pareto and Prioritization to more than two preferences
is straight forward, cp. [6].

Example 1 In this example we refer to the dataset in Table 1. The wish for an Audi
or BMW leads to a POS preference P1 := POS(make,{Audi,BMW}). The preference
selection σ [P1](car) leads to the cars with IDs {1,3,4}.

If we prefer a horsepower around 170, where a difference of 5 does not matter,
i.e. d = 5, this can be expressed by P2 := AROUND5(power,170). The result is given by
the tuple with ID 4 because it has a perfect match of 170 hp.

Now let P1 and P2 be equally important. Then we construct a Pareto preference
P3 := P1 ⊗P2. The result of σ [P3](car) is the tuple (Audi,170).

There are several other complex preference constructors which are essential in rule
based preference query optimization, cp. [2,12].

Definition 7 (Special Preferences)

a) A preference P = (A,<P) is an Antichain iff <P= /0. The Antichain on an attribute A
is denoted as A↔.

b) The Dual preference Pδ = (A,<Pδ ) reverses the order on the preference P.
c) Given a preference P = (A,<P) on an attribute A of relation R. Then the following

holds for the grouping preference from Eq. 3: σ [P grouping B](R) = σ [B↔ & P](R).

2. Skyline Cardinality Estimation

In this section we review the state of the art methods for cardinality estimation of tradi-
tional Skyline queries. Estimating the expected Skyline size for a given data distribution
is a key issue for the design of good cost models for Skyline queries. The problem has
been addressed in several papers; here we report some major results. For this we denote
sd,n the exact Skyline size for n d-dimensional objects, and ŝd,n denotes the expected
value of sd,n.
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� Bentley et al. [13] were one of the first considering the problem of estimating the size
of a Skyline result. They derived a recurrence relation for computing the average number
ŝd,n of Skyline points (called maximal vectors in [13]) in a set of n vectors in d-space
under the assumption that (i) all attributes are statistically independent of each others,
and (ii) the probability of sampling the same attribute value twice is negligible.

Theorem 1 [13] The Skyline expected value ŝd,n for d > 1 and n > 0 obeys the following
recurrence equation:

ŝd,n =
1
n

ŝd−1,n + ŝd,n−1 (4)

For d ≥ 1 we have ŝd,1 = 1 and for n ≥ 1, ŝ1,n = 1.

To see why the recurrence in Theorem 1 holds, consider the tuple that has the small-
est value with respect to the first preference. For this tuple to be in the Skyline, it must
be in the Skyline of the remaining preferences. The probability of this is 1

n · ŝd−1,n since
there are n total tuples and ŝd−1,n of them are in the Skyline of the remaining preferences.
Also, this tuple cannot dominate any other tuple. So, out of the remaining n− 1 tuples,
ŝd,n−1 are expected to be in the Skyline. Hence, we get the above recurrence equation.

In addition to the recurrence equation above, Bentley et al. proved that when all d
dimensions are independent, the expected Skyline cardinality ŝd,n is related to the har-
monic numbers. The harmonic of n for n > 0 is Hn = ∑n

i=1 1/i, and the k-th order har-
monic of n, for integers d > 0, is Hd,n = ∑n

i=1
Hd−1,i

i .

Theorem 2 [13]

1
(d −1)!

Hd−1,n ≤ ŝd,n ≤ Hd−1,n (5)

Therefore, ŝd,n = O((lnn)d−1) for fixed d.

This cardinality bound is often cited and employed in Skyline work. However, this
is a loose upper-bound [11].

� Under the same assumptions and that the components of each vector are distributed
independently, Buchta [14] provided a closed form and proved the tighter bound
Θ((lnn)d−1/(d −1)!:

Theorem 3 [14]

ŝd,n =
n

∑
k=1

(−1)k+1 ·
(

n
k

)
1

kd−1 (6)

� Godfrey [11] considers Skyline cardinality for relational processing. Within a basic
model with assumptions of sparseness (no duplicate values on the attribute across the
tuples) and statistical independence, he established a model to estimate the Skyline car-
dinality.
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Theorem 4 [11] The recurrence for ŝd,n in Theorem 1, Eq. (4) is related to the harmonic
numbers, that means

ŝd+1,n = Hd,n =
n

∑
i1=1

i1

∑
i2=1

· · ·
id−1

∑
id=1

1
i1i2 · · · id (7)

The Hd,n are easy to compute and so could be used within a cost model on-the-fly.
From this though, Godfrey [11] proved without the restriction of no duplicate values
on any dimension that for sufficiently large n the following holds: ŝd,n = Hd−1,n ≈
(lnn)d−1/(d −1)!.

� Chaudhuri et al. [15] proposed to use integrals in the case of independent preferences
to estimate the Skyline cardinality, but the integrals have no closed form. They derived
a precise estimation when all preferences are numeric. Thereby it is assumed that the
attributes take values in the interval [0,1].

Theorem 5 [15] Let n be the number of d-dimensional objects (x1, . . . ,xd). Given d
numeric independent preferences, then

ŝd,n = n ·
∫
[0,1]d

(1− x1 · · ·xd)
n−1 dx1 · · · dxd (8)

Eq. (8) gives an alternative expression for ŝd,n that is equivalent to the solution of the
recurrence in Eq. 4 in Theorem 1. The integral has no closed form, but several numerical
methods exist to evaluate the integral, cf. [15]. Furthermore, they are the first who derive
cardinality estimates for categorical attributes, because Eq. (4) does not hold when the
set of preferences also contain predicate preferences.

By empirical studies, [15] observerd that when the data distribution does not
have significant correlations/anti-correlations, the Skyline cardinality follows the model:
A(logn)B, where A and B are two constants. Log Sampling (LS) is based on this hypo-
thetical model LS draws a small sample to estimate the two parameters A and B, which
are then used to estimate the Skyline cardinality of the whole dataset. More specifically:

Theorem 6 [15] Let S be a small sample from the dataset drawn from a simple ran-
dom sampling without replacement, and S1 ∪ S2 = S, where |S1| �= |S2|. Let |SkyS1 |
and |SkyS2 | the Skyline cardinality of S1 and S2, respectively. According to the model
|SkyS1 |= A(log |S1|)B and |SkyS2 |= A(log |S2|)B solve A and B as

B =
log(|SkyS2 |)− log(|SkyS1 |)

log(log(|S2|))− log(log(|S1|)) and A =
|SkyS1 |

(log(|S1|))B (9)

Then, ŝd,n = A(logn)B

� Lu et al. [16] established specific parametric formulae to estimate the Skyline cardi-
nality over uniformly and arbitrary distributed data on data streams, keeping the inde-
pendence assumption between dimensions. They propose a robust approach for estimat-
ing the Skyline cardinality over sliding windows in the stream environment using Spec-
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tral Bloom Filters. The idea of [16] is based on the approaches for Skyline cardinality
estimation proposed in Eq. (4), and Eq. (8). Lu et al. notice that these approaches suffer
from the strong assumptions of statistical independence across dimensions and no dupli-
cate values over each dimension, and hence do not apply to real-life applications. They
relax the restriction on the data distribution. Since skewed data is very common in real-
life datasets [16] gives an approach for estimating the Skyline cardinality over arbitrarily
distributed data, in which probability functions of all dimensions are considered.

Theorem 7 [16] Suppose that x̄1, . . . , x̄n are n d-dimensional live elements in a sliding
window, where x̄i = (xi1, . . . ,xid). The probability function of the data over the j-th di-
mension is f j; P{xi j = v jt} = f j(t), v j1 < v j2 < · · · < v jc j , where c j is the number of
distinct elements of the j-th dimension. Under assumptions of statistical independence
across dimensions, the expected number of Skyline elements is

ŝd,n = n ·
c1

∑
t1=1

· · ·
cd

∑
td=1

f1(t1) · · · fd(td)

(
1−

d

∏
j=1

t j

∑
k=1

f j(k)

)n−1

(10)

Estimating the Skyline cardinality using Theorem 7 has a computational complexity
of O

(
∏d

j=1 c j

)
, where c j is the value cardinality. If the number of dimensions and the

value cardinalities of some dimensions are large, the computational cost overhead is
unacceptable. Therefore, [16] introduced a better approximation distinguishing high and
low value cardinalities to approximate Eq. (10), which is explained in detail in [16].

� Zhang et al. [17] propose a kernel-based approach to approximate the Skyline car-
dinality. They use kernels to estimate the probability density function (PDF) at an arbi-
trary position in the data space from a random sample. Given a random sample S and an
arbitrary position q, the PDF at q can be estimated by the formula

PDF(q) = ∑
si∈S

1
|S|hd

√
det(∑)

K
(

dist∑(q,si)

h

)
(11)

where h is the kernel bandwidth, ∑ (a d×d matrix) is the kernel orientation, det(∑) is the
determinant of ∑, dist∑(q,si) is the Mahalanobis distance between q and the sample point
si, and K is the kernel function, which in practice is usually implemented as Gaussian

Kernel, as defined in the equation K(x) = 1√
2π

e−
x2
2 .

Theorem 8 [17] Let S be a sample drawn from the dataset D with n = |D| using a simple
random sampling without replacement, and skyS the local Skyline points of S, m = |S|.
Then,

ŝd,n = n · 1
m ∑

p∈skyS

(1−Ωp)
n−m (12)

where Ωp =
∫

IDR(p) PDF(q)dq is the probability that a random point in the dataset falls
in its inverse dominance region (IDR), IDR(p) = {q | q[i]≤ p[i],∀ 1 ≤ i ≤ d}.
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This is a robust approach with non-parametric methods and without any assumptions
about dataset properties. Since this kernel-based approach uses complex mathematical
calculations, it is comparatively complex.

� Jin et al. [18] present a method to estimate the size of Skylines in join results in order
to allow the query optimizer to produce efficient plans for evaluating Skyline queries
with joins. They propose a estimation method when the join size is known. When the
join size is unknown [18] suggest to use the End-biased sampling method or a uniform
random sample. They remark that applying some classic Skyline estimation methods like
in [11] do not produce good results, because previous work on Skyline estimation require
that all attributes are independent, and that all values of the same attribute are distinct.
However, a joined table does not meet this requirement since one tuple may correspond
to several tuples with the same join attribute value.

For their approach two basic assumptions are made: First, every data attribute of
relation R or S is drawn randomly from some probability distribution and is distinct.
Second, all attributes of R and S are independent. Note that this is only for the input
tables but not for the join table. In their first approach they calculated the probability that
an object z is a Skyline tuple using a complex integral, i.e., none of the records in R �� S
dominates z. Unfortunately it is difficult to solve the given integration directly. Instead,
[18] deduce robust upper and lower bounds, where p(m,d)≈ (logm)d−1

m(d−1)! is the probability
that a random d-dimensional object is a Skyline member among m random records.

Theorem 9 [18] Given two relation R and S with dR attributes in R and dS attributes in
S. Let R =

⋃t
i=1 Ri and ri = |Ri|. We define Si similarly. Let a = ∑t

j=1 min{r j,s j}. Under
the assumption that the join size n = |R �� S| is known, the expected number of Skyline
objects ŝ in R �� S is bounded by

p(|R|,dR) ·
t

∑
i=1

ri · si · p(si,dS) ≤ ŝd,n ≤ n · p(a−1,dR +dS) (13)

� Luo et al. [19] use a non-parametric sampling-based approach to estimate the Skyline
cardinality. They do not assume any particular data distribution and their method is more
robust than log sampling [15].

Theorem 10 [19] Let S be a sample of size m = |S| drawn from a simple random sam-
pling without replacement, and SkyS the global Skyline point set contained in the sample.
Then

ŝd,n =
|SkyS|

m
·n (14)

Following [19] the value ŝd,n is an unbiased estimator of the global Skyline cardinal-
ity. The above approach is a non-parametric purely sampling-based method for Skyline
cardinality estimation. It does not assume any particular data distribution, and therefore
it is more robust than other techniques and applicable to any dataset.
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� Tiakas et al. [20] provide different methodologies for estimating the maximum dom-
ination value under the distinct values and attribute independence assumptions. They
use an estimation method with roots and generalized the results to the final proposed
estimation formula shown in Theorem 11.

Theorem 11 [20] Let n be the number of d-dimensional data points. Then,

ŝd,n ≈ n−n ·
(

1− d

√
1

n1+ 1
10 logn+ 2

100 log2 n

)d

(15)

The additional terms 1
10 logn and 2

100 log2 in the exponent of n enhance the estima-
tion accuracy of the Skyline cardinality.

� Shang and Kitsuregawa [21] established a cardinality model for anti-correlated dis-
tributions and proposed a polynomial estimation for the expected value of the Skyline
cardinality. Their contribution can be summarized as follows:

Theorem 12 [21] Let d ≥ 2 and Γ(n) =
∫ ∞

0 e−t tn dt and ŝd,n the expected value of the
Skyline cardinality with n points and d dimensions.

• The lower and upper bounds of the Skyline cardinality is

d

∑
k=1

(−1)k−1
(

d −1
k−1

)
·nΓ

( k
d

) ·Γ(n)
Γ
(
n+ k

d

) ≤ ŝd,n ≤ n (16)

• The lower bound of the Skyline cardinality can be estimated by the following
polynomial equation

d

∑
k=1

(−1)k−1
(

d −1
k−1

)
·Γ

(
k
d

)
·n1− k

d ≤ ŝd,n ≤ n (17)

This estimation can be further abbreviated as

O
(

n
d−1

d

)
≤ O

(
ŝd,n

) ≤ O(n)

In [21] it is summerized that the Skyline operator on anti-correlated data is an oper-
ator with high output cardinality and this cardinality increases with the dimensionality.

3. Preference Selectivity Estimation

Most of the work on preference selectivity estimation is based on Skyline / Pareto queries
having only numerical minimum (LOWEST) or maximum (HIGHEST) preferences as
described in Section 2. However, for cost-based query optimization in relational engines
not only Pareto must be considered, but all kind of database preferences.
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Endres [22] presents an estimation for the selectivity of database preferences under
the uniformity and attribute independence assumptions. His estimating and calculating
methods rely on a differentiated consideration of the individual preferences modeled as
strict partial orders. His approach is rather simple but very effective and usable with
any database preference query described in Section 1, whereas Skyline estimations are
restricted to minimum / maximum preferences.

In [22] the estimation of the selectivity sel(P) of an arbitrary database preference
P on an input dataset R is discussed. The input can be a relational base table of the
database or a virtual table which is the intermediate result in a query’s evaluation. The
preference selectivity sel = |out|

|in| is the ratio of the size of output objects to the size of
the current input objects, and leads to a numerical value between 0 and 1. Estimating
the preference selectivity is equivalent to estimate the cardinality of the output relation
of a preference / Skyline operator based upon its input relation R. Formally [22] uses
|σ [P](R)| for the cardinality of the preference selection and sel(P) · |R| for the estimated
size. Note that sel(P) · |R| is the same as ŝd,n for Skyline cardinality estimations as in
Section 2. Furthermore, let V (A,R) denote the number of distinct values of attribute A
in R. range(A,R) is used to describe the values of attribute A which are available in the
table R. The terms minA,R and maxA,R denote the minimal value and the maximal value
of attribute A, i.e., minA,R = min(range(A,R)) and maxA,R = max(range(A,R)).

In [22] the following basic model of assumptions about the input relation is used:
First, it is assumed that the attribute dimensions are statistically independent, and second,
there is a uniformly data distribution for each attribute. These basic assumptions are
widely used in selectivity estimation, cp. e.g., [11,23,24], and in Section 2. Note that the
assumption of no duplicate values as in [11] is not necessary.

3.1. Selectivity of Base Preferences

Endres [22] used the simple method of computing the ratio of possible matches of a pref-
erence query to the complete range of database values. The results for base preferences
are depicted in Table 2.

For example, the LOWESTd(A) and HIGHESTd(A) preferences retrieve all ex-
tremal values from the attribute A. If d = 0 and under the assumption of uniformly dis-
tributed data and that there are V (A,R) distinct attribute values, only one of these distinct
values can be the minimal or maximal numerical value. This is also similar to a hard
selection σA=minA,R(R) or σA=maxA,R(R) which has a selectivity of 1/V (A,R), cp. [23].
In the presence of the d parameter [22] computes the ratio of d to the complete range of
database values, because the best objects may lie inside a distance d from the minimal or
maximal value, i.e., sel(P) = d/(maxA,R−minA,R).

Endres [22] presents also a technique to estimate predicate preferences as in
[15]. In contrast to [15] which only relies on 1 (predicated is satisfied) and 0 (pred-
icate is not satisfied), [22] presents a more general method, cp. Table 2, using
LAYEREDm(A,{L1, . . . ,Lm}). Since all categorical preferences are sub-constructors of
LAYERED, it is sufficient to show the selectivity of LAYEREDm, cp. Section 1. The
set {L1, . . . ,Lm} partitions the domain of A, in which each Li represents a set of objects.
This is similar to an IN query in standard SQL, cp. [23]. Therefore the selectivity can
be estimated by sel(P) = |Li|/V (A,R). However, the set L1 may contain objects which
are not available in the database, hence L2 must be considered. On the other hand, L1
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could contain objects which are available in the database, and some not. Therefore the
Li sets are consecutively checked to determine the selectivity of LAYEREDm. Note that
for this kind of selectivity estimation a strong statistical profile for the relation R must be
available, but this is a closed formula in contrast to [15]. For more details and the proofs
we refer to [22].

Table 2. Base preference selectivity under the assumptions of uniformly data and attribute independence.

P sel(P), if d=0 sel(P), if d > 0 Condition

SCOREd 1 1 -

LOWESTd(A) 1
V (A,R)

d
maxA,R −minA,R

-

HIGHESTd(A) 1
V (A,R)

d
maxA,R −minA,R

-

ATLEASTd(A,z)

1 1 z ≤ minA,R

1
V (A,R)

� z−maxA,R
d �·d−(z−maxA,R)

maxA,R −minA,R
z ≥ maxA,R

maxA,R −z
maxA,R −minA,R

maxA,R −z
maxA,R −minA,R

z ∈ range(A,R)

ATMOSTd(A,z)

1
V (A,R)

� minA,R −z
d �·d−(minA,R −z)
maxA,R −minA,R

z ≤ minA,R

1 1 z ≥ maxA,R

z−minA,R
maxA,R −minA,R

z−minA,R
maxA,R −minA,R

z ∈ range(A,R)

AROUNDd(A,z)

1
V (A,R)

� minA,R −z
d �·d−(minA,R −z)
maxA,R −minA,R

z < minA,R

1
V (A,R)

� z−maxA,R
d �·d−(z−maxA,R)

maxA,R −minA,R
z > maxA,R

1
V (A,R)

2d
maxA,R −minA,R

z−d ≥ minA,R ∧ z+d ≤ maxA,R

-
d+(z−minA,R)

maxA,R −minA,R
z−d < minA,R ∧ z ∈ range(A,R)

-
d+(maxA,R −z)

maxA,R −minA,R
z+d > maxA,R ∧ z ∈ range(A,R)

- 1 z−d < minA,R ∧ z+d > maxA,R

BETWEENd(A, low,up)

1 1 low ≤ minA,R ∧ up ≥ maxA,R

1
V (A,R)

� minA,R −up
d �·d−(minA,R −up)
maxA,R −minA,R

up < minA,R

1
V (A,R)

� low−maxA,R
d �·d−(low−maxA,R)

maxA,R −minA,R
low > maxA,R

up−minA,R
maxA,R −minA,R

up−minA,R
maxA,R −minA,R

low < minA,R ∧ up ∈ range(A,R)

maxA,R −low
maxA,R −minA,R

maxA,R −low
maxA,R −minA,R

low ∈ range(A,R) ∧ up > maxA,R

up−low
maxA,R −minA,R

up−low
maxA,R −minA,R

low,up ∈ range(A,R), low < up

LAYEREDm(A,{L1, . . . ,Lm}) 1
V (A,R) · l(1) l(i) =

⎧⎪⎪⎨
⎪⎪⎩

|{t ∈ Li : t ∈ range(A,R)}| if ∃t ∈ Li : t ∈ range(A,R)

l(i+1) otherwise
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3.2. Selectivity of Complex Preferences

Following [22], Table 3 reports selectivity estimates for complex preferences.

Table 3. Selectivity estimation for complex preferences.

P A↔ Pδ &m
i=1 Pi A↔ & P

⊗m
i=1 Pi

sel(P) 1 1− sel(P)
m
∏
i=1

sel(Pi,R) sel(P)
m
∑

i=1
sel(Pi,R)

� A↔: In the antichain preference A↔ all values in the attribute A are incomparable.
Therefore the selectivity is sel(P) = 1.

� Pδ : The dual preference reverses the order on P, hence sel(Pδ ) = 1− sel(P).

� &m
i=1 Pi: The prioritization preference is similar to the AND predicate in standard SQL

[23]. Each preference which takes part in the prioritization reduces the cardinality of the
result, therefore [22] multiplies the selectivity of the child preferences: sel(&m

i=1 Pi) =

∏m
i=1 sel(Pi). Note that this assumes that column values are independent.

� A↔ & P: A special prioritization preference is the grouped preference selection
σ [P grouping A](R). This leads to sel(A↔ & P) = sel(A↔) · sel(P) = sel(P).

� ⊗m
i=1 Pi: Endres [22] relies on a rather simplistic approach to estimate the selectivity

of a Pareto preference. The selectivity is computed recursively for each child preference
and all selectivities are summed up: sel(

⊗m
i=1 Pi) = ∑m

i=1 sel(Pi). Of course, the sum is
restricted to be less or equal to 1.

Note that this estimation is less accurate than the approaches in Section 2, but on the
one hand this allows the usage of arbitrary numerical and categorical base preferences
in a Pareto query and on the other hand this also allows complex preferences in a Pareto
constructor.

4. Conclusion

In this paper we considered the problem of estimating the cardinality of a Skyline or
preference query. Estimating the cardinality or the selectivity is crucial for cost-based
query optimization, since the Skyline operator does not stand alone in a preference query.
We gave an overview on existing techniques and discussed their advantages and disad-
vantages. We presented robust and sampling techniques for Skyline estimation as well as
simple and closed forms for arbitrary preference database queries. From this knowledge
one can decide which technique should be used in a database engine.
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