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Abstract. In this paper, the authors present the results of ongoing research on 
Large Vocabulary Automatic Speech Recognition for the Latvian language. The 
paper describes the initial acoustic model, phoneme set, filler and noise models, 
and grapheme-to-phoneme modelling. The second part of this work is focused on 
language modelling. Different word and class-based n-gram models are evaluated 
in terms of perplexity and word error rate in a speech recognition task. The authors 
also train a recurrent neural network language model and use it for n-best rescoring.  
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Introduction 

In recent years, the success of spoken interfaces in smartphones and tablets has 
prompted new excitement about automatic speech technologies. This success has 
stimulated many developers to embrace speech technologies for their native languages. 

However, most of the research in speech recognition and speech synthesis (as well 
as ready-made tools and language resources) is usually available only for “big” 
languages, like English, French, German, and Spanish [1]. There are many smaller 
languages for which speech recognition is not available.  

Among the languages of the Baltic countries, Estonian is the most researched 
language in speech recognition. There have been successful efforts in Estonian speech 
recognition for both limited and large vocabulary speech recognition tasks [2, 3]. 

Unfortunately, there is lack of research on Latvian language speech recognition. 
To the best of our knowledge, there has been only one publicly known research project 
on Latvian speech recognition, Oparin et al. [4] efforts on broadcast news transcription 
using acoustic model bootstrapping methods. 

The lack of effort can be largely explained by the absence of a labelled speech 
corpus, which has only recently become available. This paper describes our first steps 
towards the goal of creating a Large Vocabulary Automatic Speech Recognition 
(LVASR) system for Latvian. 
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1. Acoustic Modelling 

The quality of speech recognition depends on many parameters, most of which can be 
grouped into two independent categories: acoustic (e.g., feature extraction parameters, 
number of states in HMM, phoneme set) and language model (e.g., modelling method, 
vocabulary size, language model size, etc.). 

We started developing our speech recognition system by fixing language model 
parameters in order to search for the best acoustic model. We used the language model 
created from the test data at this stage. 

The initial acoustic model developed was a 40 phoneme, 3-state Hidden Markov 
Model (HMM) with 3,000 tied states, each described by 8 Gaussian mixture 
components. For the initial acoustic modelling, we did not use speaker adaptation, 
feature transformation, or multi-pass decoding methods, because our goal was to 
identify how much can be achieved by using core methods before investigating more 
advanced acoustic modelling and acoustic model adaptation methods. 

The model was trained using the CMU Sphinx toolkit [5] with 13-dimensional Mel 
Frequency Cepstral Coefficient (MFCC) features on a recently published 100-hour 
Latvian Speech Recognition Corpus (LSRC) [6].  

After performing multiple experiments with different feature extraction parameters, 
we identified parameters which work best with LSRC. The most notable changes were: 
(1) using DCT-II transform instead of the default “legacy” transform and (2) adding 
liftering (cepstrum filtering). 

When the initial model was trained, we used it in experiments with different 
phoneme sets, voiced fillers, and grapheme-to-phoneme models. The PocketSphinx [7] 
decoder from the CMU Sphinx toolkit was used for decoding and evaluating speech 
recognition quality according to Word Error Rate (WER). At this stage, we achieved a 
WER of 14% when using the language model from test data. 

After all of the abovementioned acoustic and G2P model parameters were 
determined, the number of Gaussians per state was increased to 32, and the acoustic 
model was retrained. The retrained model achieved 12% WER when using the 
language model from test data and was later used in experiments with different 
language models. 

2. Phoneme Set, Filler Word, and Noise Models 

As large vocabulary ASR models use phonemes to recognise words, it is important to 
select an optimal phoneme set which would allow us to (1) acquire sufficient statistics 
for phonemes and build more accurate models and (2) unambiguously and effectively 
recognize words from recognised phoneme sequences. 

We performed multiple experiments with different phoneme sets and identified a 
baseline phoneme set that contains: (1) 33 phonemes which have a one-to-one 
correspondence to letters of the Latvian alphabet and (2) 4 diphthongs ([ai], [au], [ɛi] 
and [iɛ]) which were selected empirically. 

This phoneme set allowed for the best WER to be achieved. Any small deviation 
from this baseline set resulted in a small increase of WER (see Table 1). 

Humans rarely communicate using read or prepared speech, therefore a good 
speech recognition system must be able to deal with the defects of spontaneous speech 
[8]. 

A. Salimbajevs and M. Pinnis / Towards Large Vocabulary Automatic Speech Recognition 237



 

 

Table 1. Experiments on changing the baseline phoneme set 

Phoneme set description Word error rate 
Baseline phoneme set 13.7% 
Phonemes [o] and [uɔ] are distinguished 14.2% 
Phoneme [ss] is added 14.1% 
Phoneme [c] is removed and combination 
of [t]+[s] is used instead 

14.2% 

Long phoneme [ā] is removed 14.9% 
[ɛi] diphthong is removed 13.9% 
[ui] diphthong is added 14.2% 

 
Table 2. Noise and filler models 

Noise/filler Occurrences in training corpus 
[e], [ē], and their variations 13,192 
[m] and its variations 1,060 
[a], [ā], and their variations 1,263 
[h], [hmm], [kh], etc. 126  
Mix of [n], [en], [s], [u] 162 
Mix of rare voiced fillers 114 
Non-speech noise 4,481 
Breathing            45,041 
Laughing            431 
Silence               18,290 

 
 

In this work, we train noise and filler models for filtering out non-speech noises 
and voiced pauses. The LSRC has 107 unique labels for voiced pauses and non-speech 
events. It quickly became evident that training such a large amount of noise/filler 
models is not effective. Some of the models are almost identical, while some are too 
rare for acquiring sufficient statistics for training and generalisation of reliable acoustic 
models. Therefore, only 9 generic models were trained (see Table 2). 

3. Grapheme-to-phoneme Model 

A grapheme-to-phoneme (G2P) model describes the mapping between a sequence of 
phonemes and a word. In its simplest form, a G2P model is a dictionary – a list of 
words and their corresponding canonical phonetic pronunciations. 

Since there is a very strong correspondence between graphemes and phonemes in 
Latvian spelling, we used a grapheme based model. A simple rule-based G2P algorithm 
was developed, which basically maps letters directly to phonemes using one-to-one 
correspondences. The algorithm also tries to recognise and use the 4 diphthongs 
mentioned earlier, which is its only difference from a pure grapheme based approach. 

When training the initial acoustic model, the phone tree crossing option was turned 
on. This allowed CMU Sphinx to tie HMM states of different phonemes, which is very 
useful for grapheme based models. When using this option in our setup, together with 
our basic G2P mapping, the WER is improved by 3-5% over a setting where the option 
is turned off. 
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3.1. Evaluating G2P 

The LSRC includes 4 hours of data that are annotated both phonetically and 
orthographically. This makes it possible to evaluate the quality of the automatic G2P 
conversion algorithm. 

Table 3. Effect of different G2P errors 

Error description G2P phoneme error rate Word error rate 
Insertion of extra phoneme “g” 
after “k” in some cases 

  + 24% absolute + 0.5% absolute 

Insertion of extra phoneme “k” 
after “e” in some cases 

+ 15% absolute + 3% absolute 

Using separate phonemes 
instead of diphthongs 

+ 4.8% absolute + 0.5% absolute 

Deletion of phoneme “o” 
after consonants in some cases 

+ 0.5% absolute + 2% absolute 

Substitution between 
similar sounds “p” and “b” 

+ 4.8% absolute + 0.2% absolute 

 
 

The G2P and LSRC phoneme sets are not identical, but we can transform the 
LSRC phoneme sets into the phoneme set used by the rule-based G2P. Depending on 
how we define this transformation, we can obtain a phoneme error rate of 9-13% for 
our G2P algorithm. Almost half of these errors are substitutions, deletions constitute 
less than 1% of the errors, and the remaining errors are insertions (i.e., a phoneme is 
inserted by the rule-based G2P where the human transcription does not have one).  

We also performed several experiments in order to understand how different G2P 
errors can influence the WER. In these experiments, we injected synthetic errors into 
the G2P algorithm, retrained the acoustic model, and calculated the WER. Table 3 
shows a few examples of these experiments. It was concluded that there is no simple 
correspondence between the G2P error rate and the WER, because the resulting WER 
depends on the character of specific errors, e.g., two G2P algorithms can have a similar 
phoneme error rate, bet a very different WER. Some errors such as substitutions 
between similar phonemes have little effect on WER, while errors such as the insertion 
of an extra phoneme can lead to noticeable WER degradation. 

Given that about 50% of current G2P errors are insertions, it seems that there is a 
potential for improvement of WER. 

3.2. Advanced G2P  

In order to address and lower the number of insertion errors, we trained two more 
complex G2P models. The first one was trained with Phonetisaurus [9], which utilises 
weighted finite-state transducers for decoding a representation of a grapheme-based n-
gram model trained on data aligned by an advanced many-to-many alignment 
algorithm (which is a variant of the EM algorithm [10]). The second one is a statistical 
machine translation (SMT) model which translates from “grapheme” language to 
“phoneme” language [11].  

Both models were evaluated on a small held out data set from the phonetically 
annotated corpus. The phoneme error rate for both models is given in Table 4. 
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Table 4. Advanced G2P models 

G2P model Phoneme error rate 
Phonetisaurus WFST model 5.24% 
Statistical machine translation 3.26% 

Both models achieved significantly better results than our rule-based G2P 
algorithm. The superiority of the SMT model can be explained by the fact that the 
Phonetisaurus model is trained on a pronunciation dictionary which was extracted from 
the phonetically annotated 4 hour corpus and includes all pronunciations from this 
corpus. At the same time, the SMT model was trained on the full phoneme 
transcriptions of the training set, not just isolated words. This allows the SMT model to 
take into account word boundaries and phonemes from adjacent words. After training is 
done, the SMT model is used to translate all transcriptions. This translation is then 
processed, and a static pronunciation dictionary with multiple pronunciation variants is 
created.  

Despite the better phoneme error rate, no improvements in WER were observed. 
Moreover, the result degraded significantly in the case of the SMT-based G2P model, 
because it introduced a lot of ambiguous pronunciation variants. This ambiguity comes 
directly from the nature of human speech which is captured by precise training labels. 
As a result, words in our static dictionary have a large number of pronunciations, many 
of which overlap with the pronunciations of other words, making the “recovery” of the 
right word strings from such a dictionary difficult. This result corresponds with the 
findings in [12]. 

As we were unable to improve upon the rule-based G2P, it was also used in later 
experiments with language modelling. 

4. Language Modelling 

4.1. Corpus 

In order to train language models, we have used a large text corpus, which was 
collected from several sources (see Table 5).  

The text corpus was pre-processed before training language models: 

� First, the text was tokenised. 
� Then, punctuation, digits, and URL tokens were removed. Only word tokens 

were kept. 
� Finally, vocabularies of different sizes were selected from the most frequent 

words in the corpus. 

After pre-processing, the corpus consisted of 38.5M sentences (40% of them were 
10-20 words long) and 592M running words. The vocabulary of the complete text 
corpus was 2.8M word surface forms.  
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Table 5. Sources of Latvian monolingual text corpora 

Corpus Type Description 
DGT-TM[13]               Translation memories Public EU law text collection 
OPUS EMEA[14]    Monolingual part of parallel 

text 
European Medicines Agency documents 

Localisation TM Translation memories Translation memories from software and user 
manual localisation 

WebNews corpus Monolingual corpus Collection of texts from Latvian news portals 
Other                   Monolingual corpus Some texts from books and internet 

 
Table 6. Experiments with 3-gram models 

Model Perplexity OOV WER, % 
Test transcripts 70.786   0% 12.5% 
Training transcripts 410.456   4.6% 19.9% 
Large corpus, 50,000 vocabulary 423.964 8.1% 37.5% 
Large corpus, 100,000 vocabulary 528.162 4.3% 48.5% 
Small corpus, 50,000 vocabulary 496.401 7.3% 41.7% 
Small corpus, 100,000 vocabulary 610.328 4.3% 45.5% 

 
 

From this corpus, we created a smaller corpus of 3M sentences. We used the 
Moore&Lewis [15] data selection method and training transcripts from the audio 
corpus as adaptation data for this task. 

4.2. N-gram Models 

From both corpora, we trained several 3-gram language models and evaluated those in 
terms of perplexity on test data transcripts and speech recognition WER (see Table 6). 

The best result was achieved by a 3-gram model with the vocabulary size of 
50,000 words (results of LM from audio transcripts are given for comparison only). 
The idea of creating a smaller corpus from adapted sentences turned out to be 
unsuccessful, while the perplexity of training data transcripts significantly reduced test 
WER, and perplexity results showed a negative change. The big difference between 
training perplexity and test perplexity can be a sign of poor generalisation and\or 
overfitting. 

We also tried training 4-gram word and 2-gram class-based language models for 
lattice rescoring (see Table 7). 200, 500, 1000, 2500, and 5000 classes were induced by 
automatic word clustering [16]. However, all of these models exhibit very similar 
perplexity, and therefore, results are given only for the 200 classes. 

Rescoring with the 4-gram model resulted in an absolute WER improvement of 
1%, while a smaller improvement (about 0.7%) was achieved by rescoring with class-
based and 3-gram model interpolation. Further improvement can be achieved (0.22%) 
by combining 4-gram and class-based models, though this improvement is not 
significant. 

4.3. RNN Language Model 

Recurrent neural networks (RNN) are considered as a state-of-the-art language 
modelling method [17] which gives significantly smaller perplexity than traditional n-
gram models. 
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Table 7. Rescoring with class-based and 4-gram models 

Model Perplexity WER, % 
Rescoring with 200 class model 753.155 41.05% 
Rescoring with 4-gram word model 327.022 36.50% 
Rescoring with interpolated 200 class + 3-gram model 460.638 36.83% 
Rescoring with interpolated 200 class + 4-gram model 441.629 36.28% 

 
Table 8. N-Best (N=200) list rescoring with RNN language model 

Model Perplexity WER, % 
Baseline(no rescoring) 423.964 37.50%
Rescoring with RNN LM 174.682 36.62%

 
 

In this work, we use the “rnnlm” toolkit [18] for training and using RNN language 
models. The goal of this experiment was to validate the fact that RNN models are 
significantly better than classic n-gram models. Therefore we used the smaller 3M 
sentence corpus for training, because training an RNN language model on the complete 
38M corpus would take a large amount of time. We are planning to train an RNN 
model on a larger corpus in future research. 

As seen in Table 8, the perplexity of the RNN language model is very low in 
comparison to n-gram models, however, applying n-best list rescoring with RNN LM 
resulted in a WER improvement of less than 1%. This can be partially explained by the 
fact that pure acoustic scores were not available in the n-best list. It should be noted 
that the minimum error rate of n-nest lists used in this test is 20.4%, which suggests 
that much bigger improvement after rescoring should be possible. The cause of this 
difference will be investigated in future research. 

5. Conclusions 

In this paper, we presented a summary of the ongoing research on automatic speech 
recognition for the Latvian language. We started with basic and classic acoustic 
modelling methods and also trained multiple n-gram models. 

A significant amount of time was spent on searching for the best grapheme-to-
phoneme model. We trained a Phonetisaurus WFST based G2P model and an SMT-
based G2P model, however, the best result was achieved with the grapheme-based 
approach extended with several straightforward rules.  

Our initial acoustic model was trained using core methods like grapheme based 
tied-state continuous HMM and MFCC features. For language modelling, we focused 
on different n-gram models. The best word error rate of 37.5 in a LVASR scenario was 
achieved by a 3-gram model with a vocabulary of 50,000 words. This result can be 
further improved by applying rescoring with 4-gram and class-based models. We also 
tried rescoring with the state-of-the-art RNN language model. While the RNN LM 
showed a large improvement in reduction of perplexity, the improvement in WER was 
smaller than with the 4-gram model. The cause of this needs to be investigated. 

By comparing our results with [4], we see that the possibilities of achieving 
significant further improvement with basic methods is limited. In our future work, we 
are therefore planning to gradually introduce more advanced and modern methods like 
speaker adaptation, bottleneck features, and others. 
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