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Abstract. An approach is proposed to forecast lumpy spare parts demand 
associated with non-routine aircraft maintenance based on a stochastic model. The 
model assumes demand arrival in the form of a Homogeneous Poisson Process 
(HPP). The developed model is applied to a dataset from an aircraft maintenance 
operator consisting of lumpy spare parts demand for nine Line Replacable Units 
(LRUs) from a shared customer pool of parts, which are associated with significant 
repair turnaround time delays. To meet the operator’s service level requirements 
and associated stocking strategy, the model is evaluated for its capacity to forecast 
peak demand, rather than its capacity to minimize forecasting error. Under these 
terms, the proposed model outperforms the existing company approach. 
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Introduction 

Maintenance is an integral part of the aircraft lifecycle and ensures the continued safe 
operation of aircraft. The maintenance function is subject to diverse and contrary high-
level regulatory and business requirements: to ensure product safety (as embodied in 
aircraft airworthiness), at minimal maintenance effort in terms of time and cost, while 
optimizing aircraft availability for revenue-generating purposes. 

Maintenance operations can be subdivided into routine and non-routine 
maintenance. Routine maintenance tasks have specified resource requirements, 
including spare parts and labor. This form of maintenance can be scheduled a long time 
in advance, allowing for a near-perfect forecast and supply of spare parts at actual 
maintenance execution. In contrast, non-routine maintenance is essentially of a 
stochastic nature. Nevertheless, accurate prediction of associated requirements such as 
spare parts demand is possible in the case of regular patterns in quantity and/or 
intervals. Forecasting accuracy decreases sharply when demand displays irregular 
patterns in terms of quantity and intervals, known as 'intermittent' and 'lumpy' demand 
[1]. Various efforts have been made to forecast lumpy demand (see Section 2) using 
time series techniques, but accuracy often lacks, especially when the span of time series 
data is limited. 

Given the generally short time series spans associated with aircraft non-routine 
maintenance, a stochastic forecasting model is proposed to forecast spare parts demand. 
To properly position this contribution, a brief overview of the theoretical context is 
given, followed by introduction of the forecasting model in Section 3. In the Results 
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section, forecasts are produced for a specific use case, where the forecasting model is 
applied to a sample of maintenance data for pooled LRU demand. This dataset has been 
scoped to include units having lumpy demand patterns, currently causing significant 
repair turn-around time delays for the maintenance operator that cooperated in this 
research. The consequence is that the forecast model generates monthly forecasts for 
peak demand related to LRUs. Forecasting performance is evaluated by considering the 
accuracy of the new model with respect to the existing company approach. 

1. Theoretical Context 

Ghobbar and Friend [1] and Syntetos [2] characterize demand types by considering 
variations in the frequency and quantity of demand. The associated metrics are the 
Average Inter Demand (ADI) and Coefficient of Variation (CV2) – see Equations (1), 
(2) and (3), where t is time, n is the number of periods, Ԑa is the average demand and Ԑi 
is the actual demand. 
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Throughout literature, ADI and CV2 values are used to identify different demand 
patterns. Though differences in nomenclature exist, the following terms are frequently 
used [1]: 

� Smooth demand: regular demand with a limited variation in quantity 
� Intermittent demand: extremely sporadic demand, with no accentuated 

variability in the quantity of the single demand 
� Erratic demand: large variation in quantity, but constant distribution over 

time 
� Lumpy demand: great number of zero-demand periods and large variation in 

quantity. 
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These demand patterns (or types) are shown in Figure 1, together with suggested 
cut-off values by Ghobbar and Friend [1].  More involved classification criteria for 
stock keeping units are available [3], as well as further insights on insensitivity of cut-
off  values [4], but the categorization given below is used in the remainder of the 
research.  

 

 
Figure 1. Demand classification [1] 

Non-routine maintenance (and associated material demand) is characterized by many 
instances of zero-demand and significant variation in quantity. As such, the demand 
classification of non-routine material is typically intermittent or lumpy.  Various 
studies have reviewed the development of endogenous forecasting methods for 
intermittent and lumpy demand [1, 5], typically in the form of time series techniques 
which consider historical patterns of demand to generate forecasts. Examples of time 
series techniques include Single Exponential Smoothing (SES), Croston’s method (CR), 
and variants of Croston’s method such as the Syntetos-Boylan Approximation (SBA) 
and the Teunter-Syntetos-Babai (TSB) variation. In recent years, Neural Networks 
(NN) have been applied to forecast lumpy demand, for instance by Gutierrez et al. [6] 
and Kourentzes [7].  However, these forecasting methods (both time series techniques 
and NN) generally require a substantial set of demand observations to enable proper 
initialisation, calibration or training of the applied methods. However, [8] note that 
non-routine aircraft maintenance is characterized by small time series datasets, as the 
number of demand observations associated with aircraft non-routine maintenance is 
typically small. As a direct result, prediction of lumpy spare part demand for aircraft 
non-routine maintenance frequently lacks accuracy. 

2. Stochastic Modelling of Spare Parts Demand 

Given the general inability of time series-based forecasting methods to accurately 
predict lumpy spare parts demand associated with non-routine aircraft maintenance, an 
alternative stochastic approach is proposed. The following general characteristics are 
assumed to apply for the arrival process of spare parts demand: 
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1) Demand can be represented as a random variable: demand can be 

represented by a function assigning a number to each sample point in 
sample S. 

2) The random variable describing demand is discrete: a discrete random 
variable is ‘a random variable X that can assume only a particular finite or 
countably infinite set of values’ [9]. Demand occurrence is a variable that 
can only assume one of two possible values (i.e. a Boolean), namely 
demand occurs or does not occur at any given point of time. Demand 
volume can also be considered discrete in the current context, as the 
possible values are always integer and are part of a countable and finite 
set, being bounded by the total population of components in operation. 

3) Demand arrival is a continuous-time process: demand can occur at any 
point in a given time period.  

 
Given these characteristics, demand arrival can be modelled using a Poisson process, 
which is a stochastic point process on the basis of the Poisson distribution describing 
the number of occurrences of an event in a given time period. When the demand is 
random and constant and can therefore be described by an exponential time to failure 
distribution, the Homogenous Poisson Process (HPP) can be used. The latter condition 
is often considered to be the case when predicting spares demand for Line Replaceable 
Units (LRUs) in steady state conditions. The homogenous variant HPP is a counting 
process N(t) that satisfies the following three conditions [10]: 

 
1) N(0) = 0 
2) The process has stationary and independent increments 
3) The number of demands in any interval of length t is Poisson distributed with 

mean demand λt, meaning that for all h, t ≥0, 
 

 (4) 

 
where  is the number of events in time interval [t, t+h]. 
 
As mentioned, using the HPP to estimate demand arrival assumes that the arrival 

has a constant distribution per time unit analyzed. Alternatively, a Non-Homogenous 
Poisson Process (NHPP) or variant thereof can be used to predict demand arrival in the 
case that the arrival rate λ is a function of time t, i.e. the arrival rate λ is not constant. In 
this case, condition 2) is adjusted to indicate that the process has independent 
increments, but not stationary. 

Estimating unit demand for a given time period requires the following steps: 
 
1) Determination of time period t: the length of the time period t, representing 

the increment or interval of the process, has a direct effect on the expected 
number of demand arrivals (see also Equation (5) for the HPP process). 
However, it has a more indirect and subtle effect in that the determination of a 
time period may influence the determination of the arrival rate λ(t), given that 
data for a time period may exhibit seasonality or a trend. Shifting external 
conditions during a time period t may also influence the counting process. As 
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such, data that is subjected to Poisson process modelling and analysis must be 
checked for seasonality and trends, and must be used at the right level of 
granularity for forecasting use.  

2) Determination of arrival rate λ(t): if the arrival rate is a function of time, the 
generalized rate function is given as λ(t). In that case, the expected number of 
events between time t1 and time t2 is given by . This 
relation can be used to determine the arrival rate λ(t) for a given period of time, 
where λ(t) itself may be deterministic or stochastic, and where the latter 
variant is described by a Cox process. 

 
The arrival rate λ(t) can be used to generate ‘flat’ forecasts of demand for a given 

time period in the case of HPP, when λ(t) is constant with respect to time. The expected 
number of demands during the duration of length t is then given by: 

 
 (5) 

 
For a non-homogenous Poisson process (NHPP), demand arrival will be a function 

of time. 

3. Results 

To test the suitability of the HPP model for predicting lumpy spare parts demand for 
non-routine aircraft maintenance, a dataset from a maintenance operator has been 
collected and analyzed. This dataset concerns Line Replaceable Units (LRUs) that are 
maintained for a customer pool, which requires meeting specified service levels. This 
necessitates timely performance above all, which in practice requires immediate 
replacement of failed LRUs, which is followed by repair of LRUs at the maintenance 
operator premises. The repaired LRUs can be reintroduced into the stock at a later stage. 
The most important implication of this is that from a strategic point of view, the 
maintenance operator requires an ability to meet peak demand at any time, rather than 
average demand. Consequently, the forecasting approach should take this into account. 

In this section, the scope and characteristics of the dataset are discussed, followed 
by application of the HPP model to generate forecasts for peak demand. The 
assumption that HPP is the appropriate and most suitable probabilistic distribution will 
be checked by evaluating a range of probability density functions. The accuracy of 
these stochastic distributions are checked using a goodness-of-fit test based on the root 
mean square deviation (RMSD). Finally, the approach is validated by comparing 
performance to the current method used by the maintenance operator. 

3.1. Dataset characteristics 

For the use case, a dataset consisting of 58202 repairs (assumed equivalent to spare part 
demand, given the spare parts pool context) covering a time span of 730 days (January 
2012- December 2013) has been assembled. This dataset has subsequently been 
reduced in two ways to uncover the items of interest, i.e. LRUs that cause a significant 
cost impact due to turn-around time (TAT) delays and that exhibit lumpy or 
intermittent demand.  

W.J.C. Verhagen and R. Curran / Stochastic Forecasting710



The first step in scoping the dataset has been to uncover the repair occurrences 
which are associated with a TAT delay. Of the total number of repairs, the number of 
TAT delays is given in Table 1. This number is subsequently reduced to incorporate 
TAT delays that were caused by a shortage of parts (categorized as TA by the 
maintenance operator). In total, about 8% of the units exceeded TAT because of a 
shortage of parts. 

Table 1. Component repair occurrences 

Categorization Occurrences Percentage of total (%) 
Total repairs 58202 0 
Total TAT 20816 36 
TA 4727 8 
 

Next, from this reduced dataset a top nine rank has been established. Ranking has 
been achieved through calculation of an impact figure, which consists of a 
multiplication of the amount of occurrences that the unit exceeded the TAT over an 
specific amount of time with the price value of the unit (at latest list price). The top 9 
units are shown in Table 2. 

Table 2. Selected component impact ranking 

R
ank Unit code number # TAT 

delays Impact 

1 332000 44 7,711,132 
2 471126 24 4,679,280 
3 495337 18 2,941,578 
4 433016 16 2,631,040 
5 481090 15 2,006,400 
6 497540 7 1,116,899 
7 854140 19 993,567 
8 495285 17 733,057 
9 495680 17 733,057 

  
Subsequently, the demand characteristics of these top 9 units have been evaluated 

for the time span of the dataset. Demand characteristics have been analyzed on multiple 
levels of granularity (days, months, half-yearly semesters). The characteristics on a 
semester basis are given in Table 3. 55.6% of the units showed intermittent demand 
behavior, whereas the rest (44.4%) showed lumpy behavior. None of the units showed 
smooth (0%) or erratic (0%) demand characteristics. Both by extrapolation and by 
analysis, demand on a daily or monthly basis likewise shows intermittent or lumpy 
behavior. 

Table 3. Unit demand characteristics 

 Demand type 
 Smooth Erratic Intermittent Lumpy 
Semester  

Year 1, Semester 1 0 0 5 4 
Year 1, Semester 2 0 0 4 5 
Year 2, Semester 1 0 0 5 4 
Year 2, Semester 2 0 0 6 3 
Percentage total 0.0 0.0 55.6 44.4 
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3.2. Application of stochastic forecasting model 

Data for the selected top 9 of units has been used to generate demand forecasts (see 
also Section 4.3). This consisted of two elements: 
 

1) Determination of time period t: the maintenance operator uses forecasts 
on a monthly basis and aims to stock towards peak demand during that 
period. To minimize organizational impact transition when moving from 
one forecast method to another, the time period t is determined to concern 
monthly intervals.  

2) Determination of arrival rate λ(t): The main approach has been the 
HPP process (implying determination of a constant arrival rate), but for 
completeness a number of other probability density functions have been 
analysed in order to validate whether the Poisson distribution shows the 
best forecasting accuracy (see also Section 3.3). The program Easyfit has 
been used to determine the coefficients of the probability density 
functions shown in Table 4, based on the historical demand data of the 
top 9 units and a first selection of density functions based on statistical 
goodness-of-fit. The data in Table 4 are average coefficients, but these 
can show significant variation from the given values when considering 
monthly intervals. Due to data confidentiality, it has been chosen to 
represent the average values instead of a monthly example. 

Table 4. Probability density function coefficients for top-9 LRUs (averaged over total time period of 2 years) 

Unit General Extreme Value (k,σ,μ) Weibull (α,β,γ) Poisson (λ) Normal (σ,μ) 
332000 -0.28378 3.2778 5 1.0954 
 1.0594 5.4111  5 
 4.6269 0   
433016 0.22372 1.145 4.8333 3.3714 
 2.2006 4.7785  4.8333 
 2.9451 0   
471126 0.5148 4.9606 9.6667 4.2269 
 1.4029 8.6842  9.6667 
 7.4165    
481090 0.16246 1.2977 5.1667 3.4881 
 2.4644 5.0773  5.1667 
 3.2768 0   
495285 -0.08673 1.0605 5 2.9665 
 2.6928 5.3671  5 
 3.6599 0   
495337 -0.28378 3.1876 8 2.2804 
 2.4719 8.3017  8 
 7.1295    
495680 -0.1418 2.6246 5.1667 3.5449 

 3.2913 6.9996  5.1667 
 3.6765 0   

497540 -0.3541 3.5981 9.3333 2.8752 
 3.166 9.191  9.3333 
 8.3565 1.0732   

854140 0.547 0.79972 3.1667 3.9707 
 1.234 1.906  3.1667 
 1.0122 0   
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3.3. Validation of forecasts 

Using the determined coefficients (on a monthly basis), forecasts have been generated 
per month. Again, an average representation is given (see Table 5) which can be 
compared to the average actual monthly removals. 

Table 5: Forecasts versus actual monthly average demand 

Unit GEV Weibull Poisson Normal Actual monthly average 
332000 8.06 8.64 8.00 8.22 7.83 
433016 16.24 12.37 9.00 11.16 5.00 
471126 18.73 16.07 15.00 17.06 6.00 
481090 24.64 15.56 11.00 14.72 6.83 
495285 12.22 12.21 12.00 13.02 5.42 
495337 19.21 18.50 17.00 17.09 9.58 
495680 12.43 12.20 12.00 13.61 6.58 
497540 13.73 24.32 11.00 14.06 6.00 
854140 64.23 51.63 15.00 33.20 13.08 

 
It is apparent that the Poisson process is closest to the actual values. However, this 

averaged representation foregoes the variation on a monthly basis. To check the 
accuracy of the various methods, the Root Mean Square Deviation (RMSD) as given in 
equation (6) has been used for various time window resolutions (i.e. intervals of t). The 
results are given in Table 6. It can be seen that the Poisson distribution consistently 
performs best. This compares favorably to the method currently used by the company 
in question, which uses the normal distribution as a basis for generating forecasts. 

 

 (6) 

 
Table 6. RMSD of selected probability function forecasts versus actual demand for different time windows 

Time window GEV Weibull Poisson Normal 
1 55 43 29 41 
2 34 31 24 26 
3 76 65 33 48 
4 39 31 21 26 
5 48 37 25 35 

 
For more in-depth validation, units can be analyzed separately. An example is 

given in Figure 2. 
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Figure 2. Unit forecasts versus monthly removals 

This example concerns unit number 433016. As can be observed, the HPP model 
has been evaluated on basis of the average arrival rate over the dataset timespan, as the 
monthly estimates are considered confidential. As such, a constant forecast is generated 
for the full timespan. It can be seen that the HPP model is closest to the actual monthly 
demand values, though the forecasts on monthly basis are in reality more accurate. 
What is striking is that the HPP model is able to forecast peak demand for all instances 
except one (August 2012). The same is true when considering forecast based on 
monthly arrival rates, though these results cannot be represented here. 

4. Conclusions & Future Research 

A stochastic method to generate demand forecasts for aircraft non-routine demand has 
been presented. Demand arrival is assumed to be modelled most accurately by a 
Poisson Process. It has been shown that application of the Homogeneous Poisson 
Process (HPP) outperforms other probability distributions. 

This work represents an initial step in using stochastic point processes to forecast 
spare part demand. Future extensions are considered, including 1) comparison of 
accuracy with time series techniques as discussed in [8]; 2) attenuation of the HPP 
coefficients using explanatory variables; 3) incorporation of time-dependent arrival 
rates (using a NHPP variant such as the Cox Process). 
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