
Extending BPMN for Configurable Process
Modeling

Hongyan ZHANG a,1, Weilun HAN a, and Chun OUYANG b
a

 School of Software Engineering, Beijing Jiaotong University, Beijing 100044,China
b

 Faculty of Science and Technology, Queensland University of Technology, Australia

Abstract. Configurable process modeling provides a key approach to capture
possible process variations into one (reference) model on the one hand and to
retrieve individual process variants through configuration of the model on the
other hand. BPMN, a standard for business process modeling and a mainstream
language being widely adopted in practice, lacks the configurable modeling
capability. In this paper, we propose an extension to BPMN to support
configurable process modeling with a focus on control-flow perspective. Using
configurable workflow net as the theoretical foundation, we formally define the
semantics of the proposed extension to BPMN, its correctness-preserving
conditions, and its configuration semantics. We name the resulting language
Configurable BPMN, i.e. C-BPMN, and provide a running example to illustrate
how C-BPMN supports configurable process modeling as well as process
configuration.

Keywords. Configurable process modeling, Configuration semantics, configurable
reference model, BPMN

Introduction

With the rising of computation abstract level, business process has become both the
organizational asset and computational object, which builds the bridge between
business system and information system and helps them tightly integrated. In the
contemporary of “big program”, the programming technology development is
experiencing some innovations focusing its computation on algorithm logic complexity
to business logic complexity, and wants to build a Turing machine which can directly
understand business logic and process in a visible way. However, the existing
languages of business process modeling are normally weak in the capability of multi-
scenario description and seldom to support configurable process modeling. Even
though some of them support it, the problem to retrieve individual process variants
through configuration of a reference model is still not to be solved. These problems
above heavily take influences on process reuse in design phase and additionally, stiff
process logic brings heavy burdens of maintenance to its corresponding information
systems during their execution. The root of the problems is due to lack of techniques to
support context-awareness information system and adaptable programming or
modeling languages [1, 2]. In these cases, configurable and adaptable process modeling

1 Corresponding Author.

Moving Integrated Product Development to Service Clouds in the Global Economy
J. Cha et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-440-4-317

317

techniques are needed to enhance the capability of process reuse and the degree of
information system flexibility.

Even though reference model technique [3, 4] invented can improve the capability
of process reuse in some extent through supporting multi-scenario description, it
doesn’t change modeling languages themselves. Process modeling languages still can’t
support to capture possible process variations into one reference model and retrieve the
individual process variant which best meets the specific requirements from context. In
this case, a reference model is normally larger in size, more complex in logic and lower
efficient in execution than its individualized model [5]. So, there is necessary to build a
computation environment which supports configurable process modeling. The
environment has three fundamental elements: 1) a configurable process modeling
language; 2) a modeling tool supporting configurable process modeling; 3) a Turing
machine which can understand the configurable process model and customize it into an
configured it according to specific requirements. To build this environment, two
theoretical problems as followed should be solved.

BPMN, as a standard for business process modeling language and a mainstream
language widely adopted by industry, hasn’t had its configurable modeling language
until now. So, it is meaningful and valuable for the paperwork to solve the theoretical
problems which are critical and useful to build a configurable BPMN modeling
environment.

In this paper, the related works on the research are, firstly, introduced to help
readers better understanding of the paper’s work and its results, and then the research
approach is put into discussion so that a clear problem-solving path of this technical
field will be determined. Based on the formal definition of BPMN and process
configuration semantics, configurable BPMN (C-BPMN) will be defined in the aspects
of syntax and semantics; Model correctness verification and validation are very
important for language creation or improvement; the paper provides the correctness-
preserving conditions and constrains for C-BPMN. At last, a running example is made
to demonstrate how C-BPMN supports configurable process modeling as well as
process configuration.

1. Related Work

There are formal and non-formal two types of process modeling languages. Yawl [6]
and Petri net [7] are typical formal languages, UML, EPC and BPMN belongs to non-
formal type [8-10]. Compared with other process modeling languages, BPMN is richer
of process modeling expression not only in semantics but also in syntax.
Configurable modeling and its individualization mainly used in design phase, which is
before model execution [5]. By adding a configuration session into the whole life cycle
of process engineering, a reference model can be automatically customized into an
individual process according to specific requirements. The configured model is
slimmer than its reference model not only in size but also in logic complexity. In the
case, the corresponding information system of the configured model will be executed
more efficiently than the original reference model.

Nowadays, configurable modeling techniques become a popular field in academic
research. The paper [5, 11-14] introduced the configurable extension solutions to EPC
and YAWL, which including C-EPC, C-iEPC, ADOM-EPC and C-YAWL, the authors

H. Zhang et al. / Extending BPMN for Configurable Process Modeling318

of the paper also proposed a configurable extension to BPMN called C-BPMN [15] on
the perspective of control flow.

According to the papers [16, 17], two fundamental approaches to extend process
modeling languages can be summarized:

Extending modeling languages through building configurable nodes. C-EPC
[5] is a configurable modeling language of EPC, which provides configurable
statement through transforming EPC’s Function and Connector nodes into configurable
ones; Based on the definition of C-EPC, ADOM-EPC[13] builds a configurable
extension by adding configurable attributes into Event entity and building configurable
event node in a model. C-iEPC [11, 12] is the successive result of iEPC [18], which
provides a resource-oriented and object-oriented configurable solution through building
configurable Role and Object nodes in EPC models. A configurable extension to
BPMN (called C-BPMN) was recently proposed in the paper [15], the solution
provided a formal definition and appropriate syntax correctness-preserving conditions
for configurable BPMN. However, it regrets that the formal definition is only a syntax-
oriented static description without dynamic semantics.

Extending language based on hiding and blocking. C-YAWL [14] is a
configurable extension to YAWL, which changes YAWL in this approach by adding
the attributes of input and output port into Action entity and setting the port status with
hiding and blocking. So, C-YAWL supports to retrieve an individual process variant
from its reference model by configuring Action node with three statuses as follows:
Normal Execution, Blocking then Execution, Skip then Execution. Even though many
mainstream languages have had their configurable modeling solution based on
language’s extension, it is still blank in the research of process configuration semantics
and their individualization computation.

In this paper, we will develop a renewed version of configurable BPMN based on
the configuration semantics and provide C-BPMN model with the correctness-
preserving conditions as well as individualization algorithm. Finally, a test case with
the logic coverage of seven types of configuration patterns will be done to demonstrate
the algorithm to support complex process logic.

2. Approach of Research

A programming or modeling language supporting one kind of metadata object is
usually developed along the three dimensions: time, space and context. The results
from the research along space dimension usually help creating or improving the
language’s entities and their syntax based upon the insight into its computational object
ontology; the research along time dimension mainly focuses on the behavior semantics
of metal object, and its results will help enhance language’s capability in dynamic
semantics description. As to process modeling languages, the change normally happens
on their syntax definitions. The research along context dimension often focuses on the
communication between language and its context; the results can help building
adaptable languages to construct a context-awareness information system. The contents
of the research along space and context dimensions are out of the scope of this paper’s
work, we only focus the paper’s work on the extension to BPMN based on
configuration semantics along time dimension, that means we need to transform BPMN
into C-BPMN through implementation of hiding and blocking -- the fundamental
operations of process configuration semantics ,define the correctness-preserving

H. Zhang et al. / Extending BPMN for Configurable Process Modeling 319

conditions of C-BPMN’s syntax and the correctness-preserving constrains of C-BPMN
model’s execution semantics, and finally provide appropriate individualization
algorithm based on the definition of configured C-BPMN model and configuration
semantics. The details are explained below:

Step1: Extend BPMN into C-BPMN based on process configuration semantics.
The precise definition of process configuration semantics can be achieved through the
study of configurable workflow net called C-WF net, hiding and blocking are the
fundamental operations of the semantics. Mapping BPMN model into appropriate C-
WF net, C-BPMN, the configurable solution to BPMN, can be found through
implementation of the two fundamental operations.

Step2: Validate C-BPMN model’s syntax correctness in terms of the correctness-
preserving conditions of BPMN syntax. Verify C-BPMN model’s semantics
correctness through verifying that its equivalent induced Petri net is a C-WF net, and
the C-WF net’s semantics is correct according to its correctness-preserving constrains
of execution semantics [19].

Step3: Develop the individualization algorithm for C-BPMN based on process
configuration semantics. The syntax correctness validation of its result -- the
configured model can be done following the correctness-preserving conditions of C-
BPMN. The semantics correctness verification of the configured process is still a
problem needed to be solved in the next paper.

Step4: A process with the coverage of seven types of configuration patterns [20]
will be chosen as a running example to demonstrate how C-BPMN supports
configurable process modeling as well as configuration semantics.

3. Configurable BPMN(C-BPMN)

Even though there already existed a formal definition of C-BPMN in the previous
research [5], it was still only a static definition without dynamic semantics. In this
section, a renewed formal definition of C-BPMN will be discussed based on hiding and
blocking semantics [16] as well as the original formal definition of BPMN [15].

3.1. Syntax of C-BPMN

Before introducing C-BPMN syntax, it is needed to introduce BPMN at first. As a
mainstream process modeling language in industry, BPMN provides a set of graphic
notations for business process modeling. Business Process Diagram (BPD), a kind of
flowchart discussed in graphic theory, provides the formal description for BPMN.

The elements of BPD belong to the subset of BPMN’s elements, which only
consists of the core elements of BPMN including of Event set with two special instance
Start and End, Activity set and Gateway set. Start even is the node to the beginning of
process, End event is the node representing the end to a process. Other events are out of
the scope that the paper wants to discuss. Activity set has two types of elements: Task
and Sub process. A task is an atomic activity and represents a work to be performed
within a process. Sub-process is out of the contents that the paper wants to discuss.
Gateway is a kind of routing construct used to control the divergence and convergence
of sequence flow. There are four main types of gateways, they are parallel fork gateway
(AND-split), parallel join gateway (AND-join), data-based XOR decision gateway

H. Zhang et al. / Extending BPMN for Configurable Process Modeling320

(XOR-split), XOR merged gateway (XOR-join). The other types of gateway are out of
the paper scope.

A core BPMN process using the core subset of BPMN elements can be completely
formalized as a BPD. First we define the syntax of a core BPMN process.

Definition 1 (Core BPMN Process). A core BPMN is a BPMN = (O, T, E, G, C,
F) where:

� O is a set of object which can be partitioned into disjoint sets of tasks T,
events E, and gateways G, i.e., O = T E G,

� t T is a finite (non-empty) set of tasks,
� E is a finite (non-empty) set of events, can be partitioned into disjoint sets of

Start events , End events and Intermediate event ,
� G is a finite set of gateways, can be partitioned into disjoint sets of parallel

fork gateways , parallel join gateways , data-based XOR decision
gateways , and XOR merge gateways , i.e., =Ф and

 = G,
� C G→{ , XOR, } is a function which maps each gateway onto a control

logic, = {g G C = }, = {g G C = XOR}, = {g G C = },
� = {g G input(g)≥2} is the set of join gateways,
� = {g G output(g)≥2} is the set of split gateways,
� = ∩ , = ∩ , = ∩ , = ∩ .
� F O×Ο is the control flow relation.

The paper [15] gave C-BPMN a formal definition with configurable task and
configurable gateway through extending the core BPMN entities in configurable ones.
Configurable task may be set as ON, OFF and OPT. A configurable gateway can be
mapped onto a concrete Choice gateway, which represents the logic construct of split
or join considered even can be configured to a sequence.

Definition 2 (Configurable BPMN Process). A configurable BPMN is a BPMN
= (O, T, E, G, , , , , , , F, , ,) where:

� O, T, E, G, , , , , , and F are specified in Definition 1,
� T→{ON, OFF, OPT} is a set of configurable tasks,
� G →{CT} is a set of configurable gateways, CT = { , XOR, } CTS,

CTS = { n T E G },
� is a configuration requirements.

3.2. Semantics of C-BPMN

The operations of hiding and blocking in C-WF net represent the semantics of process
configuration, which can be used as a foundational framework to extend BPMN into C-
BPMN.

Figure1 shows a relationship between C-BPMN and C-WF nets. The first column
represents the type of configuration operations; the 2nd column contains a C-BPMN
model with a configurable node represented by a double-line rectangle. The model for
the 3rd column is the configured result corresponding to the model in the 2nd column;
In the 4th column, a semantics-equivalent C-WF net with the C-BPMN model in the
2nd column is displayed, the model in the 5th column is the configured result of the C-

H. Zhang et al. / Extending BPMN for Configurable Process Modeling 321

WF net. The Configured WF net is semantics-equivalent with the configured BPMN; it
is the semantic net of the corresponding configurable BPMN.

Figure 1. Relationship between C-BPMN and C-WF nets

The first row in Figure1 depicted configurable task mapping to C-WF nets. The
task within the C-BPMN process fragment is switched “OFF”. This confirms to a
hidden transition within the corresponding C-WF nets.

The second row also depicted configurable task mapping to C-WF nets. The task
within the C-BPMN process fragment is switched “OPT”. This means an option hidden
transition corresponding C-WF nets.

The third row in Figure 1 depicted configurable gateway mapping to C-WF nets.
Configurable XOR-split gateway restricted to a sequence, this means a blocked
transition corresponding C-WF nets.

 C-BPMN Configured BPMN Configurable WF-
nets

Configured WF-
nets

Configurable
Task is OFF

Configurable
Task is OPT

Configurable
gateway

restricted to
sequence

Configurable
gateway
remained

before

H. Zhang et al. / Extending BPMN for Configurable Process Modeling322

The fourth row also depicted configurable gateway mapping to C-WF nets.
Configurable XOR-split can be configured to an XOR gateway. In fact, this confirms to
an option blocked transition within the corresponding C-WF nets.

4. Correctness-Preserving of C-BPMN

C-BPMN, as a new language, is different from its original language BPMN, the
correctness validation and verification in syntax and execution semantics are both
needed to it. In this section, the correctness-preserving of C-BPMN will be discussed
with respects to the conditions for its syntax validation, and the constrains for its
semantics verification.

4.1. Syntactical Correctness

The paper [21, 22] described the correctness-preserving conditions of BPMN syntax as
follow:

Definition 3 (Well-formed BPMN Process). A core BPMN Process given in
Definition 1 is well formed if relation F satisfies the following requirements:

� s , input(s) = Ф output(s) = 1, i.e. start event have an indegree of
zero and an outdegree of one.

� e , output(s) = Ф input(s) = 1, i.e. end event have an indegree of zero
and an outdegree of one.

� g : input(g) = 1 output(g) > 1, i.e. fork or decision gateways
have an indegree of one and an outdegree of more than one,

� g : output(g) = 1 input(g) > 1, i.e. join or merge gateways
have an indegree of one and an outdegree of more than one,

� x O, (s, e) × , sF*x xF*e, i.e. every object is on a path from a
start event to an end event.

Since C-BPMN only brings BPMN changes in entity attributes but not entities, So,
C-BPMN doesn’t change the rules of BPMN syntax, and its model’s semantics
correctness validation can be taken straight following the conditions of BPMN
correctness-preserving. However, for the semantics of process configuration has been
added into BPMN while C-BPMN model has no any behavior semantics, it’s
impossible for C-BPMN to verify its semantics correctness straight on C-BPMN model
itself.

4.2. Behavioral Correctness

C-BPMN is ambiguous without behavior semantics; it is impossible to check the model
for consistency and completeness semantics. WF-nets have formal semantics. It is
sufficient to map BPMN onto WF-nets to specify the behavior unambiguously. The
correctness-preserving results described in C-WF nets can be exploited to achieve the
C-BPMN models, where each configuration step is soundness-preserving.

Induced Petri net is a semantics-equivalent net of C-BPMN model, which can be
obtained through mapping C-BPMN onto Petri net. The verification of C-BPMN
model’s semantics correctness is equal to the correctness verification of its induced

H. Zhang et al. / Extending BPMN for Configurable Process Modeling 323

Petri net. For there already existed the result about the correctness-preserving of C-WF
net [19], So, the semantics correctness verification of C-BPMN model can be realized
by means of verifying that its induced net is a configurable workflow net.

 Table 1 shows the basic strategy that is used to map BPMN onto WF-nets: Start
event or End event correspond to a similar module with a place and a silent transition.
A task corresponds to a transition named by the task with one input place and one
output place. The translation of gateways is more complex than event and task.
Gateways are mapped onto small Petri nets modules with silent transitions capturing
their routing behavior. For example, the behavior of Parallel Fork (AND-Split) mapped
onto a silent transition with one input place and more than one output place.

Table 1. Mapping BPMN objects to WF-nets module

 BPMN Object WF-nets Module BPMN Object WF-nets Module

Parallel Fork
(AND-Split)

Data-based XOR
(XOR-Split)

Parallel Join
(AND-Join)

XOR Merge
(XOR-Join)

The paper[19] provided correctness-preserving semantics of C-WF nets. To construct a
WF-net from a C-BPMN model, we simply use the mapping from BPMN object to
WF-nets module.

We can formally define the induced Petri net as follows:
Definition 4 (Induced Petri net). Let C-BPMN = (O, T, E, G, , , F, , ,

) be a syntactically correct C-BPMN, PN(C-BPMN) = (, ,) is the Petri
net induced by C-BPMN such that:

� = E .
� = T .
� = (F (E×T)) .

where , , are defined as Table 2.
Table 2. Configuration patterns in the C-BPMN

g

{ x inp
ut(g)} { } {(x,) x in(g) {(,) x in(g)} {(,x) x in

(g)}

g

{ } { x inp

ut(g)}
{(x,) x in(g) {(,) x in(g)} {(,x) x in

(g)}

g

{ x out
put(g)} { } {(x,) x out(g) {(,) x out(g)} {(,x) x

out(g)}

g

{ } { x inp

ut(g)}
{(x,) x out(g) {(,) x out(g)} {(,x) x

out (g)}

Lemma 1. Let C-BPMN = (O, T, E, G, , , F, , ,) be a syntactically correct
C-BPMN and PN(C-BPMN) be its induced Petri net, then: PN(C-BPMN) is a WF-nets.

H. Zhang et al. / Extending BPMN for Configurable Process Modeling324

Proof.
Follows directly from the construction of PN (C-BPMN).
Figure 2 depicts the method how to transit a BPMN model into an Induced Petri

net. Induced Petri net specifies the execution semantics of C-BPMN model. This
allows us to identify those C-BPMNs which can be correctly executed.

Definition 5 (Sound C-BPMN). Let C-BPMN = (O, T, E, G, , , F, , ,
) be a syntactically correct C-BPMN and PN(C-BPMN) be its induced Petri net. C-

BPMN is sound iff PN(C-BPMN) is sound.

Figure 2. C-BPMN model and its Induced Petri net

5. Semantics of C-BPMN Process configuration

In this section we can now discuss how a C-BPMN model corresponds to a concrete
model and how process correctors can be preserved during the configuration of a C-
BPMN.

The paper [5] defined configuration BPMN as follow:
Definition 6 (Configuration of C-BPMN Process). Let C-BPMN = (O, T, E, G,

, , , , , , F, , ,) be a C-BPMN. (→{ON, OFF,
OPT}) { →CT} is a configuration of C-BPMN if for each g :

H. Zhang et al. / Extending BPMN for Configurable Process Modeling 325

� C(g), ={(n, n) n CT} {(XOR,),(,)} {(,)
CTS {XOR, }} {(n,n) n CTS}

� If CTS and g , then there exist an n input(g) such that =

� If CTS and g , then there exist an n output(g) such that =

The paper [5] also depicts some examples of configuration and valid configuration.
The former section, in addition, gives the execution semantics of C-BPMN. Now we
provide an algorithm to construct a concrete BPMN model based on a C-BPMN. Note
that a C-BPMN defines a number of concrete BPMN models, and each valid
configuration correspond a C-BPMN to a concrete BPMN. The function β maps a C-
BPMN and its configuration onto a concrete BPMN β(C-BPMN,).

Definition 7 (Semantics of Configurations). Let C-BPMN= (O, T, E, G, , ,
F, , ,) be a C-BPMN, and a configuration of C-BPMN. The
corresponding BPMN β(C-BPMN,) is constructed as follows:

� = (O, T, E, G, , , ,) with = {(g, l(g)) |g G| } {(g,
(g)) |g G} and = F|({(g, n) x out(g) | = n ≠
} {(n, g) in(g) x | = n ≠ }.

� = (O, , E, , , , ,), with = T |{t = OFF} and = {(,
) F |{ , }∩() = Ф}.

� = (O, , E, , , , ,), for each t = OPT, with =
{ }, = G { , }, = {(, XOR), (, XOR)},

 = {(,) |f { , }} {(, f), (,), (,), (f,
)} {(n,) |(n, f) } {(, n) |(f, n) }.

� Remove all gateways with just one input and output arcs, = (O, , E,
, , , ,), with = |{g in(g) = 1 out(g) = 1}

� Re-apply Step 2 of the algorithm, i.e., try to remove the remaining functions
labeled “ ”, = (O, , E, , , , ,), with = |{t =

}
� Remove all nodes not on some path from a start event to a final event,
� Re-apply Step 4 of the algorithm, i.e., remove connector, = (O, , E,

, , , ,), with = |{g in(g) = 1 out(g) = 1}

The following Theorem shows that the resulting β(C-BPMN,) is
syntactically correct provided the initial C-BPMN is syntactically correct:

Theorem 1 (β(C-BPMN,) is an BPMN). Let C-BPMN = (O, T, E, G, ,
, F, , ,) be a C-BPMN, and a configuration of C-BPMN. β(C-BPMN,

) is an BPMN satisfying all requirements stated in Definition 7
Proof. BPMN = (O, T, E, G, C, , , F) satisfies all requirements by definition.

� The sets E, T, G are disjoint Although not always stated explicitly we assume
no name clashes,

� There is at least one event e , such that input(e) = 0. Start event are not
removed,

� There is at least one event e , such that output(e) = 0. End event are not
removed,

H. Zhang et al. / Extending BPMN for Configurable Process Modeling326

� For each t T: input(t) = 1 and output(t) = 1,
� For each g G: input(g) ≥1 and output(g) ≥1. Existing gateways and newly

added connectors satisfy this requirement.

In the former section, we discussed that a C-BPMN configuration can be
represented by using the hiding and blocking operations that defined in C-WF nets [19].
Therefore, we can construct a C-BPMN configuration onto the Induced WF-nets. For
example, if a configuration task in a C-BPMN switched OPT, this indicated that the
transition in the WF-nets is option hide. If a configurable XOR gateways is restricted,
the transition in the WF-nets is blocked.

Definition 8 (Induced WF-net Configuration). Let C-BPMN = (O, T, E, G, ,
, F, , ,) be a syntactically correct C-BPMN, be one of its configuration

and PN(C-BPMN) be its Induced Petri net. → {allow, hide, block,
option hide, option block} is the configuration of PN(C-BPMN) induced by .

If we start from a C-BPMN that has been checked for soundness, and we apply a
configuration step, we can check the correctness of the resulting C-BPMN by reasoning
on the Induced WF-net before and after the configuration.

Proposition 1(Soundness-preserving C-BPMN configuration). Let C-BPMN be
a sound C-BPMN, be one of its configuration, PN(C-BPMN) be the Induced
WF-net. Let also be the configuration of PN(C-BPMN) induced by
and (PN(C-BPMN),) be the configured net which all the nodes not on a
directed path from the input to the output place. If PN(β(C-BPMN,)) is equal to

(PN(C-BPMN),) then β(C-BPMN,) is sound.
Proof.
It is obviously that: 1) C-BPMN is sound. Hence its configured BPMN β(C-BPMN,

) is syntactically correct(Theorem 1) and PN(C-BPMN) is sound(Definition 5). 2)
Since β(C-BPMN,) is syntactically correct, its Induced Petri net PN(β(C-BPMN,

)) is a WF-net. Thus (PN(C-BPMN),) is sound, since it is the
configured WF-net of PN(C-BPMN) which is sound. If PN(β(C-BPMN,)) is
equal to (PN(C-BPMN),) then PN(β(C-BPMN,)) is sound. Hence
β(C-BPMN,) is sound.

6. Case Study

To show the configuration steps of configuration semantics, a C-BPMN model is
introduced and analyzed. Table 3 shows nine configuration patterns [20] and seven
patterns in the extension of BPMN. a configurable task of C-BPMN corresponds to a
Optionality pattern, and the task can be configured as ON, OFF and OPT. configurable
gateway in C-BPMN corresponds six patterns, including split gateway and join
gateway.

Figure 3 depicts a configurable model for configuration. The configuration aspects
are denoted by double-line border, and we ignore the meaning of each element within
the model. In examples, we have three components of configurable nodes: configurable
task B, configurable gateway XOR and two configurable gateways XOR or AND
connected with arcs, i.e. task A, E and F are configurable tasks and gateway ,

H. Zhang et al. / Extending BPMN for Configurable Process Modeling 327

 and are configurable gateways. We also ignore the configuration
requirements () in the model. The configurable nodes in the figure may have:

� The configurable task A has been switched OPT,
� The configurable task E remained ON,
� The configurable task F has been switched OFF,
� The configurable gateway has been configured to XOR,
� The configurable gateway has been configured to ,
� The configurable gateway has been configured to AND.

Figure 3. Configuration semantics of a C-BPMN model

Table 3. Configuration patterns in the C-BPMN

Configurable Task Optionality √
Configurable Gateway(Split) Parallel Split √

Exclusive Choice √
Multi Choice √

Configurable Gateway(Join) Synchronization √
Simple Merge √
Synchronizing Merge √

Others Interleaved Parallel Routing
Sequence Inter-relationships

H. Zhang et al. / Extending BPMN for Configurable Process Modeling328

Now, we should follow the configuration semantics. Step 1, we choice all
configurable gateways correspond to a concrete gateway, i.e. and
remained before and have a decision on , so we delete the arcs form
to . Then, we remain task E and replace task F by skip in Step 2. Next, we
correspond task A. In Step 3, we add an XOR-split gateway, a skip task and a XOR-
join gateway. Then we remove in Step 4 because of the gateway only have one
input and one output. We delete task skip which come from task F in Step 5. Finally we
remove all nodes not on some path from a start event to a final event in Step 6, and
reapply Step 4 to prevent one input and one output gateways.

7. Conclusion and outlook

The paper provides a whole solution of the configurable extension to BPMN, which
focuses on the extension of its core entities and provides them executable semantics.
Moreover , the correctness-preserving of C-BPMN is discussed according to its formal
definition , the correctness preserving conditions of C-BPMN for syntax validation and
the correctness-preserving constrains of C-BPMN model for semantics verification are
separately proposed. Additionally, the paper introduces an individualization algorithm
of C-BPMN based on process configuration semantics and provides an efficient and
effective method to automatically customize C-BPMN model with accordance to
specific requirements. At last, a running example with logic coverage of seven
configuration patterns is taken to demonstrate how well the algorithm supports
complex C-BPMN models and process configuration semantics.
Based on the results above, there still some problems needed to be solved in the future:

1. Developing the other solutions of the configurable extension to BPMN not
only focusing on the core entities of BPMN but more on the other entities
of control flow, for example, middle event, complex gateways etc.

2. Up to now, there doesn’t exists a scientific approach to identify which entities
are suitable to be set configurable and the method to implement the
configurable modeling technique.

3. Building C-BPMN modeling environment based on the existing results above.

References

[1] H. Klaus, M. Rosemann, G.G. Gable, What is ERP? , Information systems frontiers, 2(2): (2000) 141-162.
[2] M. Rosemann, ERP software: characteristics and consequences, 7th European Conference on

Information Systems, 1999.
[3] P. Fettke, P.Loos, Classification of reference models: a methodology and its application, Information

Systems and e-Business Management, 1(1) (2003) 35-53.
[4] M. Rosemann, Application Reference Models and Building Blocks for Management and Control, In

Bernus et al. (eds.), Handbook on Enterprise Architecture. Springer Berlin Heidelberg, 2003: 595-615.
[5] M. Rosemann, W. M. P. van der Aalst, A configurable reference modelling language, Information

Systems, 32(1) (2007) 1-23.
[6] W. M. P. van der Aalst, A. H. M. Ter Hofstede YAWL, Yet another workflow language, Information

systems, 30(4) (2005) 245-275.
[7] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE, 77(4) (1989) 541-

580.
[8] G. Engels, A. Förster, R. Heckel et al., Process modeling using UML, Process-Aware Information

Systems, (2005) 85-117.

H. Zhang et al. / Extending BPMN for Configurable Process Modeling 329

[9] Object Management Group. Business Process Modeling Notation (BPMN) Version2.0. OMG Final
Adopted Specification. Object Management Group, 2011.

[10] G. Keller, A.W. Scheer, M. Nüttgens, Semantische Prozeßmodellierung auf der Grundlage
Ereignisgesteuerter Prozeßketten (EPK), Inst. für Wirtschaftsinformatik, 1992.

[11] M. La Rosa, M. Dumas, A.H.M. ter Hofstede et al., Beyond control-flow: Extending business process
configuration to resources and objects, Queensland University of Technology , 2007.

[12] M. La Rosa, M. Dumas, A.H.M. ter Hofstede et al., Configurable multi-perspective business process
models, Information Systems, 36(2) (2011) 313-340.

[13] I. Reinhartz-Berger, P. Soffer, A. Sturm, Extending the adaptability of reference models, Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, , 40(5) (2010) 1045-1056.

[14] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers et al., Configurable workflow models,
International Journal of Cooperative Information Systems, 17(02) (2008) 177-221.

[15] HAN Wei-lun, ZHANG Hong-yan., Configurable Process Modeling Techniques for BPMN, Computer
Integrated Manufacturing System, 19(8) (2013) 1928-1934.

[16] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, Configurable process models — a
foundational approach , Reference Modeling. Physica-Verlag HD, 2007: 59-77.

[17] M. La Rosa, M. Dumas, A.H.M. ter Hofstede, Modelling business process variability for Design-Time
Configuration. In J. Cardoso, W.M.P. van der Aalst (editors), Handbook of Research on Business
Process Modeling, IDEA Group – Information Science Reference, 2009.

[18] A.W. Scheer, ARIS - Business Process Frameworks, Springer, Berlin, 3rd edition, 1999.
[19] W.M.P van der Aalst, M. Dumas, F. Gottschalk et al., Preserving correctness during business process

model configuration, Formal Aspects of Computing, 22(3-4) (2010) 459-482.
[20] A. Dreiling, M. Rosemann, W.M.P. van der Aalst et al., Model-driven process configuration of

enterprise systems, Wirtschaftsinformatik 2005, Physica-Verlag HD, (2005) 687-706.
[21] C. Ouyang, W.M.P. van der Aalst, M. Dumas et al., From business process models to process-oriented

software systems: The BPMN to BPEL way, http://bpmcenter.org/wp-
content/uploads/reports/2006/BPM-06-27.pdf, 2006.

[22] R.M. Dijkman, M. Dumas, C. Ouyang, Formal semantics and analysis of BPMN process models,
Technical Report Preprint 7115, Queensland University of Technology, 2007.
https://eprints.qut.edu.au/archive/00007115.
.

H. Zhang et al. / Extending BPMN for Configurable Process Modeling330

http://bpmcenter.org/wp-content/uploads/reports/2006/BPM-06-27.pdf
http://bpmcenter.org/wp-content/uploads/reports/2006/BPM-06-27.pdf

