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Abstract. Biomedical ontologies continuously evolve which demands maintain 
associated mappings up-to-date. This article studies whether similarity calculated 
between values of concept attributes issued from successive ontology versions 
plays a role in deciding mapping adaptation actions. We empirically analyse the 
evolution of official mappings established between large biomedical ontologies. 
The results point out the relevance of this factor for mapping adaptation. 
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Introduction 

Ontology mappings play a key role in enabling semantic interoperability for 
exchanging and retrieving data between biomedical systems [1]. They link concepts of 
domain-related ontologies allowing systems to interpret data annotated with different 
ontologies. However, to remain useful and reflect the most up-to-date knowledge of the 
domain, these ontologies evolve and new versions are periodically released. This 
potentially impacts existing mappings demanding methods to ensure, as automatic as 
possible, their semantic consistency over time. 

We have designed the DyKOSMap framework to adapt ontology mappings through 
a set of Mapping Adaptation Actions (MAAs) [2]. Our approach aims at deciding 
which action to apply when some ontology change a�ects the source concept of a 
mapping. Existing tools enable to calculate simple and complex ontology changes 
given two successive ontology versions [3]. Indeed, various factors may influence the 
action decision for each correspondence individually [2]. We have studied how 
different types of ontology changes correlate with the adaptation actions [4][5][6]. 
Nevertheless, the complete understanding of this phenomenon demands further studies 
inquiring other factors to take into account in the mapping adaptation process.  

This article reports on the influence of the similarity relatedness for mapping 
adaptation. We calculate the similarity between textual statements from source 
concepts of mappings with textual statements of parents, children and sibling concepts 
issued from a new ontology version. These statements are attribute values 
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characterizing the concepts. For instance, an attribute ai, of type name, contains the 
value “cardio vascular disease”. We investigate whether the MAAs correlate with the 
behaviour of similarity values observed. We hypothesize that the similarity aspect 
stands for an element that may help deciding the adequate actions to adapt mappings. 

1. Methods 

An ontology O consists of a set of concepts interrelated by directed relationships. Each 
concept ci 

j at time j has a unique identifier, and a set of attributes ATT(ci)={a1, a2,..., an} 
(e.g., name, definition, synonym, etc.). We define a set of concepts of an ontology OX at 
time j as CNC(OX

 j) = {c1 
j, c2 

j,..., cn 
j}. A relationship r interconnects two concepts and 

has a specific type, e.g., “subsumption”, “part-of”, etc.  
The context CT of a concept ci in the ontology stands for the union of the sets of 

sup(ci),  sub(ci) and sib(ci) concepts of ci, as following: 

CT(ci) = sup(ci) � sub(ci) � sib(ci) 

where :sup(ci) ={ck|ck��CNC(O), ci�ck� ci≠ck}, sub(ci) ={ck|ck� CNC(O), ck�ci� ci≠ck}, 
sib(ci) ={ck|ck� CNC(O), sup(ck)∩sup(ci) ≠ ∅} to which ci�ck stands for “ci is narrower 
or more specific than cj”, e.g., “hypotension” is more specific than“vascular disease”. 

An ontology mapping MS,T 
j, established at time j, interrelates a set of given 

concepts by semantic correspondences. A correspondence corst = (cs, ct, conf, semType) 
links two concepts cs�CNC(OS 

j) and ct�CNC(OT 
j) through the semType relation. The 

conf denotes the similarity value between cs and ct indicating the confidence of their 
relation. We consider the following types of semantic relation: unmappable [�], 
equivalent [=], narrow-to-broad [≤], broad-to-narrow [≥] and overlapped [≈]. 

We have expressed behaviours of mapping adaptation as Mapping Adaptation 
Actions [2] (cf. Figure 1). In MoveM the source concept cs is replaced by another 
concept ck. Similarly, in DeriveM the original mapping remains and a new one appears 
connecting a concept ck with ct. In both actions, ck

1�CT(cs
1). In RemoveM the mapping 

is deleted and the action ModifySemTypeM consists in modifying the type of semantic 
relation. The no-action refers to the cases where correspondences remain unchanged. 

We conduct our experiments using various releases of official mappings 
established between biomedical ontologies including: SNOMED-CT (SCT), MeSH, 
ICD-9-CM (ICD9) and ICD-10-CM (ICD10). In particular, mappings interconnect 
SCT(2010)-ICD9(2009) and SCT(2012)-ICD9(2011); MeSH(2012)-ICD10(2011) and 
MeSH(2013)-ICD10(2011). We observe the evolution of the biomedical ontologies and 
mappings through the following procedure: 

 

• Calculate MAAs: Given all mappings between two ontologies, for each one 
impacted by some ontology change, we determine a list of MAAs. We remove 
those where the source concept remains unchanged from one ontology version 
to another, or where ontology changes simultaneously affect both source and 
target concepts. We use the COnto-Diff tool to calculate ontology changes [3]. 
Having successive releases of mappings allows us to calculate the MAAs for 
each correspondence. We compare the elements composing a correspondence 
(identifier of source and target concept, and relation type). For instance, given 
a correspondence at time j, we search its elements in the mapping at time j+1. 
If we fail to find, we sign the RemoveM action for such correspondence. We 
use a similar approach to determine the other MAAs. 
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Figure 1. Mapping Adaptation Actions 

• Identify relevant attributes: For each source concept impacted by ontology 
changes, we identify a minimal set of 3 relevant attributes representing the 
most relevant attributes for a given correspondence, since this is established 
on partial information (e.g., some attributes) defining concepts. These source 
concept attributes consist of the most similar to the ones in the target concept. 
We pre-selected groups of attributes to calculate the similarity value. For 
instance, we do not compare the ICD9 attribute “Exclude” with the SCT 
attribute “Name”, if a correspondence exists. 

• Calculate similarity: For each relevant attribute of a source concept cs in an 
impacted mapping at time j0, we calculate the similarity with attributes issued 
from concepts in the context of cs at time j1. To this end, we explore string-
based similarity metrics, especially the bi-gram because this measure performs 
well on ontology matching tasks [7]. The similarity function receives two 
attribute values and returns a value ranging from 0 to 1. The higher the result 
is, the more similar these attributes are. We analyze the density of calculated 
similarity values ranging from 0 to 1 for each MAAs by using the kernel 
density estimation method [8]. The density stands for a smoothing distribution 
of frequencies of the similarity values similar to a histogram. We observe the 
similarity’s influence on the MAAs by studying the following scenarios: 

1. REL_ATTS_changedCT: For each impacted correspondence, we search the 
highest similarity value calculated among the relevant attributes identified 
with all attributes issued of changed concepts in the context of cs at time j1. We 
register such maximum similarity value for the MAAs applied.

2. Best_REL_ATT_changedCT: This is similar to scenario 1, but we only 
consider the best relevant attribute for calculating the similarity (i.e., the most 
significant attribute for cs regarding the ct). We aim to examine the influence 
of this particular attribute with respect to all relevant attributes. 

3. REL_ATTS_unchangedCT: This scenario also performs similar to scenario 
1, but examines the unchanged part of the context of cs (i.e., all unchanged 
concepts in the context). 

4. Best_REL_ATT_unchangedCT: Similar to scenario 2, we observe the 
similarity density only considering the best relevant attribute with the 
unchanged context. 

5. REL_ATTS_conceptMAA: This scenario applies only for MoveM and 
DeriveM since they involve a concept ck

1 (denoted conceptMAA) which 
replaces the concept cs. We calculate the density of the highest similarity 
values among the relevant attributes and the attributes characterizing ck

1. 
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6. Best_REL_ATT_conceptMAA: This is similar to scenario 5, but we only 
consider the best relevant attribute. 

We repeated this procedure for both set of mappings (SCT-ICD9 and MeSH-
ICD10). The total number for each type of MAAs analyzed remained: MoveM (635); 
DeriveM (768); ModSemTypeM (58), RemoveM (193) and no-action (9280). 

2. Results 

Figure 2 presents the obtained kernel estimation based density of the similarity values 
for the DeriveM and MoveM actions. For DeriveM, we observe a similar behaviour of 
the density of similarity values in scenarios 1 (REL_ATTS_changedCT) and 2 (Best_ 
REL_ATT__changedCT), revealing a high frequency of low similarity values. We 
explain this by the fact that most frequently the changed CT set is empty so similarity 
values remain zero. In scenarios 3 (REL_ATTS_unchangedCT) and 4 (Best_ 
REL_ATT_unchangedCT), we observe the contrary behaviour with a bigger density 
of high similarity values. This shows that the original source concepts appear similar 
with unchanged concepts in the context. Scenario 4 presents a lower density of high 
similarity values compared with scenario 3. We point out a higher density of medium 
similarity in scenario 5 (REL_ATTS_conceptMAA) compared with scenario 6. This 
reveals that the best relevant attributes frequently are not the most similar ones to 
conceptMAA. Results for scenarios in MoveM indicate a similar behaviour of the 
DeriveM except for the scenario 1 (REL_ATTS_changedCT). This underscores that 
when finding similarity with the changed CT a MoveM action occurs. 

Figure 3 presents the achieved results for the ModSemTypeM, RemoveM and no-
action. For the ModSemTypeM, scenarios 1 (REL_ATTS_changedCT) and 2 (Best 
REL_ATT_changedCT) behave very similar, with a high density of low similarity 
values. On the contrary, scenario 3 (REL_ATTS_unchangedCT) shows a higher 
density of high similarity values which remains lower for the scenario 4. All scenarios 
for RemoveM behave very similar presenting a high density of low similarity values. 
This may rely on the fact that when correspondences evolve by RemoveM action, the 
whole context contained unchanged or not similar concepts that could be candidates for 
replacing the source concept. When no-action is applied, the scenarios with the 
changed context (1 and 2) show a high density of low similarity values also because of 
the inexistence of changed concepts. However, we observe a high density of high 
similarity values in the scenarios with unchanged context (3 and 4) despite that 
correspondences remained unchanged (i.e. any mapping adaptation action was applied). 

3. Discussion 

Our results pointed out well-defined behaviours with respect to the density of similarity 
values for the MAAs. We found the similarity between ontology versions a relevant 
factor for mapping adaptation. This might help deciding which action applying, but 
seems insufficient for a completely automatic mapping adaptation. For example, for 
DeriveM and MoveM actions (cf. Figure 2), the density of the highest similarity values 
in scenarios 3 and 4 (unchanged context) is bigger than the density observed in 
scenarios 5 and 6 (conceptMAA). We expected that the similarity value with the 
concept where a DeriveM or MoveM action happens would remain higher than the 
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similarity found with unchanged concepts. On the other hand, the similarity aspect can 
help deciding for a RemoveM action (cf. Figure 3). In addition, we expected to observe 
a more determinant influence of the best relevant attributes in the studied scenarios. We 
conclude that a system for mapping adaptation must combine the similarity with other 
aspects to achieve enough facts enabling to trigger different MAAs. Our future work 
involves studying these further factors.  

 
Figure 2. Similarity values density between concept attributes for DeriveM and MoveM actions 

 
Figure 3. Similarity value density between concept attributes for ModifySemTypeM, RemoveM and no-action 
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