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Abstract. The ageing of biological tissues can be accelerated by many factors, 
mainly of physiological and nutritional nature. In the case of skeletal muscle 
tissue, one of the main consequences of ageing is a progressive loss of muscle 
mass and a worsening of the quality of muscle tissue, termed “sarcopenia”. The 
correlation between the deterioration of muscle tissue and what we usually refer to 
as the “lifestyle”, although being the subject of several studies, up to now has been 
considered only from a clinical and a statistical viewpoint. However, the 
construction of a sound mathematical model of the muscle tissue, accounting for 
the changes due to ageing, can provide a more refined quantitative tool. Such a 
tool could determine in an improved way the variations of some measurable 
physiological parameters, such as the mass and the electrical impedance of the 
tissue, caused by the variation of other controllable factors, such as diet, physical 
activity, pharmacological treatments, air pollution exposure. A specific 
mathematical model, once implemented on a computer, makes it possible to 
perform “virtual” experiments, facilitating the search for a suitable treatment of 
sarcopenia. Moreover, test situations can be studied which would not be 
reproducible in vivo, such as drug overdoses, extreme nutritional deficiencies, 
environmental overexposure to harmful substances, and so on. 
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Introduction 

Mathematical modeling is at the basis of the technological achievements of the last two 
centuries. Not only engines, aircrafts, and buildings have been designed and produced 
with the aid and guidance of mathematical modeling, but also communication media, 
electric appliances, and the whole digital world of computers would not have been 
possible without the deep understanding of physical processes and the predictive 
control provided by mathematical models of those processes. More recently, medical 
appliances and digital image processing have offered additional evidence of the 
positive impact that mathematics can have on the quality of life. In all of the mentioned 
applications the key for the success of mathematical modeling is the controllability of 
the system under consideration. Indeed, such a controllability (typical of engineered 
systems) may well be viewed as a necessary condition for the mathematical models to 
be of any use, since mathematics seems to be pretty controllable, at a first glance. 
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Luckily enough, this is a misconception: on one side, the mathematical theory of 
deterministic chaos has shown us that unpredictability is inherent to even very simple 
mathematical models; on the other hand, many complex and poorly controllable 
systems have been subject to an effective mathematical modeling. 

What kind of system is complex and poorly controllable? In a word, we could say 
that any lively system displays those features. And what kind of mathematical tools are 
needed to model lively systems? Those related with probability and stochastic analysis. 
Indeed, the best we can hope for is, in many cases, to achieve a predictive 
understanding of the average behavior of a complex system and of the degree of 
conformity to that behavior shown by small parts (or individual realizations) of the 
system. 

In the last 60 years it has become more and more fashionable to try and apply 
mathematical models to lively systems such as turbulent flows, financial markets, 
biologically interacting populations, socially interacting human groups, neurological 
systems, living cells and tissues. All of these systems exemplify the three main features 
of lively systems: (1) it is impossible to follow in detail the behavior of each 
constituent of the system; (2) the collective behavior of the system is not a simple 
upscaling of the individual's behavior; (3) the time-evolution of the system displays 
deep reorganizations and modifications of the collective behavior due to both internal 
and external factors. 

In attempting to develop a mathematical model for the behavior of a biological 
tissue and for its evolution over a long period of time, bringing ageing into play, we 
must be aware of the aforementioned issues, to choose the most appropriate modeling 
strategy and mathematical tools. 

��� The Modeler's Task. 

One of the main features of science is capability of prediction, that is, the 
possibility, starting from a known situation, to predict the values of some measurable 
quantities, enabling the scientist to have a fairly satisfactory picture of the future 
evolution of the situation. But this is not completely true. Indeed, the evolution which 
is predicted by the scientist is that of her own picture of reality, and reality often 
betrays our forecasts. 

 We can then see the importance of making a picture of reality, a model, as faithful 
as possible, but we must also cope with the limited nature of our resources. To build up 
a model that properly balances those needs is the main task of a scientist. 

For instance, consider the properties of a steel bar used to reinforce a building. In 
seeking for accuracy, we could try and take into account all the atoms constituting the 
bar and all their interactions up to a certain distance. In other terms, we could picture 
the bar as a grid of atoms, using the laws of Quantum Mechanics to predict a rather 
accurate picture of the motion or of the response of the bar to an external load. But in 
doing that, we would immediately see that this is possible only for a very limited 
number of atoms (two or three, indeed) if we are looking for exact solutions, and 
perhaps a few hundred thousands of them if we are satisfied with approximate 
solutions, by using a computer. Since a real macroscopic bar is made of a huge number 
of atoms (billions of billions of billions), we see that this way is completely unfeasible. 

On the other hand, we could view the bar as a sort of “homogeneous material”, 
finding out what kind of response the bar has to an applied load, without deriving that 
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from physically established and detailed principles. Anyway, we have to use 
appropriate hypotheses: for instance, we may assume that a piece of bar behaves the 
same way if it is pulled in a direction or in another one, or that it recovers its initial 
shape whenever unloaded, and so on. In other words, we have to make a model of what 
our situation is, and proceed from it applying appropriate hypotheses. As we all know, 
a steel bar is not homogeneous at all if we magnify it enough (even long before getting 
to atomic scales), but we can assume that the inhomogeneities of the material are 
negligible if one aims at predicting the behavior of the bar, at least if the loads are not 
too heavy. Of course, leading physical principles such as conservation of energy may 
help in the construction of the model, but in general they are not enough for a complete 
description. Driven by a need for simplification, scientists have been able to deal with a 
great number of phenomena, just trying to minimize the number of necessary 
assumptions, using symmetry considerations, dropping negligible quantities, and so on.  

It should be stressed that every model is not only a partial picture of the 
phenomenon, but also a choice, namely the choice of what features are negligible for 
the study that one has in mind. As we have said, the choice is usually made pursuing 
essentiality: for instance, if we picture our bar as a homogeneous material, we could 
describe it with a smaller number of parameters and perhaps end up with a simpler 
problem, easier to solve, even if it is far from being complete. Only the experience of 
the modeler may lead to the right amount of simplifications. 

��� How to Model Living Systems 

A living organism has a peculiar organization which makes it very different from both 
a bunch of atoms and a macroscopic material. Living tissues exhibit a great variety of 
self-organization mechanisms and show radically different pictures at different scales. 
A skeletal muscle, for instance, shows a very complicated (but not random) structure at 
smaller and smaller scales: from fascicles to fibers, to sarcomeres, to myosin and actin. 
Moreover, a living tissue is usually growing, thus showing a feature which is not 
shared with ordinary macroscopic materials. 

Therefore, if one wants to predict a future situation, the type of models that she is 
been using may be crucial for the accuracy of the prediction. It is very important to 
remind that predictions may depend on the model used and some lack of matching with 
real life is not a matter of wrong basic laws, but rather of a wrong or insufficient 
modeling. 

2.1. Deterministic and Non-Deterministic Models 

Models may be, in essence, divided into two classes: deterministic and non-
deterministic ones. Deterministic models usually lead to mathematical problems that 
are treatable only when a limited number of unknowns comes into play. Let us make a 
simple example: suppose that we want to describe bacteria on a substrate. Clearly, the 
number of living bacteria at a certain time is an integer number: they cannot be fifteen 
and half. But, if their number exceeds a million, or if their birth rate and mortality rate 
are sufficiently high, it could be even meaningless to consider the exact number of 
bacteria at a certain moment as an integer number: we may not be able to count them, 
since they die and are born too quickly. We therefore admit that an error of one part on 
a million will not affect the final picture that we would like to have, and then we can 
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assume the number of bacteria to be also non-integer. This is the starting point in 
setting up a differential equation, that is, an equation relating the speed at which a 
quantity increases or decreases with the quantity itself. 

A differential equation is in general difficult to solve explicitly, but it is often 
easily approximated to within a given error, and then it may produce a nice prediction 
of the situation we want to model. However, suppose that we are dealing with several 
species of bacteria on the same substrate: each species, namely each individual, will 
interact with the others in a very complicated way, which has to be modeled itself. If 
the number of species of bacteria increases, the deterministic problem that comes out 
may rapidly become intractable, both because the mathematics is too complicated and 
because the number of interactions is difficult to describe. 

In such a situation, a non-deterministic model may be more useful. We could speak 
of a sort of “bouquet” of bacteria and specify only the relative percentage of the species 
in a given point. In doing so, we only know the probability of finding one bacterium or 
another in a given point. We could alternatively speak of “many different bacteria in 
the same point”, which evolve under laws to be modeled. The sentence “the bacterium 
is here now” becomes meaningless in this context, but the prediction may be easier to 
obtain. 

Another important point is the knowledge of the initial situation. This is often 
taken for granted, but if the phenomenon under study shows instability, it is very likely 
that a small error in the initial conditions will produce a great error in the predicted 
situation, what is sometimes referred to as the “butterfly effect”. This is the reason 
why, for example, it is possible to predict precisely a total eclipse of Sun many years 
before it happens, but it is very difficult to forecast the weather for the next week.  

Besides the instability phenomenon, which is in some sense unavoidable, there is 
another, maybe less known, problem in modeling that influences scientists’ attitude 
rather deeply. When complex, or to be more precise, lively situations are under 
investigation, such as those concerning living or economic systems, not only are the 
predictable values known within an error, but also some laws may be partially 
unknown. For instance, in the case of bacteria one may suppose that species A eats 
species B, but the rate of that can be very difficult to measure. Or, in an economic 
problem, even if it is plausible that the mean propensity to consume increases when the 
gross national product increases, and one can simply assume that the two quantities are 
proportional, it may be very difficult to estimate the proportionality constant. 

2.2. Numerical Simulations 

After achieving good theoretical stability results for the model, some simulations can 
be performed, trying to have a clue of the unknown constants which have to be chosen. 
Usually simulations are performed by implementing the model on a computer (the so-
called numerical simulations, often referred to as in silico). For example, a simulation 
may be used to predict the private expenses with different values of the internal product 
and to determine a possible value of the unknown proportionality constant. Next, with 
that value, other simulations may be able to predict several features of the 
phenomenon. In this sense, modeling is useful to modeling itself, without being a 
circular procedure. But, for the same reasons, simulations of complicated or chaotic 
phenomena must be always used with caution, and the awareness of all the 
simplifications made must guide the interpretation of the results. Moreover, even if 
numerical simulations may lead to huge money savings, for example by replacing a 
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wind tunnel with a computer, and therefore they are very useful, sometimes they may 
be badly employed, especially when they are passively assumed as truth, as for some 
partial climate predictions.  

Anyway, numerical models are often the unique way to discover and/or explain 
features which otherwise remain inaccessible, and they probably will be the major tool 
for predicting and decrypting our life in the next future. 

��� A Model for Sarcopenia. 

Finding the causes and the mechanisms which lead to the ageing of biological tissues 
has always been an important task for the medical research. Indeed, the quality of life 
of elderly people could be greatly improved by slowing down or blocking such 
mechanisms. 

Among the various elements of human body, the one which is severely subject to 
ageing is muscle tissue, especially that related to skeleton. A significant degeneracy of 
such tissues entailing loss of muscle mass and reduced functionality of the muscular 
fibers, often associated with ageing, is a syndrome named sarcopenia. 

3.1. What is Sarcopenia 

Sarcopenia is a so-called geriatric syndrome, that is, a complex clinical situation which 
is quite common in the old age and which does not fit into the definition of a specific 
disease. Although there is no general agreement on the parameters defining the 
syndrome, primary sarcopenia refers to a progressive loss of skeletal muscular mass in 
adults, which can become dramatic (loss of 50% of muscular mass) after the age of 80. 
In the last ten years it has been suggested to use the term sarcopenia referring generally 
to the loss of muscle functionality, and not only muscle mass. In 2010 the European 
Working Group on Sarcopenia in Older People [1] 
 

"recommends using the presence of both low muscle mass and low muscle function 
(strength or performance) for the diagnosis of sarcopenia." (p. 413) 
 

Someone proposed to use the term dynapenia for the loss of the sole muscle 
function, but the denomination did not achieve a widespread use. 

Needless to say, sarcopenia has a great impact on the quality of life of elderly 
people: the loss of muscle functionality greatly reduces mobility and consequently 
reduces autonomy; moreover, the risk of injuries and bone breaking considerably 
increases, causing disabilities and hospitalization. 

3.2. Diagnosis of Sarcopenia: How to Measure Some Quantitative Parameters 

In order to describe and to diagnose sarcopenia, there is a strong need to find some 
quantitative markers of the disease, an obvious candidate being the actual amount of 
skeletal muscle tissue in a human body. However, measuring such a quantity in a 
reliable and not invasive way is not easy, and several techniques have been proposed in 
the last few years. Apart from MRI, which is quite slow and expensive, two tests have 
been considered as a widespread diagnostic tool: BIA (Bioelecrical Impedence 
Analysis) and DEXA (Dual-Energy X-ray Absorptiometry). Unfortunately, both of 
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them can measure only the mass and are inappropriate to evaluate the quality of muscle 
tissue: this is one of the main points which makes so difficult any clinical diagnosis of 
sarcopenia. The usual methods to test the efficiency of the muscles (hand grip strength 
test, six-minute walk test, knee extension strength test) are much less precise and must 
be adapted to elderly people. For instance, the six-minute walk test, which is quite 
demanding for an 80-year-old person, is usually replaced with the four-meter walk test, 
which is a lot easier and can be performed in any room, but it is even too quick and 
cannot precisely measure the performance of the leg muscles in a prolonged exercise. 

3.3. Mathematical Models of Muscle Tissue 

The first mathematical models of some of the functionality of muscles appeared in the 
scientific literature long ago. The pioneering work of the Nobel laureate A. V. Hill in 
the decade 1920-30 tried to describe some experimental results about the muscle 
contraction by using a few ordinary differential equations. Later on, in 1954, another 
Nobel laureate, A. F. Huxley, discovered the so-called “sliding filament” mechanism of 
muscle contraction and in 1971, together with R. M. Simmons [2], proposed a 
mathematical equation describing some quantitative parameters involved in the 
contraction of muscles. Since then, a lot of mathematical literature has been developed 
on the subject of muscle contraction. Recent important instances are the papers by L. 
Truskinovsky and coauthors [3-5], where it is proposed a refinement of Huxley’s 
model which is capable to better fit the experimental data in a wide range of 
physiological situations. The model by Truskinovsky is based on a mathematical 
description of the behavior of a single cross-bridge between myosin and actin and takes 
into account also some stochastic fluctuations, which cannot be neglected at the 
molecular level, by inserting suitable terms in the equation. Then, many such equations 
(~2000) are coupled in order to describe the behavior of a single sarcomere, and, via 
some numerical simulation, the output of the model is related to experimental 
measurements. 

Another approach to muscle modeling has been undertaken by using the tools of 
Continuum Mechanics: the muscle tissue is viewed as a homogeneous material and all 
the microscopic details are coded in the equations describing the material. With this 
approach one can hope to model a larger system, such as an entire biceps or triceps, 
taking into account also the typical orientation of the muscular fibers. Among the 
authors which followed this method, we like to mention Holzapfel and Ogden [6], who 
have proposed several models of the heart as a muscle, accounting also for the 
geometry of the ventricles. 

��� Our Research Activity: Modeling the Quality of Muscles 

The main goal of our research activity, which started a few months ago at the “Niccolò 
Tartaglia” Department of Mathemetics and Physics of the Università Cattolica del 
Sacro Cuore, is to produce a mathematical model capable of quantitatively describing 
the evolution of sarcopenia. In order to do this, we need two main ingredients: 
� a sound model of the skeletal muscle tissue, which can keep into account also the 

possible loss of muscular mass; 
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� a descriptor of the quality of muscle tissue, that is, some quantity which can 
summarize the physiological changes due to the ageing into a quantitative 
parameter. 
 
For instance, a possible strategy could be to introduce in an existing model, such as 

an adapted version of the model by Truskinovsky, a time-dependent parameter 
measuring the strength of the cross-bridges between actin and myosin. Tuning the 
value of the parameter by imposing an increasing weakness of the bonds as time passes 
could result in a sarcomere which is deteriorated and which has a worsening in the 
performance. In such a way we would have a descriptor of the quality of muscles, and 
the model could be coupled with other equations describing the evolution in time of the 
quality parameter. Clearly, those equations should account for nutritional and 
environmental factors, as well as drug assumptions and training activity of the subject. 

As a starting point, we are looking for some quantitative parameters which can be 
used in the diagnosis of sarcopenia. The main parameter is the total skeletal muscle 
mass, but also the electrical impedance of the tissue, which is easily measured, can be a 
good indicator, as well as the muscle fat content, although this is much harder to 
evaluate. In doing this, we are studying the correlations between the electrical 
resistance of the muscle tissue and the muscular performance, in order to test whether 
the electrical impedance can be a good quantitative parameter on not. A good electrical 
model of the human arm or the human leg, capable to account for the electrical 
capacity of the cells and the geometry of the appendicular muscles, would be very 
useful at this stage. 

4.1. The Role of Stochastic Phenomena 

If we are interested in the mechanical properties of the muscle tissue, we can safely 
make use of deterministic continuum mechanical models, which only capture the 
collective behavior of the system. But, when it comes to assessing the quality of the 
tissue as it evolves with ageing, a number of "randomizing" phenomena influence the 
system. In particular, the degenerative process of ageing acts in a stochastic way on the 
individual cells of the tissue, and the macroscopic effects of that process can be traced 
and simulated only by a careful analysis of that stochastic process. Moreover, the 
response of each person to external factors (diet, medications, lifestyle, etc.), and even 
the response of different muscles, may be very different, and a probabilistic approach is 
necessary in assessing suitable parameters to diagnose sarcopenia. 

��� Conclusions 

Sarcopenia is a serious syndrome related to human ageing and one of the main causes 
of frailty and inability in elderly people. It shows up as a gradual loss of skeletal 
muscle mass and functionality. Far from finding a medical therapy, even the diagnosis 
of the disease is problematic, due to the scarcity of quantitative parameters (besides the 
total muscle mass and strength) and the difficulty to measure them. In order to help the 
active ageing and healthy living, we started an ambitious scientific project aiming to 
produce a mathematical model of the behavior of the human skeletal muscle capable to 
describe also the quality of the muscular tissue. Such a model would be very helpful in 
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the search for the mechanisms causing the disease and could suggest also possible 
therapies. As a starting point, we are trying to simplify the evaluation of the total 
skeletal muscle mass by comparing segmental BIA measures of the limbs with other 
anthropological measures.  
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