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Abstract. We propose a new qualitative spatial logic for reasoning about part-
whole relations between geometries (sets of points) represented in different geospa-
tial datasets, in particular crowd-sourced datasets. Since geometries in crowd-
sourced data can be less inaccurate or precise, we buffer geometries by a margin
of error or level of tolerance o, and define part-whole relation for buffered ge-
ometries. The relations between geometries considered in the logic are: buffered
part of (BPT), Near and Far. We provide a sound and complete axiomatisation of
the logic with respect to metric models and show that its satisfiability problem is
NP-complete.

1. MOTIVATION

This work is motivated by our previous work [3] on integrating authoritative geospatial
information and crowd-sourced or volunteered geospatial information. Geometry repre-
sentations of the same location or place in different datasets are usually not exactly the
same. Objects are also sometimes represented at different levels of granularity. For ex-
ample, consider geometries of objects in Nottingham city centre given by the Ordnance
Survey of Great Britain (OSGB) [7] and by the OpenStreetMap (OSM) [6] in Figure 1.
The position and shape of the Prezzo Ristorante are represented differently in OSGB
(dotted) and OSM (solid) (Figure 1.a). The Victoria Shopping Centre is represented as a
whole in OSM (Figure 1.b), and as several shops in OSGB (Figure 1.c).

In order to integrate the datasets, we need to determine which objects are the same
and sometimes (as in the example of Victoria Shopping Centre) which objects in one
dataset are parts of objects in another. One way to produce such matches is to use loca-
tions and geometries of objects, although of course we also use any lexical labels associ-

Figure 1. a. Prezzo Ristorante; b. Victoria Shopping Centre in OSM; ¢. Victoria Shopping Centre in OSGB
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Figure 2. a. a buffer; b. three dashed circles are buffered part of (BPT) the solid circle; c. NEAR; d. FAR

ated with the objects, such as names of restaurants etc. The generated matches are seen
as assumptions, and are retractable if found incorrect. We check correctness of matches
by checking their logical consistency. Some of the checks use ontology reasoning (if an
object is classified as a restaurant in one dataset and as a bank in another, together with an
axiom stating that the concepts of Restaurant and Bank are disjoint, a contradiction can
be derived). Other checks are performed using spatial reasoning. In [4], we proposed a
spatial logic LNF that contains relations of being buffered equal (BEQ), Near and Far to
validate ‘sameAs’ matches of objects: if it is conjectured that a; is ‘sameAs’ b; and that
a is ‘sameAs’ by, then a contradiction can be derived if NEAR(ay,a;) and FAR(by,b;).
However, LNF is not appropriate for verifying ‘partOf’ matches. In this paper, we are
proposing a logic where we can formalise for example the following argument: if » and ¢
are near, c is part of d, then b cannot be part of a which is far from d. The main concepts
of this logic, which we call a Logic of ParT and whole for Buffered geometries (LBPT),
are explained in the next section. We also compare it to existing spatial logics.

2. BPT, NEAR, FAR

For the application described in the previous section, we found it difficult to use for-
malisms such as RCC and other topology or mereology theories [1], since they presup-
pose accurate geometries or regions with sharp boundaries. Unlike existing models for
spatial relations between indeterminate regions or objects with broad boundaries based
on rough set theory [8], such as [2] and [9], we could not define a certain inner region,
because the same location can be represented using two disconnected polygons from
authoritative and crowd-sourced geospatial datasets respectively, which requires that the
whole region within the buffer [5] of a geometry is uncertain. We did not adopt proba-
bilistic or fuzzy approaches, such as [12] and [10], because we did not have a good way
to define a proper probability function or a membership function for a fuzzy set. The first
logic we designed for debugging geometry matches, LNF [4], has the ‘buffered equal’
relation as a basic relation, which turns out to be less useful when the data is represented
at different levels of abstraction (such as a shopping centre in one set and a collection
of shops in another). In [4], we gave a complete and sound axiomatisation for LNF, but
only with respect to geometries consisting of a single point. In this paper, we start with
the ‘buffered part of” (BPT) relation as the basic relation, and interpret geometries as sets
of points.

As shown in Figure 2.a, by buffering the solid circle ¢ by ¢, where ¢ indicates the
margin of error or level of tolerance, we obtain a larger circle, denoted as buffer(c, o),
where every point is within ¢ distance from c. For a geometry ¢ which is possibly repre-
sented inaccurately within the margin of error o, the actual accurate representation is as-
sumed to be somewhere within buffer(c, o). A geometry g is buffered part of a geometry
h, if g is within buffer(h, o) (Figure 2.b).
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We also have NEAR and FAR relations in the logic LBPT. They formalise concepts
of being ‘possibly connected’ (given a possible displacement by ¢) and ‘definitely dis-
connected’ (even if displaced by &) respectively. Two geometries are possibly connected
iff their o buffers are connected. Figure 2.c and Figure 2.d show the boundary case of
being NEAR, where distance(g,h) = 20 (their buffers are externally connected) and the
case where two geometries are far apart and cannot possibly correspond to connected
objects respectively.

3. SYNTAX, SEMANTICS AND AXIOMS OF LBPT

The language L(LBPT) contains a set of individual names, three binary predicates
NEAR, FAR and BPT, and logical connectives, =, A, V, —.

Applying predicate letters to individual names yields atomic formulas, e.g. BPT (a,b).
Every atomic formula is a well-formed formulas (wffs). If o and 8 are wffs, then -,
aAB,aV P, o — P are wifs.

We interpret the logic over models which are based on a metric space (similar to
other spatial logics, such as [13] and [1], and also similar to [11] but for a different logical
language).

Definition 1 (Metric Space) A metric space is a pair (A,d), where A'is a set and d is a
metric on A, i.e., a function d : A x A — Rxq such that for any x,y,z € A, the following
holds:

1. d(x,y)=0iffx=y;
2. d(x,y) = d(y,x);
3. d(x,2) <d(x,y) +d(y,2).

Definition 2 (Metric Model) A metric model M is a tuple (A,d,I,0), where (A,d) is
a metric space, 1 is an interpretation function which maps each constant to a set of

elements in A, and ¢ € Rs is the margin of error. The notion of M |= ¢ (¢ is true in
model M) is defined as follows:

M = BPT (a,b) iff ¥pa € I(@)3py € 1(6) : d(parpy) € [0,0];

M = NEAR(a,b) iff Ipq € I(a)3pp € 1(b) : d(pa,pp) € [0,20];

M = FAR(a,b) iff Vpq € I(a)¥pp € I(b) : d(pa,pp) € (40,+0);

ME-aiff M i a; MEaABiffME=aand M = B;
MEoVBiffMEaorMEB; MEo—BifMEaxorMEP

where a,b are individual names, o, B are wifs.

A formula ¢ is valid (= «) if for every metric model M, M = «. The logic LBPT
is the set of all valid formulas of L(LBPT).

The following calculus (that we will also refer to as LBPT) will be shown sound and
complete for LBPT:

Axiom 0 All tautologies of classical propositional logic;
Axiom 1 BPT(a,a);
Axiom 2 NEAR(a,b) — NEAR(b,a);
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Axiom 3 FAR(a,b) — FAR(b,a);

Axiom 4 BPT(a,b) ABPT(b,c) — NEAR(c,a);

Axiom 5 BPT(b,a) ABPT(b,c) — NEAR(c,a);

Axiom 6 BPT(b,a) ANEAR(b,c) ABPT(c,d) — —~FAR(d,a);
Axiom 7 NEAR(a,b) ABPT(b,c) ABPT(c,d) — —FAR(d, a);
MP Modus ponens: ¢, ¢ — v F y.

The notion of derivability I'+ ¢ in LBPT is standard. A formula ¢ is LBPT-derivable
if - ¢. A set I' is (LBPT) inconsistent if for some formula ¢ it derives both ¢ and —¢.

4. SOUNDNESS AND COMPLETENESS OF LBPT

In this section we prove that LBPT is sound and complete with respect to metric models,
namely that - ¢ < | ¢. Proofs of some lemmas are omitted due to lack of space.
Detailed proofs can be found here: www.cs.nott.ac.uk/~hxd/report/lbpt.pdf.

Theorem 1 (Soundness) Every LBPT derivable formula is valid: - ¢ = = ¢.

Proof. The proof is by an easy induction on the length of the derivation of ¢. Axioms 1-7
are valid (by the truth definition of BPT, NEAR and FAR) and modus ponens preserves
validity. QED.

In the rest of this section, we prove completeness. We will actually prove that given
a finite consistent set of formulas, we can build a satisfying model for it. This shows that
t/ ¢ =~ ¢ and by contraposition we get completeness. The completeness proof is more
involved than that for LNF with respect to point geometries [4].

Definition 3 (MCS) A set of formulas I in the language L(LBPT) is maximal consistent,
if T is consistent, and any set of LBPT formulas over the same set of individual names
properly containing U is inconsistent. If I is a maximal consistent set of formulas, then
we call it an MCS.

Lemma 1 (Lindenbaum’s Lemma) If X is a consistent set of formulas in the language
L(LBPT), then there is an MCS X" over the same set of individual names such that
rCcxt.

Let ¢o, 91, ¢2,... be an enumeration of LBPT formulas over the same set of individual
names as that in X. X can be defined as follows:

e Yy=1;

e X, | =X,U{¢,}, if it is consistent, otherwise, X,+1 =X, U{—¢,};

[ ] Z+ = Unzo Zn.

Given a consistent set of formulas X, we construct a metric model satisfying a max-
imal consistent set L1 containing ¥, following the steps below.

Step 1 We equivalently transform X1 to B(X "), a set of basic quantified formulas.
Step 2 We construct a set of distance constraints D(X") from B(X™), such that any met-
ric space satisfying D(X1) can be extended to a model of B(ZT).
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Step 3 We show that if D(X") is path-consistent, then there is a metric space (A,d)
satisfying D(X 7).
Step 4 We show that D(X1) is path-consistent, if £t is consistent.

Since LT is consistent, then there is a metric space that can be extended to a metric model
satisfying B(X"), thus, £, thus, X.

In Step 1, we equivalently transform X to a set of basic quantified formulas defined
as follows.

Definition 4 (Basic Quantified Formula) Observe that atomic LBPT formulas are
equi-satisfiable with first order quantified formulas corresponding to their truth condi-
tions in Definition 2:

® BPT(a,b) and the formulaNp, € a3p, € b : d(pa,p») € [0, 0] are equi-satisfiable;
e NEAR(a,b) and the formula 3p, € a3p, € b : d(p,,pp) € [0,20] are equi-satisfiable;
® FAR(a,b) and the formulaNp, € a¥py € b : d(pa,pp) € (40,0) are equi-satisfiable.

We refer to these first order quantified formulas as basic quantified formulas, and use the
following abbreviations for them, where g is a non-negative interval.

o V(a b g) (vpa cavpy€b: d(Pme) € g)’
L H(Q’b g) = (Elpa S az'Pb €b: d(pavpb) )’
e y(a,b,g)= (Vp, € adpp € b:d(pa,pp) € 8);
o S(a,b,g) = (Ipa € aVpy € b:d(pa.pp) € 8)

Lemma 2 For any MCS " and any pair of individual names a, b occurring in ¥, exactly
one of the following cases holds:

C1 BPT(a,b) ABPT (b,a) € £;

C2 BPT(a,b) \—BPT (b,a) € £*;

C3 —BPT(a,b) ABPT (b,a) € £*;

C4 —BPT (a,b) A—~BPT (b,a) A\NEAR(a,b) € £+;
C5 —-NEAR(a,b) A—~FAR(a,b) € £*+;

C6 FAR(a,b) € £

Definition 5 (B(Z1)) Given an MCS X%, a corresponding set of basic quantified formu-
las B(X ") is constructed as follows. For every pair of individual names a,b, we translate
the LBPT formulas to basic quantified formulas:

b)) =
{8(a,b,(0,%)),8(b,a,(0,%)),3(a,b,[0,20]),3(b,a,[0,20])};
o translate(—~NEAR(a,b) N —FAR(a, b))

{¥(a,b,(20,)),¥(b,a,(20,)),3(a,b,[0,40]),3(b,a,[0,40])};
o translate(FAR(a,b)) = {V(a,b,(406,)),Y(b,a,(40,))}.

e translate(BPT(a,b) ABPT(b,a)) ={x(a,b,[0,0]),x(b,a,[0,0])};
e translate(BPT (a,b) N—BPT(b,a)) ={x(a,b,[0,0)), é( ( =))};
e translate(—~BPT(a,b) ABPT(b,a)) ={&(a,b,(0,)), x(b,a [0 cl)};
o rranslate(—BPT(a,b) N —BPT(b,a) /\NEAR(a

)

Let names(L) be the set of individual names occurring in ¥. Then,

B(E+) = Uaenames(Z)ﬁbenames(E) tranSZate(case (a7 b))
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where case(a,b) returns the LBPT formula in the case of a,b specified in Lemma 2.

By the construction above, B(X") contains the same set of individual names as X,
and any metric model satisfying B(X") satisfies X"

In Step 2, for a set of basic quantified formulas B(Z*), we construct a set of distance
constraints D(X), and then show that if there is a metric space satisfying D(X1), then it
can be extended to a model of B(X™) (hence XT).

Next we turn to producing enough ‘points’ to populate geometries corresponding to
individual names. The next definition specifies the cardinality of the set points(a) (points
assigned to an individual name a).

Definition 6 (numps+)(a)) Let names(X) be the set of individual names occurring in %,
B(X") is a corresponding set of basic quantified formulas of £+, an MCS of ¥. For any
individual name a € names(¥),

3g:3(a,b,g) € B(X")}|
Jg:&(ab,g) € B(XT)}|
3g: x(b,a,g) € B(ZT)}|

Then numps+(a) = max(1,numg s+ (3a) +numpgs+\(§a)+ numps+)(xa)).

numpg s+ (3a) = [{b € names(X)
numgs (éa) |{b € names(X)
nump(s (xa) {b € names(X)

We omit subscript B(X") for readability when it is clear from context.

Definition 7 (Witness for a formula) A witness for a formula 3(a,b,g) is a pair of con-
stants p, € a, pp € b such that d(p,,pp) € g A witness for a formula &(a,b,g) or
x(b,a,g) is a constant p, € a, such that d(p,, pp) € g, for any constant pj, € b. A constant
is clean for a formula, if it is not a witness for any other formula.

Definition 8 (D(X1)) Let B(X") be the set of basic quantified formulas of an MCS T+
To every individual name a in X, we assign a fixed set of new constants, points(a) =
{pl.....p"}, where n = num(a). We construct a set of distance constraints D(X") as
follows, by iterating through basic quantified formulas in B(X") and eliminating quanti-
fiers on new constants. Initially, D(X) = {}. For every individual name a in %, for every
constant p, € points(a), we add d(pa,pa) € {0} to D(X"). Then x(a,a,{0}) always
holds. For every pair of different individual names a,b, if

e J(a,b,g) € B(X"), then we take clean constants p, € points(a), pp € points(b),
and add d(p,,pp) = d(Pp,pa) € g to D(EY) (pa,p» become the witness for
I(a,b,g));

e &(a,b,g) € B(L"), then we take a clean constant p, € points(a), for every
pp € points(b), we add d(pa,py) = d(pp,pa) € g to D(XT);

e &(b,a,g) € B(X"), then we take a clean constant py, € points(b), for every
Pa € points(a), we add d(pa,py) = d(pp,pa) € g to D(ET);

e x(a,b,g) € B(X"), then we take a clean constant pj, € points(b), for every
Pa € points(a), we add d(pa,py) = d(pp,pa) € g to D(XT);

e x(b,a,g) € B(X"), then we take a clean constant p, € points(a), for every
pp € points(b), we add d(pa,pp) = d(pp,pa) € g to D(ET);

e V(a,b,g) € B(X"), then for every pair of constants p, € points(a), pp € points(b),
we add d(pq,py) = d(pp,pa) € g to D(ET).
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For every pair of different constants p,q involved in D(X"), we add d(p,q) = d(q,p) €
[0,00) to D(E"), then repeatedly replace d(p,q) = d(q,p) € g1 and d(p,q) = d(q,p) € g2
with d(p,q) = d(q,p) € (g1 Ng2), until there is one distance range for each pair of p,q.

Lemma 3 Any metric space satisfying D(X1) can be extended to a model of B(X").

Proof.(sketch) Suppose S is a metric space satisfying D(X"). We extend S to a model M
by interpreting every a occurring in X as points(a), as specified in Definition 8. We can
prove that for any individual name a, points(a) covers all the clean constants needed for
constructing D(X1). Then by Definition 8, every basic quantified formula has a witness.
Therefore M is a model of B(X"). QED.

D(X") and B(X™) are not equi-satisfiable because of the way we assign witnesses
for ) formulas, but we will show that if B(X") is consistent then D(X%) can be satisfied
in a metric space. The following definitions are essential for Step 3 and Step 4.

Definition 9 (Composition) For non-negative numbers dy,d,, the composition {d;} o
{dy} = [|di — da|,dy + do] '. For non-negative intervals gy,g>, their composition
81082 = Ud]Eg],dzEgz {d]} ° {dz}

Definition 10 (Path Consistency) Given a set of distance constraints D, for every pair
of constants a,b, their distance range is strengthened by enforcing path-consistency as
follows until a fixed point is reached:

Ve:gla,b) < gla,b)N(g(a,c)og(c,b))

where ¢ is a constant different from a,b, g(a,b) denotes the distance range for a,b (i.e.
d(a,b) € g(a,b)). If at the fixed point, for every pair of constants a, b, there exists a valid
value for their distance, this is, g(a,b) # 0, then D is path-consistent.

Definition 11 (Primitive, Composite, Definable Intervals) Let h be a non-negative in-
terval. h is primitive, if h is one of [0,0], (0,=), [0,20], (20,%), (20,40], (40,00),
[0,00). h is composite, if it can be composed using at least two primitive intervals. h is
definable, if it is primitive or composite.

It is easy to show that if an interval occurs in D(X"), then it is an identity interval
({0}) or a primitive interval.

Definition 12 (DS(X")) We define the set of distance constraints which appear in the
process of enforcing path-consistency on D(LT), denoted as DS(X"), as follows:

e Any distance constraint in D(X") is in DS(X");

e [f distance constraints d(a,b) € h and d(b,c) € g are in DS(L™"), then d(a,c) €
hogisin DS(X");

e [fdistance constraints d(a,b) € h and d(a,b) € g are in DS(X"), then d(a,b) €
hNgisin DS(ZT)

where a,b,c are constants in D(X 7).

"Based on d(x,z) < d(x,y) +d(y,z) (Property 3 of Definition 1).
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For a distance constraint d(a,b) € h in DS(X"), we proved that / is a non-negative
interval; A is either right-infinite or right-closed; if lower(h) # 0, then & is left-open.

We are now going to characterise all possible distance constraints occurring in
DS(XT). Eventually, we will show that all those distance constraints are left and right
definable in the sense given below. For an interval & of the form (I, u), [I,u), (I,u] or [1,u],
we call / the lower bound of A, represented as lower(h), and u the upper bound of A,
represented as upper(h). We allow lower(h) or upper(h) to be e. For the lower or upper
bound of an interval i, we use ~ or * to denote that / is open or closed respectively.

Definition 13 (Left-Definable) A distance constraint d(ci,c,) € h (n > 1) is left-
definable, iff there exists a sequence of distance constraints d(c;,ci+1) € h; (0 <i<n)
in D(X1), such that, for ' = hyo...oh,_y, the following holds:

1. If his left-open, then I is left-open, h C W, and lower™ (k') = lower™ (h);
2. If his left-closed, then I is left-closed, h C I/, and lower™ (h") = lower™ (h).

Definition 14 (Right-Definable) A distance constraint d(ci,¢,) € h (n > 1) is right-
definable, iff there exists a sequence of distance constraints d(c;,ci+1) € h; (0 <i<n)
in D(XV), such that, for ' = hyo...oh,_ 1, the following holds:

1. If his right-open, then I is right-open, h C I, and upper— (h') = upper— (h);
2. If his right-closed, then W' is right-closed, h C K, and upper™ (h') = upper™ (h).

Lemma 4 If a distance constraint d(a,b) € h is in DS(XT), then it is left-definable and
right-definable.

Lemma 4 can be proved by an induction on the number of operations (intersection or
composition) applied, to obtain d(a,b) € h from D(LT).

In Step 3, following the same way as described in [4], we can construct a metric
space satisfying all the constraints in D(X"). The main lemmas proved are stated below.

Lemma 5 Let t be the number of constants in D(X1). Enforcing path-consistency on
D(X"), a fixed point can be reached in O(t%).

For any interval i occurring in D(X%), & C [0,00). In the worst case, [0,%) can be
strengthened at most 4¢ times (first strengthen it to [0,u], u < 40 (¢ — 1), then strengthen
it by o each time). For ¢ constants, there are O(¢?) distance constraints in D(X*). There-
fore, the total time of strengthening all the distance constraints is O(¢3).

Lemma 6 Let t be the number of constants in D(XT), DI (X7) be a fixed point of enforc-
ing path consistency on D(XV). If D(X1) is path-consistent, Ds(X") is obtained from
DY (X% by replacing every right-infinite interval with {5tG}, every right-closed interval
h with {upper(h)}, then Ds(L")is path-consistent.

Any interval referred in D/ (£*) is either right-infinite or right-closed.

Lemma 7 Let £t be an MCS. If D(X%) is path-consistent, then there is a metric space
(A,d) such that all the constraints in D(X") are satisfied by d.

In Step 4, we will prove D(X") is path-consistent by contradiction.
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Lemma 8 Let ¥ be an MCS. Then its set of distance constraints D(X") is path-
consistent.

Proof.(sketch) Suppose D(X™) is not path-consistent. By Definitions 10 and 12, d(p,q) €
0 is in DS(XT), for some constants p,q. It is easy to show that for any distance range g
occurring in D(X1), g # 0. By Definitions 12, 9, and intersection rules, the last operation
to obtain the first @ interval is intersection. By Definition 12, there exist d(p,q) € h
and d(p,q) € gin DS(ZV), h # 0, g # 0, and hN g = 0. h, g are non-negative intervals.
Without loss of generality, let us suppose upper(h) < lower(g).

By Lemma 4, d(p,q) € h and d(p,q) € g are left-definable and right-definable.
Since d(p,q) € h is right-definable, then by Definition 14, there exists an 4’ such that
upper™(h) = upper™(h') and h C I'. Since d(p,q) € g is left-definable, then by Def-
inition 13, there exists an g’ such that lower™ (g) = lower (g') and g C g’. Then
and g’ are identity or definable intervals. By properties of identity or definable intervals,
lower(g') < 40, thus, upper(h') < 4c. By properties of intervals in DS(X1), A is right-
closed; g is left-open, if lower(g) # 0. Then all the possible cases where kN g = 0 are
listed below:

e upper(h) =0, lower(g) € {0,20,30,46} or lower—(g) = 0;
e upper(h) = o, lower(g) € {0,20,30,40};

e upper(h) =20, lower(g) € {20,30,40};

e upper(h) =30, lower(g) € {30,40};

e upper(h) =40, lower(g) =40.

We can show that given an upper bound or a lower bound of a definable interval,
there is a limited number of possibilities of it. For example, if upper(h’) = 20, then
h' =[0,20] or ¥ = [0,0] 0 [0, G]. Thus, there are finitely many possibilities for the cor-
responding sequences of d(p,q) € h and d(p,q) € g. By Definitions 13 and 14, every
distance constraint in the sequences is in D(X1). By Definitions 5 and 8, we can know
which LBPT formulas in % they come from. For example, if d(p,q) € [0,20] is in
D(X") and p € points(a), g € points(b), then NEAR(a,b) € £7. In each case, we can
show L is derivable using axioms, which contradicts the assumption that X" is consis-
tent. Therefore, D(X 1) is path-consistent. QED.

Theorem 2 If a finite set of formulas ¥ is LBPT-consistent, there exists a metric model
satisfying it.

Proof. Given X, by Lemma 1, we can construct an MCS X containing it. If ¥ is LBPT-
consistent, so is 1, and hence by Lemma 8 and Lemma 7 there is a metric space (A, d)
such that all constraints in D(X7) are satisfied by d. By Lemma 3, the metric space can
be extended to a model M of B(X"), thus, of LT (Definition 5). By properties of maximal
consistent sets, for every ¢ € 7, ¢ € £t & M |= ¢. Hence, since £ C T+, M satisfies
all formulas in X. QED.

5. DECIDABILITY AND COMPLEXITY OF LBPT

From the bound on the size of the satisfying model, we also have the following theorem:
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Theorem 3 The LBPT satisfiability problem is NP-complete.

Proof.(sketch) NP-hardness of the LBPT satisfiability problem follows from NP-
hardness of the satisfiability problem for propositional logic, which is included in LBPT.

To prove that the LBPT satisfiability problem is in NP, we show that given a finite
satisfiable set of LBPT formulas I', we can guess a model for I" and verify that this model
satisfies I', both in time polynomial in the combined size of formulas occurring in I'.

The completeness proof shows that, if I" is consistent, it is satisfiable in a metric
model M whose size is polynomially bounded by the number of constants in I', and dis-
tance function has a fixed finite range. We guess a model like this. To check whether it is
a proper model, we need to check whether it is a metric space by Definition 1. This can
be done in time which is polynomial in the size of M. To check whether M satisfies I', we
need to check this for each formula in I'. This can be done in time which is polynomial
in the combined size of formulas in I" and in the size of M. QED.

6. CONCLUSION

We presented a logic LBPT which formalizes the concepts of being ‘possibly part of’
(BPT), ‘possibly connected’ (NEAR) and ‘definitely disconnected’ (FAR). We provided
a sound and complete axiomatistion of it with respect to metric models and showed
that its satisfiability problem is NP-complete. An LBPT reasoner is under development
and testing, for validating ‘sameAs’ and ‘partOf’ matches between spatial objects from
authoritative and crowd-sourced geospatial datasets.
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