
Learning Probabilistic CP-nets from
Observations of Optimal Items

Damien BIGOT a, Jérôme MENGIN a and Bruno ZANUTTINI b

a IRIT, Université Paul Sabatier, Toulouse, France
b GREYC, Université de Caen Basse-Normandie, France

Abstract. Modelling preferences has been an active research topic in Artificial In-
telligence for more than fifteen years. Existing formalisms are rich and flexible
enough to capture the behaviour of complex decision rules. However, for being in-
teresting in practice, it is interesting to learn not a single model, but a probabilistic
model that can compactly represent the preferences of a group of users – this model
can then be finely tuned to fit one particular user. Even in contexts where a user is
not anonymous, her preferences can depend on the value of a non controllable state
variable. In such contexts, we would like to be able to answer questions like “What
is the probability that o is preferred to o′ by some (unknown) agent?”, or “Which
item is most likely to be the preferred one, given some constraints?”

We study in this paper how Probabilistic Conditional Preference networks can
be learnt, both in off-line and on-line settings.

Keywords. PCP-net, Learning, preference, recommandation

1. Introduction

The development of recommender systems and other interactive systems for supporting
decision-making has highlighted the need for models capable of using a user’s prefer-
ences to guide her choices. Modelling preferences has been an active research topic in
Artificial Intelligence for more than fifteen years. In recent years, several formalisms
have been proposed that are rich enough to describe in a compact way complex prefer-
ences of a user over combinatorial domains. When the user’s preferences are qualitative,
and have a “simple” structure, conditional preference networks (CP-nets, [5]) and their
variants [4,6] are popular representation frameworks. In particular, CP-nets come with
efficient algorithms for finding most preferred items (item optimisation problem).

Existing formalisms are rich and flexible enough to capture the behaviour of com-
plex decision rules. However, for being interesting in practice, these formalisms must
also permit fast elicitation of a user’s preferences, involving a reasonable amount of in-
teraction only. Anonymous recommendation systems, preference-based search [17], or
configuration of combinatorial products in business-to-customer problems [15] are good
examples of decision problems in which the user’s preferences are not known a priori.
In such applications, a single interaction with the user must typically last at most 0.25 s,
and the whole session must typically last at most 20 minutes, even if the item to be
recommended to the user is searched for in a combinatorial set.

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-81

81

Recently there have been several interesting proposals for learning preferences,
many of them where presented in [11]. The approaches range from learning numer-
ical ranking functions [12,18,1] to learning qualitative, structured preference rules
[13,10,14,2]. These works assume that a set of rankings or pairwise comparisons is given
or elicitated, in order to build a model that generalises these rankings or comparisons.

However, in several settings, it is interesting to learn not a single model, but a proba-
bilistic model that can compactly represent the preferences of a group of users. In a next
step, this model can then be finely tuned to fit one particular user. Even in contexts where
a user is not anonymous, her preferences are usually ill-known, because they can depend
on the value of a non controllable state variable. In such contexts, we would like to be
able to answer questions like “What is the probability that o is preferred to o′ by some
(unknown) agent?”, or “Which item is most likely to be the preferred one, given some
constraints?”

Probabilistic Conditional Preference networks (or PCP-nets for short) [9,8] enable
the user to compactly represent a probability distribution over some partial orderings and
answer such queries. Specifcially, a PCP-net specifies a probability distribution over a
family of CP-nets. There is a close connection between CP-nets and Bayesian networks:
[7] proves that the problem of finding the most probable optimal item is similar to an
optimisation problem in a Bayesian network. However, a PCP-net encodes a probability
distribution over partial orders, not just on a list of items.

We study in this paper how PCP-nets can be learnt, both in off-line and on-line set-
tings. Appart from the probabilistic approach, one difference with the works mentioned
above is that we do not assume that we have, or elicitate, a set of rankings or pairwise
comparisons. Instead, we suppose that we have a list of items which, it is assumed, are
or have been optimal for some user or in some context. Such a list can be, for instance,
a list of items that have been sold. We prove that such information is sufficient to learn a
partial order over the set of possible items, when these have a combinatorial structure.

The elicitation of probabilistic CP-nets is discussed by [16]. However, the authors
did not give a precise semantics to their CP-nets.

The next section sums up the main properties of CP-nets and PCP-nets. We then
describe how it is possible to learn PCP-nets, off-line and on-line. Finally, we show the
results of some experiments that simulate an on-line learning setting.

2. Background on probabilistic CP-nets

We consider combinatorial objects defined over a set of n variables V . Variables are
denoted by uppercase letters A,B,X ,Y, In this paper, we suppose that variables are
Boolean; we consistently write x and x for the two values in the domain X of X .

For a set of variables U ⊆V , U denotes the Cartesian product of their domains.
Elements of V are called items, denoted by o,o′, Elements of U for some U ⊆V are
denoted by u,u′, Given two sets of variables U,V ⊆V and v∈V , we write v[U] for the
restriction of v to the variables in U ∩V .

Preferences are encoded in CP-nets using rules of the form X ,u :>, where X ∈V , u
is an instantiation of variables in a set U ⊆V that does not contain X , and > is a total
strict order over the domain of X : either x>x or x>x. Informally, the rule X ,u :x>x can

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items82

be read:“Whenever u is the case, then x is preferred to x, ceteris paribus (all other things
being equal).”

A rule X ,u :>, with u∈U , indicates that the preference over the values of X depends
on the values of the variables in U . Associated to every CP-net is a directed graph G
over V : there is an edge (Y,X) whenever the preference over the values of X depends
on the values of Y ; G is called the structure of the CP-net. We write pa(X) for the set
of variables on which the order over X depends, called the parents of X : pa(X)={Y ∈
V |(Y,X)∈G}. It is generally assumed that a CP net contains a rule (X ,u :>) for every
X ∈V and every u∈pa(X); the set of the rules that order the domain of X is called the
conditional preference table, or CPT, for X . When X is clear from the context, we write
u :> instead of (X ,u :>) A CP-net specifies a partial ordering � over the set of items:
� is the transitive closure of the set of the pairs of items (o,o′) such that there is a rule
(X ,u :>) with o[X]>o′[X] and o[U]=o′[U] and o[Y]=o′[Y] for every Y /∈(U ∪ {X}).
When needed, we will distinguish the partial ordering associated with a particular CP-net
N using a subscript: �N .

CP-nets are most interesting when there is no cyclic preferential dependency be-
tween the variables, that is, when the graph G does not contain any (directed) cycle. In
this case, [5] proved that the relation � is a (partial) strict order.

Example 1 An example of an acyclic CP-net over 4 binary variables A,B,C,D is:

A

a>a

B

a :b>b
a :b>b

C

ab :c>c
other :c>c

D

c :d>d
c :d>d

The rule ab :c>c implies that abcd�abcd. We also have that abcd�abcd because of
the rule c :d>d, thus, by transitivity, abcd�abcd.

Optimization can be done in time linear in the size of an acyclic CP-net: choose an
ordering X1, . . . ,Xn of the variables in V that is compatible with the dependency graph
(if Xi∈pa(Xj) then i< j), and assign in turn to every Xj its most preferred value, given
the values that have already been chosen for its parents. The resulting item is the unique
optimal (undominated) item of the ordering specified by the CP-net. For instance, the
order represented by the CP-net above has exactly one optimal item, which is abcd (ie
there is no object which is preferred to abcd).

The forward sweep procedure above can also be used to find an item that is optimal
among those that satisfy a given conjunction of constraints of the form Yk =yk – one
only has to find, for each Xi, the optimal admissible value given the value of its parents.
For instance, the most optimal item, among those that have b as value for B, is abcd.
Conversely, if we know the structure of a CP-net and the optimal item o, then we can
immediately induce some of the rules of the CP-net: for every X ∈V , the CP-net contains
the rule (X ,o[pa(X)] :o[X]>o[X]).

Note that the dominance problem, that is deciding, given a CP-net and two items o
and o′, if o�o′, is an NP-hard problem, even for acyclic CP-nets. Yet, a weaker ordering
query can be answered in time linear in the number of variables as follows: given an
acyclic CP-net and two items o and o′, choose again an ordering X1, . . . ,Xn that is com-
patible with G, and consider the variables one after the other as long as o[Xi]=o′[Xi]; let

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 83

now i be the first i such that o[Xi] �=o′[Xi]: if o[Xi]>o′[Xi] (resp. o[Xi]<o′[Xi]) given the
values of the parents of Xi in o and o′, then o′ ��o (resp. o ��o′).

2.1. Probabilistic CP-nets

Uncertainty about the ordering over the items can be represented by associating prob-
abilities to a given preference structure G [9,8]: for each pair (X ,u), with X ∈V and
u∈pa(U) a probability distribution is defined over the set of possible orderings over
X ; in the case of boolean variables, this distribution is entirely defined by the probabil-
ity that the ordering is x>x. In the sequel, we write p(X ,u :x>x) for this probability. A
probabilistic CP-net, or PCP-net for short, is entirely defined by its structure G and the
probabilities p(X ,u :x>x).

Example 2 A probabilistic CP-net with the same structure as the CP-net of Example 1:

A

a>a,0.3

B

a :b>b,0.1
a :b>b,1

C

ab :c>c,0.5
other :c>c,0.4

D

c :d>d,0.7
c :d>d,0.3

Suppose that a PCP-net is given, with structure G. Assuming that the orderings
over the domains of the variables are probabilistically independent from one another, the
probability that a given CP-net N, with the same structure G, occurs, can be defined as:

P(N)= ∏
(X ,u)

p(X ,u :>N
X ,u)

where the product is taken over all variables X ∈V and assignments u∈pa(X), and where
>N

X ,u denotes the ordering over X that occurs in N when u is the case.
So, a PCP-net N is not intended to represent a preference relation. Rather, it repre-

sents a probability distribution over a set of CP-nets, namely, those which have the same
structure as N : we say that they are compatible with the PCP-net. We will write N ∝N
to indicate that the CP-net N has the same structure as N .

Note that, in a PCP-net, the probabilities of the rules are independent from one an-
other. So, for instance, it would not be possible to represent with a PCP-net a probability
distribution over CP-nets with the structure of Example 2 if the rules over B and C were
dependent; if the preferred values for B and C were always b and c together, or b and c.
An important topic for further research is to generalize the approach to allow for such
dependencies.

Given a PCP-net N , which represents a probability distribution on a set of deter-
ministic CP-nets, reasoning tasks consist in computing probabilities associated with in-
teresting events.

2.1.1. Probabilistic optimization

Let, for any item o, “opt=o” denote the set of compatible CP-nets that have o as unique
optimal item. Then P(opt=o) is, by definition, the sum of the probabilities P(N) of the
CP-nets N that are compatible with N and such that o is optimal for N.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items84

Interestingly, considering acyclic CP-nets, we mentioned earlier that an item o is
optimal in N if and only if for every variable X , N contains the rule o[pa(X)] :o[X]>o[X],
therefore

P(opt=o)= ∏
X∈V

p(X ,o[pa(X)] :o[X]>o[X]).

This formula indicates that the probabilities of optimality can be encoded in a Bayesian
Network associated to N [8]: let BN(N) denote this network, it structure is the same
oriented graph as that of N , and, for every binary variable X and assignment u∈pa(X),
the conditional probability table for X contains p(x |u)= p(X ,u :x>x). (For non binary
variables, p(x |u) would be the sum of the probabilities of the local orderings that have x
at the top.) For instance, the probabilities of optimality of the PCP-net of Example 2 are
encoded in the following Bayesian network:

A

p(a)=0.3

B

p(b |a)=0.1
p(b |a)=1

C

p(c |ab)=0.5
p(c |other)=0.4

D

p(d |c)=0.7
p(d |c)=0.3

In particular, computing the item that has the highest probability of being optimal is
a #P-hard problem; If G is a tree, this item can be computed in linear time by using a
bottom-up procedure [9].

Also, we can express the probability that a given value x for one variable X ∈V
appears in the optimal item as follows:

P(opt[X]=x)= ∑
u∈U

p(X ,u :x>x)×P(opt[U]=u)

where opt[U]=u denotes the event that the optimal item has values u for the variables
in U . More generally, the probability that a partial assignment is optimal in terms of the
probabilities of the rules of the PCP-net is:

P(opt[U]=u)= ∑
a∈asc(U)

a[U]=u

∏
Y∈asc(U)

p(Y,a[pa(Y)] :a[Y]>a[Y])

where asc(U) denotes the set of ascendants of the variables in U , including U . (More
precisely, asc(U) is the smallest set that contains U and all the parents of each of its
elements.) This equation does not give a practical mean of computing P(opt[U]=u)
unless the number of parents and the height of the PCP-nets are bounded, since the size
of asc(U) is exponential in the size of asc(U).

2.1.2. Probability of dominance

Let, for any two items o,o′, “o�o′” denote the set of compatible CP-nets N such that
o�N o′. Then P(o�o′) is, by definition, the sum of the probabilities P(N) of the CP-
nets N that are compatible with N and such that o�N o′. [9] show that computing this
probability is #P-complete, even when considering acyclic PCP-nets or polytrees.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 85

3. Learning a PCP-net from probabilities of optimality

In many settings, like a recommender system, the system can record a list of items that
can be assumed to have been optimal for some user at some point. It can be, for instance,
a list of sold / rented items. Let L denote this list. Assuming that the users’ preferences
correspond to some PCP-net N , the frequencies of the items in this list correspond to the
probabilities of optimality of items in the corresponding Bayesian network. This suggests
that this PCP-net can be induced from this list of sold items.

3.1. Off-line learning

Learning the parameters Let us assume that we know the structure of the hidden PCP-
net, and that we want to estimate the probabilities in the tables. When the variables are
binary, these probabilities are exactly the probabilities that appear in the tables of the
Bayesian network that encodes the probabilities of optimality.

In particular, observing the probabilities of optimality can be sufficient to estimate
the probabilities of the rules: for any binary variable X ∈V , for every u∈pa(X), we have:

p(X ,u :x>x)=P(opt[X]=x |opt[U]=u)∼|{o∈L ,o[UX]=ux}|/|{o∈L ,o[U]=u}|

when {o∈L ,o[U]=u} is not empty, that is, when P(opt[U]=u) �=0 in the hidden PCP-
net.

More generally, we can use methods that have been used for Bayesian networks to
learn these probabilities.

If P(opt[U]=u)=0, we may still be able to estimate p(X ,u :x>x) from the proba-
bilities of sub-optimal items, if we have a list of items that have been chosen by some
users under some constraint, for instance a list of items sold during a period of a time
where some options were not available. Assuming that the preferences of the user remain
the same, the only effect of such constraint is to restrict the domain of some variables,
but does not change the probabilities of other variables for the remaining combinations
of values of the parents. Let LV=v be a list of items optimal under the constraint V =v
for some V ⊆asc(U) and v∈V such that v[U]=u[V], and let “optV=v[U]=u” denote the
event that the item that is optimal among those that have values v for the variables in V ,
has values u for the variables in U , then

p(X ,u :x>x)=P(optV=v[X]=x |optV=v[U]=u)
∼|{o∈LV=v,o[UX]=ux}|/|{o∈LV=v,o[U]=u}|

For instance, consider a PCP-net that has the same structure as the PCP-net of Ex-
ample 2. The probability of the rule D,c :d>d can be estimated as follows:

1. if P(opt[C]=c) �=0:
p(D,c :d>d)∼|{o∈L ,o[CD]=cd}|/|{o∈L ,o[C]=c}|;

2. if P(opt[C]=c)=0, which is the case for instance if p(a>a)= p(b>b)=1 and
p(ab :c>c)=0:
p(D,c :d>d)∼|{o∈LC=c,o[D]=d}|/|LC=c|;

3. or, still if P(opt[C]=c)=0, but p(ab :c>c) �=0:
p(D,c :d>d)∼|{o∈LA=a,o[CD]=cd}|/|{o∈LA=a,o[C]=c}|;

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items86

Equation 2 and 3 above give two different ways of computing p(D,c :d>d) when the
probability of having C=c in a optimal item is zero, corresponding to two different
observations: 2. corresponds to the observation of optimal items when C=c is forced,
and 3. to the observation of optimal items when A=a is forced.

Learning the structure Here again, methods used to learn Bayesian networks can be
used. A major hurdle, however, is that several PCP-nets with different structures may
give rise to the same probabilities of optimality: this is linked to the fact that the prefer-
ential dependencies encoded in PCP-net are oriented, whereas, in a Bayesian network,
probabilistic dependencies are symetric. Consider for instance the Bayesian network that
encodes the probabilities of optimality for the PCP-net of Example 2: it also encodes
the probabilities of optimality of the PCP below, obtained from that of Example 2 by
reversing the edge between A and B.

A

b :a>a,0.041
b :a>a,1

B

b>b,0.73

C

ab :c>c,0.5
other :c>c,0.4

D

c :d>d,0.7
c :d>d,0.3

Therefore, methods for learning Bayesian networks will not completely identify a
hidden PCP-net. However, quite a lot of information is obtained in this way. If a topo-
logical ordering of the otherwise unknown PCP-net is known, then the correct direction
of each edge can be inferred, and the parameters of the hidden PCP net can be computed
from the Bayesian network. Observe that there are natural situations in which such a
general, total order might be known in advance. In particular, it is the case of interactive
configuration, if the order of the variables to be configured is fixed (the system asks to
choose a value for X1, then one for X2, etc.), then one can assume that the preferences will
be expressed wrt this order, or at least, it makes sense to approximate these preferences
on this order. Otherwise, the correct direction of the edges can be elicited, as described
in the next section.

3.2. On-line learning

Structure elicitation Assuming that a Bayesian network encoding the probabilities of
optimality has been computed, in an active learning setting some queries can lead to a
quick identification of the correct orientation of the edges of the PCP-net. Assume for
instance that the Bayesian network has an edge between variables X and Y : either the
preferences over the domain of X depend on the value of Y , or the vise versa (but not
both, since we assume an acyclic PCP net). In order to determine the orientation of the
edge, one can submit to users the queries x :y?y and x :y?y, if the frequencies of the
two possible answers to these queries converge to a common value over time, then y is
preferentially independent of X . Otherwise, the preferences over the values of Y depend
on the value of X , and X must be preferentially independent of Y .

Parameters update Finally, assume that a system has a current PCP net (maybe learnt
from a list of past optimal items), and can now observe some users and their optimal
items: it may be sensible to update the parameters (probabilities) of the PCP net accord-
ing to what is being observed.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 87

For instance, if the current PCP net corresponds to a group of past users, and a new
user connects to the system, her preferences may not be exactly that of the group, and we
may want to modify the parameters of the PCP net so that it incorporates the preferences
of this particular user. Or it may be the case that the PCP net represents probabilities of
preferences at a given time, or in a given location, and that these probabilities need to be
updated in a new context.

Since the probabilities that we want to update directly correspond to the probabil-
ities of some items being optimal, the observations made by the system must be about
optimality. Every time our system is presented an optimal item o, it will update its pa-
rameters, that is, the probabilities of its current PCP-net N as follows:

For every observed optimal item o do: for every X ∈V do:

1. let u=o[pa(U)];
2. let Xo=1 if o[X]=x, 0 otherwise;
3. p(X ,u :x>x) += ηt(Xo − p(X ,u :x>x)).

Note that we only update the probabilities of some of the rules (step 1.): the rules that
make the given item optimal. The update rule is common in such a stochastic learning
setting (see e.g. [3]). The parameter ηt is the learning rate, it may vary over time, gener-
ally decrease in order to ensure convergence: convergence is guaranteed if ∑t ηt =∞ and
∑t η2

t <∞. In our experiments we took ηt =1/k(t,X ,u) where k(t,X ,u) is the number of
times the rule corresponding to (X ,u) has been updated so far (making the learning rate
a function of the pair (X ,u)). In this case, at any time, p(X ,u :x>x) is just the frequency
with which optimal items o with o[U]=u and o[X]=x have been encountered so far.

4. Experiments

We ran some experiments to evaluate the update rule that we proposed for an on-line
learning setting. We assume a given acyclic structure over a given set of n variables. We
have some hidden PCP-net N ∗ with this structure, and start from an initial PCP-net with
the same structure, where the probabilities of all rules are 1/2. At each step, we update
some rules of the current PCP-net N .

We observed how the distance between the target PCP-net N ∗ and the current one
N evolved. As measures of distances we used:

• the sum of the squared differences of the parameters

d2(N ,N ∗)= ∑
(X ,u)

(pN (X ,u :x>x)− pN ∗(X ,u :x>x))2;

• the Kullback-Leibler divergence, or relative entropy, of the two probability distribu-
tions of optimality defined by N and N ∗:

dKL(N ‖N ∗)= ∑
o∈V

log(PN (opt=o)/PN ∗(opt=o))×PN (opt=o).

In fact, we computed an estimate of this distance by sampling the set of items, assum-
ing a uniform distribution.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items88

0 100 200

10−1

10−0.5 15 vars.
10 vars.
5 vars.

First protocol:Sum of
squared diff. of param.

0 500 1,000

10−2

10−1 15 vars.
10 vars.
5 vars.

Second protocol:Sum of
squared diff. of param.

0 500 1,000

10−2

100

102

Second protocol – KL divergence

Figure 1. Plots showing the evolution, as the number of observations of optimal outcomes grows (x-axis), of
a measure of the distance between the target PCP-net and the learnt one (y-axis)

We have experimented with two protocols to generate optimal items at each time
step.

First protocol The idea is to simulate an interactive setting, in which, for some pair of
items o1 and o2, we observe for a while which is most frequently optimal, and update
our current PCP-net if it does not give the same result. More precisely, for each new
period we generate two items as follows: we generate two CP-nets N1 and N2 accord-
ing to the distribution defined by our current hypothesis N (this is achieved by choos-
ing, for each combination (X ,u), the rule X ,u :x>x) according to the current probability
p(X ,u :x>x); let o1 and o2 be the respective optimal items of N1 and N2. Generating the
two items in this manner will favor rules that are more probable so far. We can com-
pute the probabilities that o1 and o2 are optimal according to our current PCP-net N :
let pi=PN (opt=oi). We then “observe” which of o1 and o2 is most frequently optimal
according to the hidden PCP-net N ∗: in fact, we compute p∗i =PN ∗(opt=oi). Eventu-
ally, if p1>p2 whereas p∗2>p∗1, we update N so as to increase the probability that o2 is
optimal: we use the update algorithm above with o=o2.

Second protocol Here we just simulate the update of our PCP-net after each newly ob-
served chosen item, assuming that it is optimal for some user: we increase the probabili-
ties of the rules that make this item optimal. Therefore, at each time step, we generate a
“user” / PCP-net N according to the target distribution represented by the target PCP-net
N ∗, compute its optimal item o, and run the update algorithm with o.

Results We have run 500 trials with random target PCP-nets with 5, 10 and 15 variables.
For each trial, we generated a target PCP-net, ran our experimental protocol and learning
algorithm, and measured the distance between the learnt PCP-net and the target one,
every 10 observations of an optimal item. The plots in Figure 1 depict the evolution of
this distance: each point is an average over the 500 trials for each number of variables.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 89

As can be noticed, a good approximation of the target PCP-net is reached after
around 70 observations.

5. Conclusion

We have described in this paper how it is possible to learn a probabilistic representation
of the preferences of a group of users over a combinatorial domain, or how we can fine-
tune such preferences to fit more precisely one particular user. Since CP-nets in general
are good at finding most preferred items, our learning method supposes that the learner
can be supplied with a list of past most preferred items: we showed how a probabilistic
CP-net can be learnt from such information.

References

[1] D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. Using and learning gai-decompositions for represent-
ing ordinal rankings. In Proc. ECAI workshop on Preference Learning, pages 5–10, 2012.

[2] R. Booth, Y. Chevaleyre, J. Lang, J. Mengin, and C. Sombattheera. Learning conditionally lexicographic
preference relations. In Proc. ECAI 2010.

[3] L. Bottou. Stochastic learning. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced
Lectures on Machine Learning, LNCS 3176, pages 146–168. Springer, 2004.

[4] C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-networks: A directed graphical representation of
conditional utilities. In Proc. UAI 2001, pages 56–64. Morgan Kaufmann.

[5] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: a tool for representing
and reasoning with conditional ceteris paribus preference statements. J. Artificial Intelligence Research,
21:135–191, 2004.

[6] R. I. Brafman and C. Domshlak. Introducing variable importance tradeoffs into CP-nets. In Proc UAI
2002, pages 69–76.

[7] C. Cornelio. Dynamic and probabilistic cp-nets. Master’s thesis, University of Padua, 2012.
[8] C. Cornelio, J. Goldsmith, N. Mattei, F. Rossi, and K. B. Venable. Updates and uncertainty in CP-

nets. In Proc. Australasian Joint Conf. on Advances in Art. Intell. 2013, LNCS 8272 , pages 301–312.
Springer.

[9] D. D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. Probabilistic conditional preference networks. In
A. Nicholson and P. Smyth, editors, Proc. UAI 2013.

[10] Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris paribus preference elicitation with predictive
guarantees. In Proc. IJCAI 2009.

[11] J. Fürnkranz and H. Hüllermeier, editors. Preference learning. Springer, 2011.
[12] T. Joachims. Optimizing search engines using clickthrough data. In Proc. KDD 2002, pages 133–142..
[13] F. Koriche and B. Zanuttini. Learning conditional preference networks with queries. In Proc. IJCAI

2009.
[14] J. Lang and J. Mengin. The complexity of learning separable ceteris paribus preferences. In Proc. IJCAI

2009.
[15] D. Mailharro. A classification and constraint-based framework for configuration. Artificial Intelligence

for Engineering Design, Analysis and Manufacturing, 12(4):383–397, 1998.
[16] S. S. de Amo, M. Bueno, G. Alves, and N. Silva. CPrefMiner: An algorithm for mining user contextual

preferences based on bayesian networks. In Proc. ICTAI 2012, vol. 1, pages 114–121.
[17] P. Viappiani, B. Faltings, and P. Pu. Preference-based search using example-critiquing with suggestions.

J. Artificial Intelligence Research, 27:465–503, 2006.
[18] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In W. Kraaij, A. P. de Vries,

C. L. A. Clarke, N. Fuhr, and N. Kando, editors, Proc. 30th ACM SIGIR Conf. on Information Retrieval
2007, pages 391–398.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items90

