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Abstract. There are a lot of measures for selecting interesting itemsets. But which
one is better? In this paper we introduce a methodology for evaluating interesting-
ness measures. This methodology relies on supervised classification. It allows us to
avoid experts and artificial datasets in the evaluation process. We apply our method-
ology to evaluate promising measures for itemset selection, such as leverage and
stability. We show that although there is no evident winner between them, stability
has a slightly better performance.

Keywords. data mining, pattern selection, interestingness measures, stability,
leverage, comparison

1. Introduction

One of the most important and frequent tasks in artificial intelligence is selection of the
best option(s) among a huge set of possibilities. For example, in data mining one should
often determine which patterns are of high interest. Usually patterns are evaluated w.r.t. a
formal relevancy measure. Webb [1] says that measures cannot often reflect the true value
of patterns because they “often depend on many factors that are difficult to formalize”.
Are we able to evaluate how well a measure approximates an expert interest?

One way to do that is to evaluate patterns with experts [2]. In that case we evaluate
how close the selected patterns approximate the expert knowledge. It is an expensive
strategy requiring many experts for a domain. Thus, if one wants to compare measures
on datasets from different domains the experiments become very expensive. Additionally
such an experimentation requires a lot of time to be carried out.

Another way to evaluate patterns is to use artificial datasets [3], where the target pat-
terns are known. The drawback of this approach is the relevancy of the artificial datasets
w.r.t. real ones. Thus, one goal of this paper is to develop and evaluate a methodology
for comparison of interestingness measures for itemsets without involving experts or ar-
tificial datasets (below we use indifferently “pattern” or “itemste”).

Our methodology is based on semi-supervised classification, where every data entry
has a class label but labels are not directly involved into computation of a measure. A
label is an additional information to entry description modeling domain knowledge or
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Table 1. A toy dataset

a b c d e f Label

g1 x x x +
g2 x x x -
g3 x x x +
g4 x x x -
g5 x x x +

g6 x x x x ?(+)
g7 x x x ?(+)
g8 x x x x ?(-)

expert intent. The basic idea is to rank patterns with an interestingness measure and,
then, find among them the patterns that are relevant to classification. And if a measure
M1 is better than another measure M2 w.r.t. expert interest, i.e. M1 attributes more
systematically high ranks to more relevant patterns, thus increasing the performance of
a classifier based on M1.

This methodology can be applied when a measure does not rely on class labels.
Then it can find itemsets that are suitable for expert interest (and not biased towards the
classification task).

The second goal of this paper is to evaluate some measures for itemset ranking. We
evaluate leverage [4] and stability [5] measures that seem to be well adapted to itemset
ranking. We also introduce difference measure that comes from an estimate of stabil-
ity [6]. This measure is computed faster than stability. As it is widely used, the support
of an itemset is used as a baseline measure. Finally, we also consider another leverage
measure (rule leverage) which in contrast to the afore mentioned measures, relies on
class labels. This rule leverage measure provides an idea of rule ranking measures w.r.t.
itemset ranking measures.

Finally, we show that although there is no evident winner among stability and lever-
age measures, stability seems to be better on average. It is also shown that difference and
stability have a similar behaviour. But according to previous studies, difference is faster
to compute [6]. We can summarize the novelty of this paper as follows:

1. Methodology for comparison of measures for itemset ranking.
2. Comparison of leverage and stability measures for itemsets.

The rest of the paper is organised as follows. Section 2 introduces basic notions.
Then related work is discussed. In Section 4 we define and discuss the evaluated mea-
sures. The next section describes our methodology. And finally before concluding the
paper the experiments are discussed.

2. Preliminaries

In this section we discuss the basic definitions in terms of Formal Concept Analysis [7].

Definition 1. A dataset or a context is a triple (G,M, I), where G is a set of objects, M
is a set of attributes, and I ⊆ G×M is a relation between G and M.
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Every subset of attributes is called a pattern or an itemset. The description of a set
of objects X is the set of attributes shared by all objects from X , φ(X) = {m ∈ M | (∀g ∈
X)gIm}. The image of itemset Y is the set of objects sharing Y , ψ(Y ) = {g ∈ G | (∀m ∈
Y )gIm}. The cardinality of the image of Y is called support of Y , Supp(Y ) = |ψ(Y )|,
while the value σ(Y ) = Supp(Y )

|G| is called frequency of Y .
Consider the toy dataset in Table 1. Let G = {g1,g2,g3,g4,g5}, M = {a,b,c,d,e, f}

and I is shown in the table, then φ({g1,g2}) = {e, f} is the set of attributes shared by g1
and g2 or the description of the set {g1,g2}. Similarly ψ({e, f}) = {g1,g2,g3,g4} is the
image of {e, f}. We say that the support of the itemset {e, f} is Supp({e, f}) = 4 and its
frequency is σ({e, f}) = 4

|G| = 0.8.

Definition 2. An itemset X is closed if and only if there is no superset Y ⊃ X such that
Supp(Y ) = Supp(X).

It means that an itemset X is closed if it is not possible to add any attribute to X
preserving the set of objects that supports X . The operator φ ◦ψ is a closure operator and
thus an itemset X is closed if and only if φ(ψ(X)) = X .

Definition 3. An association rule between an itemset X and an itemset Y is denoted by
X → Y , where X is called the premise and Y is called the conclusion of the rule.

Rule X → Y means that if the description of some objects from G contains X , then
it contains Y . There are two measures attached to an association rule: support (or fre-
quency) and confidence.

Definition 4. The support of a rule X → Y is Supp(X ∪Y ) and frequency of the rule
X → Y is σ(X ∪Y ).

Definition 5. The confidence of a rule X → Y is Conf(X → Y ) = Supp(X∪Y )
Supp(X) .

The support and the frequency of a rule show how often one can find the premise
in the dataset, while a rule X → Y with a high confidence means that in most of the
cases if an object description includes X it is likely to include Y . For example, in the
dataset in Table 1 with the set of objects G = {g1,g2,g3,g4,g5} the confidence of the rule
{e} → { f} is 1 because in every case when an object description contains e it contains
also f , while Conf({c}→ {e, f}) = 1

2 .
A common objective in data mining is search for interesting patterns, i.e. for inter-

esting itemsets or rules, that are usually related to a task. Among those different tasks,
there are classification, clustering and expert analysis of the result. Here we focus on
searching for patterns that are likely to be interesting to an expert. In the next section we
describe the existing approaches for mining interesting itemsets.

3. Related Works

Probably, the most elaborated area of mining interesting patterns is association rule min-
ing. Most of the measures created in this area optimize a formal criterion using statisti-
cal methods [8]. Although there is a huge number of interestingness measures, there are
only few comparisons between them [2,9]. The main reasons for that are the diversity of
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formal criteria and the fact that no measure wins in all criteria. In [2] the authors evaluate
different measures by means of expert interest. This is an important approach for pattern
evaluation as it directly measures the relation between a formal measure and an expert
interest. The drawback of this approach is the cost and diversity of datasets: for every
dataset it is necessary to hire several experts which is costly. In [9], the authors evaluate
measures by their performance in the classification task in a supervised setting, e.g. how
confident is a rule concluding on a given class. In such case, the aim of an expert is ex-
pressed by labeling of a training set. This is in contrast with our approach which follows
a semi-supervised setting, i.e. measures do not depend on labelling.

Another group of interestingness measures consists of measures created for itemset
ranking. It is a less studied group. Several measures can be found in [3]. Some of them
are related to the distribution of partitions induced by every attribute from the considered
pattern. Others are related to measures of association rule mining. Another approach
introduces the measure of leverage that corresponds to the difference between frequency
of an itemset and the maximal expected frequency based on subsets of the itemset [4].
Finally, some measures can be found in the domain of formal concept analysis [10,11,
12]. Stability measure is one of the most interesting among them, because it is often used
in domain specific areas where experts are often involved. Moreover, in contrast to all
above mentioned measures for itemsets, stability is computed on object side making it
possible to apply it for ranking any types of patterns, e.g. sequential patterns [13].

One comparison of interestingness measures of itemsets can be found in [3] where
the authors introduce a Quest Generator, i.e. a tool generating a dataset from a given set
of “goal” itemsets in the presence of possible noise. Then, the interestingness measures
can be evaluated w.r.t. their ability for finding the “goal” itemsets. For all artificial tests
there is always a question about the degree to which generated datasets reflect real data.
Thus, in this paper we provide an alternative approach for evaluating interestingness
measures of itemsets on real datasets without involving experts. In the next sections we
consider and compare these measures in details.

4. Itemset Interestingness Measures

For comparison the stability and leverage measures are selected as the most recent and
promising measures. Support is also included into the comparison as a baseline measure,
since it is widely used in itemset mining.

Definition 6 ([11]). Given a context (G,M, I), the stability of an itemset Y ∈ 2M is given
by the following formula:

Stab(Y ) =
|{X ⊆ ψ(Y ) | φ(X) = Y}|

2Supp(Y )
. (1)

The intuition behind stability is the following [11]. Stability gives an idea of how
much a closed itemset depends on an object in its image, i.e. if we remove an object
does the closed itemset exists anymore? In other words, given a dataset of objects and an
itemset, stability measures the probability that the same itemset can be found in a dataset
built as a subset of the objects. Consider for example itemset {e, f} for the dataset in
Table 1. The image of this set is {g1,g2,g3,g4} when G = {g1,g2,g3,g4,g5}. There are
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16 possible subsets of this image. The descriptions of the /0, {g1},{g2},{g3},{g4}, and
{g5} are different from {e, f}. Then, stability of {e, f} is Stab({e, f}) = 16−5

16 = 0.69.
Similarly the stability of {d,e, f} is 0.5. According to the definition, stability of a non-
closed itemset is always 0.

Although, stability is a measure that is hard to compute [10], it can be efficiently
estimated [6]: Stab(Y ) ≤ 1− 2−(Supp(Y )−Supp(X)), for all X ⊃ Y . Thus, stability allows
us to introduce the related measure of “minimal positive difference in support” between
itemset Y and itemsets including Y :

Diff(Y ) = min
X⊃Y, Supp(X)
=Supp(Y )

(Supp(Y )−Supp(X)). (2)

Difference can be computed efficiently and the experiments show the interestingness of
this measure. For example, difference of itemset {e, f} is 3, because support of {e, f} is
4 and any superset of {e, f} has support at most 1. Similarly difference of {d,e, f} is 1.
For non-closed itemsets, difference is always zero.

The next measure that we evaluate is leverage for itemsets. For defining leverage
we recall that a 2-partition of a set Y is a partition of Y in two subsets V and W and is
denoted by Part2(Y ) = (V |W ). For example, the pair ({a,b,c},{e, f}) is a 2-partition
of the set {a,b,c,e, f}. Now we can define what the leverage of an itemset is.

Definition 7 ([4]). The leverage of an itemset Y ∈ 2M is the difference between σ(Y ) and
the maximal frequency that would be expected under assumption of independence of any
subset of Y :

Lev(Y ) = σ(Y )− argmax
(V |W )=Part2(Y )

σ(V ) ·σ(W ), (3)

where Part2(Y ) is a 2-partition of Y .

According to the definition, leverage of an itemset can be applied to any itemset.
If an itemset is non-closed then the leverage value is not zero and the next proposition
holds.

Proposition 1. The leverage of an itemset is not larger than the leverage of its closure,
Lev(Y )≤ Lev(φ(ψ(Y ))).

Proof. Frequency can only decrease with addition of an attribute, i.e. (∀X ⊆ Y )σ(X) ≥
σ(Y ). Frequencies of an itemset and its closure are equal, σ(Y ) = σ(φ(ψ(Y ))). Given
itemset X , a 2-partition of its closure Part2(φ(ψ(X))) = (V |W ) induces the 2-partition
of X , i.e. (V ∩X |W ∩X) is a 2-partition of X . Then,

Lev(φ(ψ(Y ))) = σ(φ(ψ(Y )))− argmax
(V |W )=Part2(φ(ψ(Y )))

σ(V ) ·σ(W ) =

= σ(Y )− argmax
(V |W ) = Part2(Y )
(P|Q) =
Part2(φ(ψ(Y ))\Y )

σ(V ∪P) ·σ(W ∪Q)≥

≥ σ(Y )− argmax
(V |W )=Part2(Y )

σ(V ) ·σ(W ) = Lev(Y ).
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Thus, leverage maximizes its value on closed itemsets, and, consequently, we can com-
pute it only for closed itemsets.

Let us consider an example. In order to compute leverage of itemset {e, f} we
need to find all its 2-partitions. There is only one 2-partition ({e}|{ f}). The frequen-
cies are σ({e, f}) = 0.8, σ({e}) = 0.8, σ({ f}) = 0.8. Thus, Lev({e, f}) = 0.8−0.82 =
0.16. For itemset {d,e, f} we have three 2-partitions: ({e}|{d, f}), ({d}|{e, f}) and
({ f}|{e,d}). The frequencies are σ({d,e, f}) = 0.2, σ({e}) ·σ({d, f}) = 0.8 · 0.2 =
0.16, σ({d}) ·σ({e, f}) = 0.2 ·0.8 = 0.16, σ({ f}) ·σ({d, f}) = 0.8 ·0.2 = 0.16. Thus,
Lev({d,e, f}) = 0.2−0.16 = 0.04.

The leverage of an itemset is based on the notion of leverage of a rule. Hereafter, we
use leverage of a rule in our comparison as a base line and, thus, we need to provide its
definition.

Definition 8. The leverage of a rule is defined as follows

Lev(X → Y ) = σ(X ∪Y )−σ(X) ·σ(Y ) (4)

In this work rule leverage is applied to rules of the form X → {C }, where C is a
class label in classification. Let us consider Table 1, where the target class is given by
column “class”. In order to define rule leverage of {e, f}→ {+}, first, we should find the
frequencies: σ({e, f ,+}) = 0.6, σ({e, f}) = 0.8, σ({+}) = 0.6. Thus, Lev({e, f} →
{+}) = 0.6−0.8 ·0.6 = 0.12.

We are now ready to introduce our methodology.

5. Evaluation Methodology

In this work the classification task is used to estimate the interestingness of measures for
itemset selection w.r.t. expert interest, by measuring the precision and recall of classifiers
built with these measures.

The intuition behind the usage of classification for evaluating measures is the follow-
ing. If an itemset is of high interest for an expert, then it should reflect basic dependen-
cies in a domain. Thus, the performance of this itemset in classification should be better
than an arbitrary itemset. Consequently, systematic good performances may mean that
a measure is more suitable to find itemsets of high interest. Accordingly, the evaluation
methodology consists of the following steps:

1. A dataset D is selected.
2. The dataset D is divided into training and test sets by random sampling 100

times. A training set contains 90% of the objects with class labels (but at most
1000 objects which is a limit of Magnum Opus demo [14] that is used for leverage
computation). The test set contains the rest of the objects.

3. One target class label C is selected.
4. One target measure M is selected.
5. A training set built at step 2 is used to find itemsets and rank them w.r.t. the

measure M . However, during the search, class labels for objects are ignored.
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6. Among the whole set of itemsets, the emerging patterns for class C are selected
from the training set [15]. An emerging pattern is an itemset that is a character-
istic of one class, i.e. it covers objects mostly labelled with the same class, w.r.t.
a threshold θ . These emerging patterns are assumed to be good for classification
purposes. The idea of emerging patterns is borrowed from [16], where emerging
patterns are called hypotheses. Let say that there are N emerging patterns.

7. From these N emerging patterns we form N classifiers based on the first k patterns
(with k ≤ N). Each classifier works in the following way. Given a set of patterns
{p1, · · · , pk}, the classifier attaches the label C to any object whose description
contains pi for i ∈ [1,k].

8. We compute precision and recall for these N classifiers in the test set. Then we
interpolate 21 points of the form (p,r) where p stands for precision and r stands
for recall, where r ∈ {0,0.05, · · · ,0.95}. These 21 points yield a curve.

9. Steps 6–8 are repeated for every pair of training and test sets. An average curve
is computed for all the curves based on the pairs of training and test sets.

10. The area under this averaged curve is computed providing a numerical quality of
the measure M in dataset D w.r.t. class C .

11. We repeat steps 3–10 for all classes in D and all measures.
12. We repeat steps 1–11 for all available datasets.

Thus, each measure is evaluated for every class label and for any division of a
dataset. The precision and recall in step 8 are computed in a standard way, i.e. in terms
of true/false positives/negatives where the precision is Pr = TP

TP+FP
and the recall is

R= TP
TP+FN

.
But how can one select the threshold θ? This is a tricky question. On the one hand,

it is necessary to take the high θ in order to force a measure to select itemsets relevant for
the classification. Thus, datasets where there are no patterns with high θ are not adapted
for the methodology. On the other hand, it is necessary to have a sufficient number of
emerging patterns to capture differences between measures. Here, we posed θ = 90%,
i.e. at least 90% of objects in the image of a pattern are in the same class. However, the
selection of an ideal θ is still an open question.

In [9] measures rely on class labeling and thus they are biased for classification task.
In contrast in our work measures evaluate itemsets and after that a labeling is introduced.
Thus, our approach appears to be closer to the expert interest.

Let us consider this methodology on the example in Table 1. We have a dataset con-
taining 8 objects (step 1). This dataset is divided into training set, Tr = {g1,g2,g3,g4,g5},
and test set T = {g6,g7,g8} (step 2). The target class label is C =+ (step 3). The target
measure is difference (step 4). In this example we consider an itemset to be an emerging
pattern if 50% of objects in its image are labeled with the target class. Thus, we have
five closed emerging patterns: {e, f}, {c, f}, {a,e, f}, {c,e, f} and {b,c, f} (step 6). The
corresponding differences are 3, 1, 1, 1, 1. Thus, they are well sorted and we are ready
to construct classifiers (step 7) and evaluate their performance (steps 8 and 9).

The first one is only based on {e, f}. This itemset is only included in the description
of g6, consequently only g6 should be classified positively. The precision and recall of
this classifier are 1 and 0.5. The next classifier is based on {e, f} and {c, f}. The de-
scription of g6 includes {e, f} and, thus, it should be classified positively with the sec-
ond classifier. The descriptions of g7 and g8 include {c, f} and, thus, they should be also
classified positively. The precision and recall of the second classifier is 2

3 and 1. After
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Figure 1. Precision and Recall for mushroom dataset for classifiers built with different interestingness mea-
sures.

repeating this with all emerging patterns we can interpolate the value of precision for
every recall of the form 0.05 ·K, where K ∈ {1,2, · · · ,20}. Doing this several time for ev-
ery division of the dataset we can obtain the averaged precisions corresponding to these
recalls. Finally, we can compute the area under the average curves providing a numerical
quality of the measure on this dataset.

Finally, any emerging pattern X for class C can be written as an association rule
X → {C }. Thus, it is also possible to introduce the interestingness measures for rules
in this framework as a baseline for evaluating interestingness measures of itemsets. We
decided to add the leverage interestingness measure for rules, see Eq. (4). The results for
rule leverage measure are provided only as a baseline because it uses the target class in
the computation procedure and, thus, can be better adapted for classification purposes.

6. Experiment

The experiments are carried out with public available datasets from UCI [17]: Mushroom2,
Congressional Voting Records3, Nursery4 datasets. All datasets contain emerging
patterns and thus we can apply our methodology. In the experiments we have compared
4 interestingness measures for itemset ranking, i.e. support, stability (1), difference (2)
and leverage (3), as well as a measure for association rule ranking, i.e. rule leverage (4).
Comparison of the computational efficiency is not the goal of this paper. Thus, we only
mention that computations take less than a minute per experiment in every case.

Let us consider one dataset deeper. Figure 1 shows the results of two experiments
on Mushroom dataset. Figure 1a shows precision and recall for predicting the class of
edible mushrooms, while Figure 1b corresponds to poisonous mushrooms. Every line in

2http://archive.ics.uci.edu/ml/datasets/Mushroom
3http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
4http://archive.ics.uci.edu/ml/datasets/Nursery
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Table 2. The surface under the ROC-diagram for different datasets different target classes and different mea-
sures. The best measure in a row is bolded.

Dataset Class Support Difference Stability Itemset Lev. Rule Lev.

Mushroom Poisonous 0.890658 0.945881 0.945665 0.956895 0.919898
Mushroom Eatable 0.927239 0.953793 0.953941 0.946683 0.938007

Vote Democrat 0.865279 0.862507 0.8645 0.904433 0.953708

Vote Republican 0.883406 0.921093 0.921004 0.884818 0.883406
Nursery Not Recommended 0.975 0.975 0.975 0.975 0.975

Nursery Priority 0.78503 0.743039 0.725221 0.605405 0.525
Nursery Special Priority 0.875556 0.850174 0.851127 0.699788 0.639793

this figure corresponds to a measure. Every point corresponds to a precision-recall pair
at the end of step 9 of the proposed methodology.

In this figure we can see that stability and difference have nearly the same behaviour.
It is the case for every tested dataset. The second point is that the support measure is not
the best one for pattern selection, which is not surprising. The unexpected result here is
that the rule leverage does not perform well. Logically it should be the best one because
it is the only tested measure that can access the label information in the dataset. One
explanation can be that the statistical significance (at least of the rule leverage type) is
not directly related to the relevancy of an itemset to real patterns.

In Table 2 the numerical qualities for every dataset and every class label is given.
Every column corresponds to a measure and every line corresponds to a combination
of a dataset and a class label. First, the difference and stability measures have a similar
behaviour, and the numerical quality has nearly the same value in every experiment.
Second, although there is no evident winner between stability and itemset leverage and
they often have a comparable result, but on Nursery dataset stability has a significantly
better result.

7. Conclusion

In this paper we have proposed a methodology for evaluating interestingness measures
for closed itemset selection. The proposed methodology has been applied to compare
leverage, stability and difference measure. Although stability has a slightly better be-
haviour than leverage we cannot conclude that one is better than the other. It is also shown
that stability and difference have very similar behaviours, but difference is computed
faster.

It should be noticed that stability and difference have an important property that they
can be applied to any kind of datasets as soon as support can be computed, e.g. datasets
of sequences or graphs. This is not, for example, the case for leverage. Since difference
is faster to compute, we should conclude that difference is the most convenient measure
providing the same quality as stability and leverage.

There are several directions for future research. First, other measures and other
datasets should be involved into comparison for more reliable results. Second, the corre-
lation of ranking w.r.t. different measures should be studied. Finally, since stability and
leverage have the best performances on different datasets, it can be an important task to
develop a powerful measure based on both approaches.
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