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Abstract. This paper describes a new planner, HiPOP (Hierarchical
Partial-Order Planner), which is domain-configurable and uses POP
techniques to create hierarchical time-flexible plans. HiPOP takes as
inputs a description of a domain, a problem, and some optional user-
defined search-control knowledge. This additional knowledge takes the
form of a set of abstract actions with optional methods to achieve them.
HiPOP uses this knowledge to enrich the output by providing a hier-
archical time-flexible partial-order plan that follows the given methods.
We show in this paper how to use this additional knowledge in a POP
algorithm and provide results on a domain with a strong hierarchy of
actions. We compare our approach with other temporal planners on this
domain.

1. Introduction

The main focus of our approach is to deal with multi-agent missions where several
teams of robots must collaborate and schedule concurrent tasks to achieve a
common goal. In some cases, for instance for sea rescue [1], it is also compulsory
to follow known patterns. This is especially appropriate when the system has to
interact with humans trained to follow certain procedures. In this paper, we are
only concerned with the initial plan production but our approach is designed to
be easily used in cases where there is a need to execute and repair the plan.

In order to achieve those goals, we designed a planner that will output a
time-flexible plan with hierarchical actions. A time-flexible plan will be easier to
execute and to repair since small delays in actions can be dealt with without
replanning everything. The hierarchical structure of the actions will allow the user
to provide additional knowledge to the planner to improve the planning time and
to impose additional constraints such as following some procedures.

We can use the hierarchical actions to plan on a higher level, for instance with
teams or robots. And then use this plan at the team level to instantiate it into a
plan for every robot. This leads to solutions where robots on the same team share
the same high-level goal at any time (which is not expressible in term of low-level
action) and they move together as much as possible. For a given high-level goal
we can also describe how to achieve it with elementary actions. This also allows
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the output of a higher-level solution to a human operator while each robot has
the full plan with all elementary actions.

These reasons lead us to investigate in this first step both partial-order plan-
ning and hierarchical task network planning, aiming at obtaining a new algorithm
that will mix the best of both worlds. The unification of those two approaches
has already been discussed under the term hybrid planning.

The goal of HiPOP is to output a partial-order plan, with time flexibility
and time concurrent actions, including a hierarchy among actions. The additional
user-provided knowledge is also used to improve the planner performance. This
knowledge being optional, HiPOP will resort to a POP algorithm if none is pro-
vided.

2. Background and related work

POP (Partial-Order Planning) is an algorithm already used by several planners
such as VHPOP [20] and CPT [19]. One of the main drawbacks of POP compared
to other commonly used algorithms is that it is usually slower [20]. But partial-
order plans are more convenient to use in plan reparation [10], plan merging [8]
and plan adaptation [11]. They can also output time-flexible plans.

On the other hand, introducing higher-level (abstract) actions like in Hierar-
chical Task Network (HTN) planning has been shown to improve planning time
in some cases [13] and to help during plan reparation [6]. It is also more expres-
sive than first principle planners [5]. Since the first HTN planners were state-
based, they usually could not deal with time constraints and with concurrent ac-
tions. Some formalisms have been proposed to deal with those conditions, such
as [2,7,13].

The idea of HiPOP to mix those two approaches was inspired by DPOCL
[21], which introduced decomposition of actions in the context of POP. The same
idea was already studied under the name hybrid planning, including the extension
of hierarchical planning in UCP [9] and the PANDA system [16]. PANDA is a
formal framework meant to compare different algorithms and heuristics, but not
meant to be used in a real world setting.

This work can also be related to several ideas used in other situations. Adding
preconditions and effects to higher-level actions to better control search is explored
in Angelic planning [12]. GoDeL [17] uses optional user-defined knowledge to guide
a landmark-based planner. Mixing HTN and POP in a domain-specific planner
with a strict separation between several hierarchical levels is described in [3].
SIADEX [2] adds temporal reasoning into a HTN planner, keeping a forward-
chaining algorithm.

HiPOP uses its POP component to output a time-flexible plan with concur-
rent actions, unlike state-based planners. It is able to plan with several levels of
abstraction concurrently. And unlike other work on hybrid planning, HiPOP is
implemented and compared to other temporal planners.

As HiPOP is an extension to classical POP, we first explain POP algorithm
before introducing our additions. We then describe the search-control heuristics
used, before explaining our experimental setup and showing some results.
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3. Classical POP algorithm

We describe here a plain fully instantiated Partial-Order Planning algorithm (also
called Partial-Order Causal Link). We selected a literal-based description of the
world where a state is represented as a set of positive literals. The negation of
literal l is noted ¬l. A domain is defined as a set of actions. The resulting state
of the application of an action is obtained from a starting state by removing the
set of its negative effects and adding the positive ones.

Definition 1 (action). An action is a tuple (P, E , dur) where P is a set of literals
representing the preconditions, E is the set of literals representing the effects and
dur is the duration of the action.

Definition 2 (step). A step s is a tuple s = (a, ts) where a = (P, E , dur) is an
action and ts is an index of a time point in an STN. This timepoint represents
the start time of s. We denote act(s) = a, tstart(s) = ts, tend(s) = ts + dur,
E(s) = E, P(s) = P and dur(s) = dur.

tend(s) represents the end time of the step s. It is used as a convenience
notation to represent time constraints that only deal with the start time of each
step. A Simple Temporal Network (STN) [4] is used to check schedulability over
the time point indexes. If the set of constraints allows at least one solution, the
STN (or equivalently the set of constraints) is said to be consistent.

Let si, sj be steps. si ≺ sj is a shorthand for tend(si) ≤ tstart(sj). We will
use the classical definitions of causal links (noted (si

l−→ sj) where l is a literal),
open links (noted ( l−→ si)) and threats (noted as a tuple (sk, si

l−→ sj) where sk
is the threatening step and si

l−→ sj is the threatened causal link).

Definition 3 (flaw). A flaw is either an open link or a threat.

Definition 4 (partial plan). A partial plan P is a tuple (S, T C, CL,F) where S is
a set of steps, T C is a set of (simple temporal) constraints over the time points
of S, CL is a set of causal links, F is a set of flaws. We denote S(P ) = S and
F(P ) = F .

A POP algorithm will explore the space of partial plans to find a complete
plan. P is said to be consistent if T C(P ) is consistent. P is said to be complete if
F(P ) = ∅ and P is consistent.

Definition 5 (planning problem). A problem instance is a tuple (A, I, G) where A
is the set of available actions, I is a set of literals representing the initial state,
G is a set of literals representing the goal.

Algorithm 1 shows the pseudocode for a POP algorithm solving a planning
problem Prb = {A, I, G}. It works by keeping a set of all the generated but not
yet visited plans: Π.

The initial plan is built by the procedure InitialPartialPlan. It creates a plan
with two dummy steps, corresponding to actions as and ae. as is the dummy
start action with P(as) = ∅, E(as) = I and ae is the dummy end action with
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Algorithm 1: Basic POP algorithm

1 Π = {InitialPartialPlan(I,G)} ;
2 while Π �= ∅ do
3 P = PopBestPlan(Π) ;
4 if F(P ) = ∅ then
5 return P ;
6 end
7 f = PopBestFlaw(F(P )) ;
8 Π = Π ∪ Resolvers(A, P, f) ;
9 end

10 return ∅

P(ae) = G, E(ae) = ∅. All other steps must appears after the dummy start step
and the dummy end step.

The PopBestP lan procedure removes the best partial plan from Π according
to a heuristic and returns it. PopBestF law does the same with the set of flaws.
At each iteration the algorithm selects the next plan to expand (line 3). Then
a flaw is chosen (line 7) and the successors of P are generated and added to Π
(line 8). The Resolvers (A, P, f) procedure returns a set of partial plans, each
consistent and solving f in P in a different way accordingly to the type of the
flaw. The algorithm stops when a complete plan is found (line 5) or when Π is
empty (line 10).

To remove an open link to s, the Resolvers procedure has to add a causal
link from si. si can be an existing step in P or a newly introduced step built from
an action of A. When adding a new causal link new threats can appear. When
adding a new step all of its preconditions must be added as open links.

To remove a threat (sk, si
l−→ sj), there are only two ways: either the con-

straint sk ≺ si (demotion) or sj ≺ sk (promotion) has to be added to the STN.

4. Adding abstract actions to classical POP

The goal of HiPOP is to use higher-level actions during search. The planner should
be able to use abstract steps as elementary steps and to refine them when needed
into a set of steps, causal links and temporal constraints.

Definition 6 (abstract action). An abstract action, also called higher-level action,
is a tuple (P, E , dur,M, C):

• the first three elements (P, E , dur) are the same as in an elementary action
(Definition 1),

• M is a set of partial plans (called methods), used to instantiate the action,
• C is a set of conflicts (see Definition 8 below).

A step with an abstract action is called an abstract step. The method of an
abstract action is a partial plan in itself. During search, abstract actions can be
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used as any other actions. But a new type of flaw is introduced: the abstract flaw.
It represents the fact that there is an abstract step in the plan.

Definition 7 (flaw in abstract POP). (Replaces Definition 3) A flaw is an open
link, a threat or the presence of an abstract step in P (abstract flaw).

The only way to solve this new flaw is to pick one of its methods and to
introduce the partial plan representing it in the current plan. It means adding
all the steps, causal links, temporal constraints and flaws of the method to the
plan, along with the dummy actions (see below). When adding the steps, a new
time point is created for each one. After that, the abstract step has no effect
on search (it cannot be used as the origin of a new causal link), but the newly
created (non-dummy) steps can be used normally. The hierarchy of steps (which
steps were introduced as children of which other steps) is also kept and returned
at the end of the algorithm. Algorithm 1 is still valid, but Resolvers have to be
adapted to deal with this new type of flaw.
Dummy actions (and their corresponding steps) are introduced in every partial
plan. They are slightly different in case of methods associated to the abstract
action ai: the dummy actions asi and aei are such that P(asi ) = E(asi ) = P(ai) and
P(aei ) = E(aei ) = E(ai); their duration is null. The difference with the dummy
actions introduced in the initial plan is that the initial action has now a set of
preconditions and the end dummy action has a set of effects.

They are introduced to deal with the following case. Assume that the open
link l−→ si exists when si is instantiated, where si is a step using ai. Assume also
that l is used by several steps in si. Then each step of si can be linked to the
dummy initial step ssi . This open link is then the only one needed to guarantee
that all the requirements of the child actions are met. Without dummy actions,
we would have an open link for each step using l, increasing the number of plans
to explore to solve them. This also guarantees than the same provider of l will be
used for all steps in si.
Allowed actions. Using HiPOP as presented above leads to very poor performance
and the output does not always take advantage of the hierarchical description of
actions. This is because we only increased the branching factor, but even if the
abstract actions are efficient the algorithm will explore in parallel plans with and
without abstract actions. Those branches will produce the same elementary plan
but will be explored concurrently.

To solve this issue we used an idea from HTN planning: the user provides a
set of highest-level actions, the only actions that the planner can use to add a
step. All the other actions are only used when refining an existing step. So the
only change is in the Resolvers procedure, when adding a new step the algorithm
can only select an explicitly allowed action. Planners like TALPlan and TLPlan
also use the additional knowledge to prune the search tree, and this is similar to
the search of plan respecting the user-intent presented in [9].
Threats of abstract actions. Some issues arise that can over-constrain the problem
if threat solving procedures are not adapted to deal with abstract steps. Let us
consider a threat (sk, si

l−→ sj). If sk is abstract and encompasses several steps,
it might be enough to promote only the last one and not all of them. If si is
abstract and encompasses several steps, it might be enough to demote sk before
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the last step and not before all of them. If sj is abstract and encompasses several
steps, it might be enough to promote sk after the first step and not after all of
them. To deal with this problem, we use a new kind of promotion. The idea is to
add only the mandatory constraint before the refinement even if it means that
another constraint will need to be added after.

The constraint for demotion is tkdem < tidem and the constraint for promotion
is tjpro < tkpro where each variable, defined below, depends on the fact that the
respective steps involved are elementary or abstract. If any step is abstract, the
constraint will be loosened compared to the one enforced by the previous defini-
tion. If all the steps are elementary, the definitions are identical to the previous
algorithm. It is generally not enough to ensure that the plan will be consistent.
The algorithm will have to wait until the refinement to compute more precise
threats.

• tidem ← tstart(si) if si is elementary else tend(si)
• tkdem ← tend(sk) if sk is elementary else tstart(sk)
• tjpro ← tend(sj) if sj is elementary else tstart(sj)

• tkpro ← tstart(sk) if sk is elementary else tend(sk)

If si is abstract we want to avoid scheduling sk before the whole abstract step,
so we restrict the demotion constraint to consider tend(si) instead of tstart(si). If
sj is abstract we want to avoid scheduling sk after the whole abstract step, so we
restrict the promotion constraint to consider tstart(sj) instead of tend(sj).If sk is
abstract we want to allow the promotion of only the last step of sk (line 4) after
sj and the demotion of only the first step of sk before si.

Another problem arises from the fact that a literal can be destroyed and
recreated inside an abstract action. For instance in the survivors domain, one can
create an abstract action where each team has a hospital as a homebase. Each
step of this abstract action will move the team from its homebase to a survivor
and back to the hospital. So the preconditions and the effects will have (at ?team
?homebase) but no causal link on the position of the team can be valid through
the abstract step. It is inefficient to wait until the refinement of the abstract step
to detect it.

To solve this issue, we introduced the notion of resource conflicts. Resource
conflicts are provided in the description of abstract actions. They serve as a way to
find which causal link does an abstract step threaten, independently of its effects.
This also allows to detect two abstract steps that cannot appear concurrently.

Definition 8 (resource conflict). A resource conflict is a (hand-given) set of literals
for an abstract action that may threaten causal links (but are not necessary a
negative effect of the abstract action).

Definition 9 (abstract resource conflict). Two abstract steps are in abstract re-
source conflict if the intersection of their resource conflicts is not empty.

Abstract resource conflicts are considered as a new type of flaw. They can be
solved in the same way than threats: removing a resource conflict between ai and
aj if ai and aj are abstract is done by adding either ai ≺ aj or aj ≺ ai to the set
of temporal constraints.
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Soundness. The soundness proof of HiPOP follows the same pattern than the
soundness proof of POP. If the algorithm returns a plan, one can remove all the
abstract steps from this plan and only consider the elementary steps. The chain of
causal links and the absence of threats are a guarantee that the plan is executable
and accomplishes the goal.
Completeness. It highly depends on the available description and hypothesis. For
instance literals can be masked by the hierarchical description if we assume that
the elementary actions are forbidden. The proof is quick and easy if we allow the
algorithm to plan with abstract or elementary actions without restriction, but
this does not represent the actual use of the algorithm. The search is complete
among the space of all plans that can be represented using only allowed action at
the higher level, ie. among the plans respecting the user intend.

5. Search control

Algorithm 1 uses two heuristics to control search. On line 3 a first one is used to
choose the next plan that will be expanded, called the plan heuristic. On line 7
another one is used to choose the next flaw that will be solved in a given plan,
called the flaw heuristic. Those two heuristics are highly critical for the efficiency
of HiPOP.
Plan heuristics. HiPOP uses the A∗ algorithm to sort the set Π of all plans
generated but not yet explored. They are stored in increasing order of f(P ) =
g(P ) + h(P ) where g(P ) is the “distance” from the start point and h(P ) is a
heuristic estimation of the cost to reach a complete plan from P . In HiPOP g(P )
is an estimation of the number of elementary (non-dummy) steps in P . It is an
estimation because we cannot be sure of the number of steps in an abstract step
if several methods are available to refine it. In this case, the minimum is taken.
It can thus be defined recursively as:

g(P ) =
∑

s∈S(P )

{
1 if s is elementary

min
m∈M(act(s))

g(m) if s is abstract (1)

The computation of h(P ) uses the hadd heuristic as described by VHPOP
[20]. Due to the lack of space we cannot describe it here, but we used the sum of
the cost of each open link to sort plan, breaking ties using the effort.

The hadd heuristic does not take into account action reuse, and VHPOP
proposes a modification of hadd to partially take care of it, called reuse.
Flaw heuristics. Previous work on VHPOP [20] as well as our initial results show
that solving threat first is usually a good heuristic, especially when choosing first
the ones with the fewest available resolvers.

To choose between open link flaws and abstract flaws, it is possible to always
pick first abstract flaws or to mix their resolution with open link flaw or to pick
them last.

Picking them first means that there is almost no planning done with abstract
steps, but rather than they are used as a template of what steps should be created
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together. Our tests showed that this leads to poor results since we do not have
the benefits of planning with abstract steps but have to refine a lot of them.

Mixing the resolution of open link and abstract flaws is not yet studied in
HiPOP due to the lack of heuristics that would allow to compare them. Instead, we
focused on heuristics where the abstract flaws are solved at the end to plan as long
as possible with abstract steps. This means that the planner will first compute
an abstract plan, a plan whose only flaws are abstract, before refining them. This
allows the planner to deal with smaller plans during the search, thus reducing the
planning time until an abstract plan is found. If the abstract description ensures
that any valid abstract plan can be refined into a complete plan without much
backtrack, refining this abstract plan can be done quickly. And it also allows to
separate the search on each instantiation of an abstract action.

While refining abstract steps, it is possible that some literals get “hidden”
by the description: they are created by the elementary steps but are not in the
abstract description (for instance they can depend on the choice of which method
to use for this step). If those literals are needed to finish the plan, this can be
an issue for the planner. To avoid this, the abstract flaws can be refined in their
chronological partial order. If no literal is hidden and if the description allows a
backtrack-free refinement, then the solving order does not matter.

To sort the open links, we used the same heuristics as the one described
by VHPOP namely MW-Loc. It ranks open link according to the effort of their
literals for the most recently added step. This is a compromise between staying
focused on the current sub-goal and solving the harder literals first.

All the following results uses MW-Loc. It means that plans are sorted with
A∗ using the remaining cost as a heuristic. If the costs are equal, the remaining
effort is used as a tie-breaker. The flaws are selected first on their type: threats
first, then open links then abstract flaw. Threats are sorted in LIFO order. The
first open link to be chosen is the one coming from the most recently added step,
with the effort of this open link used as a tie-breaker. Abstract flaws are solved
in chronological order (this is only a partial order, if two steps can be scheduled
together, the flaws are solved in LIFO order).

6. Experimentation and results

We implemented HiPOP in C++, using the IPPC algorithm [14] to incrementally
solve STNs. The domains and problems are modeled in PDDL and the abstract
actions definition in a PDDL-like language. We created a random generator of
problems for the survivors domain and a description of hierarchical actions. It is
possible to vary the number of teams, of hospitals, of survivors and the size of
zones. The position of hospitals and survivors are randomly chosen.

The goal of the hierarchical actions is to allow HiPOP to plan first by rea-
soning with teams (instead of individual robots) and zones (instead of individual
locations). Once a plan with only abstract flaws is encountered, every abstract
action will be instantiated into a set of elementary actions. Those elementary
actions will be concerned with individual robots.

The only actions the planner is allowed to insert to solve an open link are
elementary moves of a robot or a team, a hierarchical action to use a team to
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Figure 1. Time to solve (left) and makespan (right) on the survivors domain. HiPOP-R uses
the reuse heuristics. HiPOP-R-Bare uses the same heuristics but without abstract actions. We
also included the results of TFD (Temporal Fast Downward) and YASHP

explore a zone and a hierarchical action to use a team to bring a survivor back
to a hospital. For each exploration action, there is one pre-computed patrol for
a team to explore a zone that is not necessarily optimal. This means that the
planner must still make sure that all actions are correctly chained up but does
not need to solve a multi-vehicle travelling salesman problem on the whole zone.
For each action bringing back a survivor, only a skeleton is given and the planner
has to add some motion actions to create a valid plan.

We ran four different planners on a set of 180 randomly generated problems in
the survivors domain. We used two versions of HiPOP, with the reuse heuristics
: HiPOP-R and HiPOP-R-Bare. The latter does not use user-defined knowledge,
so it is a classical POP algorithm. We also used two other temporal planners used
in the temporal track of the IPC: Temporal Fast Downward [15] and YASHP [18].
The experiments were all run on an Intel X5670 processor running at 2.93Ghz
with 24GB of RAM and a timeout of 10 min. The results are shown on Figure 1.

First we can see that adding the additional knowledge to HiPOP helps to
reduce the planning time (by a factor of 10 on the first problems) and to improve
the quality of the output plan. This mostly comes from the fact that HiPOP
does not have to solve a generic travelling salesman problem but can use the
precomputed patrol to solve it more quickly (even if it means that it cannot find
the optimal solution, it will only find solutions that use those patrols).

Comparing it to other planners we can see that YASHP can very quickly
find a solution that is almost always of poorer quality than that of HiPOP. On
the opposite TFD is always slower than HiPOP but finds good solutions. The
solutions found by TFD do not respect the abstract decomposition so they are
not available to HiPOP.

7. Conclusion

We have shown how to add additional user knowledge into a POP planner and
how this knowledge can be used by the planner to improve its performance. We
presented HiPOP, a planning algorithm that uses this knowledge to output hier-
archical, temporally flexible plans. The output plan also provides the information
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about all the hierarchical actions that were used to generate the plan, so for each
elementary action we can know the hierarchical action it belongs to.

For future work, we will further improve the performance of HiPOP. Several
heuristics could be useful as shown by other research on POP algorithm, such as
sorting the flaws by their number of resolvers. Another direction of study will also
be to use the enriched plans to repair or merge them. It can also be used to better
control its execution, in addition to the flexibility added by the least-commitment
principle for temporal constraints used by POP.
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