
Towards Learning and Classifying
Spatio-Temporal Activities in a Stream

Processing Framework

Mattias TIGER a and Fredrik HEINTZ a

a Department of Computer and Information Science, Linköping University, Sweden 1

Abstract. We propose an unsupervised stream processing framework that learns
a Bayesian representation of observed spatio-temporal activities and their causal
relations. The dynamics of the activities are modeled using sparse Gaussian pro-
cesses and their causal relations using a causal Bayesian graph. This allows the
model to be efficient through compactness and sparsity in the causal graph, and to
provide probabilities at any level of abstraction for activities or chains of activities.
Methods and ideas from a wide range of previous work are combined and interact
to provide a uniform way to tackle a variety of common problems related to learn-
ing, classifying and predicting activities. We discuss how to use this framework to
perform prediction of future activities and to generate events.

Keywords. activity recognition, machine learning, knowledge representation,
situation awareness, knowledge acquisition, unsupervised learning

Introduction

Learning and recognizing spatio-temporal activities from streams of observations is a
central problem in artificial intelligence. Activity recognition is important for many ap-
plications including detecting human activities such that a person has forgotten to take
her medicine in an assisted home [1], monitoring telecommunication networks [2], and
recognizing illegal or dangerous traffic behavior [3,6]. In each of the applications the
input is a potentially large number of streams of observations coming from sensors
and other information sources. Based on these observations common patterns should be
learned and later recognized, in real-time as new information becomes available.

The main contribution of this paper is an unsupervised framework for learning activ-
ities and causal relations between activities from observed state trajectories. Given a set
of state space trajectories, the proposed framework segments the continuous trajectories
into discrete activities and learns the statistical relations between activities as well as the
continuous dynamics of each activity. The dynamics of the activities are modeled using
sparse Gaussian Processes and their contextual relations using a causal Bayesian graph.
The learned model is sparse and compact and supports both estimating the most likely
activity of an observed object, and predicting the most likely future activities.

1Corresponding Authors: {Mattias Tiger, Fredrik Heintz}, Department of Computer and Information
Science, Linköping University, Sweden; E-mail: {matti166@student.liu.se, fredrik.heintz@liu.se}.

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-280

280

As an example, consider a traffic monitoring application where a UAV is given the
task of monitoring the traffic in a T-crossing. The UAV is equipped with a color and
a thermal camera and is capable of detecting and tracking vehicles driving through the
intersection [6]. The output of the vision-based tracking functionality consists of streams
of states where a state represents the information about a single car at a single time-point
and a stream represents the trajectory of a particular car over time (Figure 1, left). Based
on this information the UAV needs to learn traffic activities such as a car driving straight
through the intersection or making a turn (Figure 1, right).

���������

	

��
��
�
��
�

Figure 1. An illustrative example of the expected input and output of the proposed framework. The left fig-
ure shows observed trajectories. Blue is constant velocity, yellow is negative acceleration, and red is positive
acceleration. The right figure shows a conceptual illustration of what we want to learn.

1. Related Work

There are many different approaches to activity recognition, both qualitative and quanti-
tative. Here we focus on quantitative approaches since they are most related to our work.
As far as we know there is no other unsupervised framework that can learn the atomic
activities, the dynamics of each activity and the causal relations between the activities.

A common approach is to use images as the raw input. One approach uses a Bayesian
Hierarchical Model with moving pixels from video surveillance as input [17]. They di-
vide the image into square regions which the pixels belong to and use together with four
different motion directions as a code book. They treat 10 second video clips as docu-
ments and the moving pixels as words and learn a Hierarchical Dirichlet Process. By
performing word document analysis, the resulting topics are normative atomic activities
in the form of pixel motion trajectories in the 2D image.

Our unsupervised framework in comparison requires trajectories, but can learn prim-
itive activities bottom up from these trajectories. This allow our framework to rapidly
learn new activities, while being able to compare their support by each activity’s accu-
mulated evidence. We also learn the causal statistical connections between activities al-
lowing for activity prediction. Our framework could use moving pixels as input, but also
other types of information such as 3D-positions. It also incorporates the uncertainties of
those measurements.

Another approach is to use splines with rectangular envelopes to model trajecto-
ries [10,5], compared to our approach and the approach of Kim [8] which use Gaussian
Processes (GPs) in a continuous Bayesian setting. Similar to our approach [5] divides
trajectories into shorter segments and split trajectories at intersections, while [8] only

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 281

considers trajectories beginning and ending out of sight and performs no segmentation
of activities. Neither of the frameworks mentioned are suitable in a stream processing
context with incrementally available information in the learning phase. Our framework
can continue to learn in the field on a robotic platform and adapt directly to new situ-
ations in regards to learning, classification and prediction. Our framework supports not
only detecting and keeping count of abnormal behaviors, but also learns those behaviors
and collect statistics on their detailed activities.

2. The Activity Learning and Classification Framework

The proposed framework (Figure 2) learns activities and their relations based on streams
of temporally ordered time-stamped probabilistic states for individual objects in an un-
supervised manner. Using the learned activities, the framework classifies the current tra-
jectory of an object to belong to the most likely chain of activities. The framework can
also predict how abnormal the current trajectory is and how likely future activities are.

�������	
��������	

����������	������

���������	��
����
	������������������
����

	��������������

������

���
�

������

��������

����	�

�����	���������� �	�����
��������������
����������!�������"��#$

Figure 2. An overview of the framework. It is built around the three modules Reasoning, Activity Learning
and the knowledge base consisting of two graphs, of which the two former modules make extensive use of. The
Activity learning takes entire observed trajectories and updates the graphs. It is divided into three parts which
are performed sequentially. The Reasoning module detects and predicts activities based on observations.

An activity can informally be defined as something a particular object does. In our
case, an instance of an activity is represented by a state trajectory where some state
variables are expected to change in a certain way while others may change freely. For
example, an activity could be slow down where the velocity state variable is expected to
decrease. An activity model should capture such continuous developments.

The framework models activities as Gaussian Processes, which are sufficiently ex-
pressive to model the development of the state variables including uncertainties in ob-
servations. Activities are learned as edges in a graph, where the nodes are intersection
points, in the state-space, between activities. On a higher abstraction level activities are
seen as nodes, with edges representing transitions which are weighted according to the
observed empirical probability of the transitions. The latter construct enables prediction
of activities through probabilistic inference. The graphs are called the State Space Graph
and the Activity Transition Graph. An example is shown in Figure 3. The Activity Tran-
sition Graph is a causally ordered discrete Markov chain. We currently only consider
1-order Markovian transitions in the formulation of this graph. However, a natural exten-
sion is to use a higher order Markov chain.

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities282

�� ��
�� ��

��

��

(a) State Space Graph

�� ��

��

��

��

��

��

(b) Activity Transition Graph

Figure 3. A denotes an activity in both the State Space Graph and the Activity Transition Graph, I denotes
an intersection point in the state space, T denotes a transition in the Activity Transition Graph. All transitions
between A2, A3 and A4 can be seen as contained within the intersection point I2.

To handle activities on different scales the framework uses two parameters sthreshold
and lthreshold . The parameter sthreshold is a threshold on the similarity between activities
in the state space, based on the likelihood of one explaining the other. If an observed
trajectory has a similarity below the threshold when compared to any other activity, the
observation is considered novel and unexplained. The parameter lthreshold is a threshold
on the minimal length of an activity in the state space, which is used to limit the amount
of detail in the learned model.

The framework captures and models activities as statistically significant trajectories
through the state space. With enough observations all activities captured are discrimina-
tive and invariant of the observed variations which are not statistically significant.

In the work of [8] they detect abnormal trajectories by using the lack of dominant
trajectory models in explaining observed trajectories. In our case a similar lack of dom-
inance of activity models, or that several are almost equally likely, can be due to two
things. Either due to abnormality (novelty for learning) or due to a transition between ac-
tivities. By using the similarity threshold sthreshold we can distinguish between intervals
that are either abnormal or transitional.

3. Modeling Activities

An activity is seen as a continuous trajectory in the state space, i.e. a mapping from time
t to state y. A state can for example be a 2D position and a 2D velocity. To get invariance
in time, t is normalized to be between 0.0 and 1.0 and acts as a parametrization variable
of y = f (t). The mapping is modeled using Gaussian Processes. The assumption is that
an activity is a curve in a N-dimensional state space. The activity model is the result
of the continued accumulation of explained observed trajectories. The amount of these
supporting trajectories is seen as the amount of evidence E of the activity model, and is
used in comparison with other activity models.

Given an observed state, this parametrization variable must be known to calculate
how well the activity explains the observation. In [8] they assume this parametrization
to be known by assuming that it is already normalized to the interval [0,1] which can
only occur after the whole trajectory has been observed. Further, they only consider
entire trajectories without temporal segmentation, and with a state space consisting of
positions and velocities. When performing stream reasoning the entire trajectory cannot
be assumed to be present at once such that it can be normalized, because states are made

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 283

available incrementally. We estimate the parametrization for any observation to allow the
system to operate with only incrementally available pieces of the observed trajectories.

To estimate the temporal parameter for any observed state, an inverse mapping
t = g(y) is also learned. This adds a bijective restriction on an activity, meaning that
an activity cannot intersect itself. Concretely, it cannot map to the same state at different
points in time. This is a limitation arising from the non-causality of Gaussian Processes
used to model the activities. The limitation can be circumvented by segmenting observed
state trajectories into non-intersecting intervals and model each separately.

3.1. Gaussian Processes

Gaussian Processes have been shown to be useful for prediction, modeling and detect-
ing spatio-temporal trajectories such as motor vehicles in crossings [8], marine vessel
paths [12] and human body dynamics [16]. GPs have also been used to model spatial re-
gions and structures such as occupancy maps [9] and smooth motion paths [7]. They are
also good for handling noisy or missing data [8,16], where large chunks of trajectories
can reliably be reconstructed.

One major obstacle restricting their use has in the past been the expensive matrix in-
version operation necessary to update the model. Various methods have been employed to
reduce this weakness, by efficient iterative updates [13], segmentation into local patches
of GPs [11,15], and by techniques to make the GP sparse [14,15]. In this work we employ
sparse GPs to model activities, which are systematically segmented into local models.

The non-parametric model of the Gaussian Process is associated with a vector of
inputs x and two corresponding vectors of outputs y and output uncertainties σy. The
posterior density given an observed point x∗ is a Gaussian distribution. We use a sparse
representation of support points x and y, kept to a limited number, to make the calcula-
tions possible with any number of accumulated observations. The intention is to make
it possible for the system to continue to learn from as many observations as possible to
improve the confidence and get as much evidential support as possible.

3.2. Modeling Spatio-Temporal Dynamics

The activity model consist of the parametrized state trajectory y = fGP(t) and its inverse
mapping t = gGP(y) = f−1

GP (y). The inverse mapping is constructed by switching the
input and the output, x and y, of fGP. Since the inverse mapping is with respect to the
mean function of fGP, it is exact at these points and the observation error is therefore
zero. It is however chosen to be very small as to minimize numerical problems.

The main purpose of the inverse mapping is to project a state space point
x∗ ∼ N (μx∗ ,σ2

x∗) onto the mean function of fGP, thereby becoming the state space
point y∗ ∼ N (μy∗ ,σ2

y∗). This is used when calculating the likelihood of a point on
one trajectory being explained by a point on another. The calculation is performed by
approximating x∗ as μx∗ and t∗ as μt∗ ,

y∗ = fGP(μt∗), t∗ = gGP(μx∗). (1)

The latter approximation is valid if the inverse mapping accurately models the inverse
mean function. The former approximation can be improved by techniques for uncertain

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities284

inputs to GPs described in [4]. The mappings y = fGP(t) and t = gGP(y) currently use
the squared exponential kernel, which is commonly used in Gaussian Process regression,

k(x1,x2) = θ 2
0 e
− ||x1−x2||22

2θ2
1 , (2)

where θ 2
0 denotes the global variance of the mapping and θ 2

1 denotes the global smooth-
ness parameter of the mapping. The two mappings have separate parameters. The kernel
hyper parameters θ are optimized for each activity by maximizing the marginal likeli-
hood.

3.3. Local Likelihood

Let A be an activity with { fGP,gGP} and let x∗ ∼ N (μx∗ ,σ2
x∗) be an observed point or

a point on another activity. If the different dimensions of the state space are assumed to
be independent, the local likelihood[8] of x∗ given A is

P(x∗|A) = P(x∗|y∗) =
N

∏
n = 0

P(x∗n|y∗n), y∗ = fGP(gGP(x∗)), (3)

where N is the dimension of the state space and y∗ is a Gaussian distribution. When
considering multiple activities the calculation of the local likelihood is weighted by the
relative evidence E in support of respective activity. If Tn is point n on trajectory T then

P∗(Tn|Ak) =
Ek

∑i(Ei)
P(Tn|Ak), (4)

where i ranges over all activities in consideration of which Ak is one. This allows a well
supported activity with high variance to keep significant importance.

4. Learning Activities

To learn activities from observed trajectories, the framework segments trajectories into
sequences of activities, where each activity differs from all other activities currently
known. Activities are segmented such that no two activities can have overlapping inter-
vals in the state space, where the margin for overlap is controlled by sthreshold .

The learning process updates the State Space Graph and the Activity Transition
Graph based on an observed trajectory. The first step is to generate a GP from the ob-
served trajectory, and then to generate a new trajectory by uniformly sample the GP to
get a smaller number of support points for computational efficiency. The next step is to
classify the trajectory given the current set of activity models. Based on this classifica-
tion the graphs are updated. If a long enough interval of an observed trajectory lacks
sufficient explanation given the known activities, then this interval is considered novel
and is added as a new activity. Intervals that are explained sufficiently by a single activity
more than by any other is used to update that activity with the new observed information.
Sometimes long enough parts of activities become too similar, i.e. too close together in
the state space, to be considered different activities. In those cases such parts of these ac-

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 285

tivities are merged. This removes cases where intervals of the observation is sufficiently
and on equal terms explained by more than one activity.

By letting the transition nodes store statistics of the transitions between the activi-
ties, the Activity Transition Graph becomes another perspective of the same information
contained in the State Space Graph. It is updated simultaneously with the State Space
Graph in the different learning steps.

(a) An activity of driving straight and an obser-
vation of a left turn. Bright blue indicates inter-
val for update. Bright green indicates a interval
which will result in the creation of a new activity.

(b) Now three activities after learning the left
turn. The previous activity is now split at the
point where the left turn was no longer explained
sufficiently by the straight activity.

(c) An illegal overtake is observed. The rounded
trajectory of the overtake is indicated to be cre-
ated as two activities since it is too similar to the
left turn when spatially crossing it. This do not
happen if velocities are part of the state space.

(d) After the overtake has been learned. The
highly varying variance seen on the shorter ac-
tivities is due to the parameters of the kernels not
being updated properly.

Figure 4. Example of the learning of the State Space Graph using only 2D positions as state variables for
the activities, in order (a)-(d). Activity coloring is from green (t = 0.0) to red (t = 1.0). The white circles are
intersection points, the other circles are support points of the activities’ fGP.

4.1. Learning New Activities

A new activity is created for each maximal interval τ := [t0 : t1] where P(Tτ |Ak) <
sthreshold for all activities Ak in consideration and where Δlτ > lthreshold . That is, any long
enough interval of the observed trajectory, which is insufficiently explained by every
concerned activity, is added to the framework as a new activity.

%

���������	�
��

���������	�
��

���������	�
�� ���������	�
�� &&&

&&&

Figure 5. Illustrative example of the create procedure, where the left figure is before and the right figure is
after. The dotted lines indicate where the similarity of A and T is crossing the sthreshold .

Intersection points are used to connect activities with other activities. Since activi-
ties are not allowed to be shorter than lthreshold , it is also the case that two intersection
points cannot be created on the same activity with a distance between them shorter than
lthreshold .

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities286

A new intersection point is created at each end if the length to the nearest other
intersection point is larger or equal to lthreshold . If not, the new activity is connected to
the nearest intersection point and the intersection point is updated to be placed at the
weighted mean position of the end-points of the connected activities. The weighting is
done in accordance to the amount of evidence of each connected activity.

If a new activity is branching into or out of a previous activity, the previous activity
is split in two at the branching point. The intersection point is placed at the weighted
mean position.

If an intersection point after its placement update is closer than lthreshold to another
intersection point, they are merged into a single intersection point. An illustrative exam-
ple is shown in Figure 5.

4.2. Merging Activities

To remove redundant activities, activities are merged at intervals that are too similar to
each other. They are also merged in order to allow for spatially wide activities, which
might be initially observed as several parallel activities growing together over time as
more observations are acquired.

'

���������	�
��

(

���������	�
�����������	�
�� &&'

&(&&(

&' &&&'

Figure 6. An illustrative example of the merge procedure, where the left figure is before and the right figure
is after. The dotted lines indicate where the similarity of both A2 and A1 are exceeding the sthreshold

All activities Ak are merged with A∗ on the interval τ := [t0 : t1] for which P(Tτ |Ak)≥
sthreshold , Δlτ > lthreshold and A∗ is the activity with the maximum similarity P(Tτ |A∗).
That is, all activities which sufficiently explain long enough intervals of the observed
trajectory are merged with the activity best explaining that interval.

Activities are currently merged and updated by updating the most supported activ-
ity’s set of GP support points within the given interval with the corresponding state space
points sampled from the other activities. The new state space location of the support point
is the weighted mean of its previous location and the sampled location. The weighting
is based on the number of previous observations in support of respectively activity, used
as a measure of evidence for respective activity model. The final activity has the com-
bined amount of evidence from all activities merged. Intersection points are created and
updated in the same way as before. An illustrative example is shown in Figure 6.

4.3. Updating Activities

Any interval τi on T not used for creating or merging in the two previous steps carry
information that are used to update activities. The activity best explaining such an interval
cannot have been created or been part of a merge in the previous two steps.

The intervals remaining with length > lthreshold , In,n = 1...N, always have at every
point an activity A∗ with maximum similarity where P(Tt |A∗) ≥ sthreshold holds except
for intervals with length≤ lthreshold . These intervals are segmented into shorter intervals

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 287

such that there is only a single activity with maximum similarity for the entire interval,
In,i.

If length(In,i) ≤ lthreshold it is combined with the neighbor of shortest length until
they are composite intervals satisfying length(Icn,i) > lthreshold . The activity assigned
as the most likely to the composite interval is the activity Ak which has the highest
P(Icn,i|Ak) for all k in consideration.

The intervals and composite intervals are merged with the most similar activity as
described in the previous section, with the weight of the intervals equal to one since they
only represent a single observation.

5. Detecting and Predicting Activities

The State Space Graph and the Activity Transition Graph can be used in several ways
to detect and predict activities. There is statistical information such as the evidence for
each activity, similarity between any two activities and the probability of transition be-
tween activities. Assuming the presence of one or several learned activities, it is straight-
forward to calculate the activity chain from n steps in the past to m steps into the future
that is most likely, least likely or anything in between. It is also possible to calculate the
k most likely activity chains, with or without sharing activities at any step.

Another possibility is to generate relevant events as part of the learning procedure.
Events can for example be created when the learning procedure creates, updates and
merges activities, or when an object has completed an activity due to the object crossing
an intersection point.

6. Preliminary Results

To verify that our approach works as expected, we have done a case study with a T-
crossing scenario. The data set contains two types of trajectories, straight trajectories
and left turning trajectories, 50 of each. These trajectories are provided to the framework
in a random order. The converged trajectories can be seen in Figure 7 compared to the
generated data. With position and constant velocity the turning activity breaks up a bit
earlier than with only position, and even more so with the slow down taking place.

Figure 7. Case study. Top row: Scenario with positions only. Bottom row: Scenario with a slow down. The
figures in the middle show the three learned activities after two observed trajectories, while the figures to the
right show the result after all observations. Blue color indicate a higher speed than yellow.

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities288

7. Conclusions and Future Work

Learning and recognizing spatio-temporal activities from streams of observations is a
central problem in artificial intelligence. In this paper, we have proposed an initial ap-
proach towards an unsupervised stream processing framework that learns a Bayesian
representation of observed spatio-temporal activities and their causal relations from ob-
served trajectories of objects. An activity is represented by a Gaussian Process and the
set of activities is represented by a State-Space Graph where the edges are activities and
the nodes are intersection points between activities. To reason about chains of related
activities an Activity Transition Graph is also learned which represents the statistical
information about transitions between activities. To show that the framework works as
intended, it has been applied to a small traffic monitoring example.

The framework cannot yet learn complex activities as discrete entities other than
indirectly by parts, i.e. by learning chains of primitive activities. Neither are contexts
such as a T-crossing learned, instead configurations of different activities are learned
for each T-crossing instance. The current framework is designed to provide the building
blocks for these extensions to be possible in future work.

References

[1] J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Comput. Surv., 43(3), 2011.
[2] C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal focusing and hierar-

chization. In Proc. IJCAI, 2007.
[3] R. Gerber and H.-H. Nagel. Representation of occurrences for road vehicle traffic. Artificial Intelligence,

172(4–5):351–391, 2008.
[4] A. Girard, C. Rasmussen, J. Candela, and R. Murray-Smith. Gaussian process priors with uncertain

inputs - application to multiple-step ahead time series forecasting. In Proc. NIPS, 2002.
[5] N. Guillarme and X. Lerouvreur. Unsupervised extraction of knowledge from S-AIS data for maritime

situational awareness. In Proc. FUSION, 2013.
[6] F. Heintz, P. Rudol, and P. Doherty. From images to traffic behavior - a uav tracking and monitoring

application. In Proc. FUSION, 2007.
[7] C. Tay Meng Keat and C. Laugier. Modelling smooth paths using gaussian processes. In Proc. FSR,

2007.
[8] K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of motion trajectories. In

Proc. ICCV, 2011.
[9] S. Kim and J. Kim. Continuous occupancy maps using overlapping local gaussian processes. In Proc.

IROS, 2013.
[10] D. Makris and T. Ellis. Learning semantic scene models from observing activity in visual surveillance.

IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(3):397–408, 2005.
[11] M. Schneider and W. Ertel. Robot learning by demonstration with local gaussian process regression. In

Proc. IROS, 2010.
[12] M. Smith, S. Reece, I. Rezek, I. Psorakis, and S. Roberts. Maritime abnormality detection using gaussian

processes. Knowledge and Information Systems, pages 1–26, 2013.
[13] M. Smith, S. Reece, S. Roberts, and I. Rezek. Online maritime abnormality detection using gaussian

processes and extreme value theory. In Proc. ICDM, 2012.
[14] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In Proc. NIPS, 2005.
[15] E. Snelson and Z. Ghahramani. Local and global sparse gaussian process approximations. In Proc.

AISTATS, 2007.
[16] J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models for human motion. IEEE

Trans. Pattern Anal. Mach. Intell., 30(2):283–298, 2008.
[17] X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchical bayesian models.

In Proc. CVPR, 2007.

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 289

