
Electronic Tourist Guides: User-friendly
Editing of Automatically Planned Routes

Richard SCHALLER a

a E-mail: richard.schaller@fau.de
AI Group, University of Erlangen-Nuremberg, Germany

Abstract. Sightseeing tourists on a city trip can be supported by an electronic
tourist guide. More advanced systems generate personalized routes taking into ac-
count user preferences and traveling distances between sights. Recommenders can
be used in order to estimate user’s interest in the available sights. Typically recom-
mendations are then fed into a planning algorithm that tries to determine a subset
of sights and a suitable order. The aim being to include the most interesting sites
for the user and possibly as many interesting sights as possible within a given set of
constraints. Additional constraints can be considered such as a sight being a must-
see for the user or opening hours of sights. At some point the generated route is
shown to the user. If the user is not satisfied with the route he may want to change
it. In most systems modifying the constraints or user preferences and then regen-
erating a completely new route is the only option to accomplish this task. More
fine-grained control over route modifications is in typically unavailable.
In this paper we examine how sightseeing tourists can be supported in editing an
automatically generated route. We discuss what is necessary for editing operations
to meet user’s expectations. We then show how six different route editing oper-
ations can be implemented via the idea of collapsing and expanding a route. Fi-
nally we present a potential route editing user interface for an electronic tourist
guide. The presented interface makes disadvantageous route modifications obvious
by providing instant feedback on how an operation affects the route.

1. Introduction

When planning a city trip tourists are faced with various tasks: a city and time frame
has to be chosen, various traveling options and hotels have to be considered and finally
the stay itself has to be planned. This last aspect is particularly challenging for trips to
bigger cities with hundreds of sights, restaurants, shopping locations and various other
tourist-related venues. These Points of Interest (POIs) tend to be geographically (e.g.
throughout a city) and temporally (e.g. different opening hours during the day) dispersed.
Tourists usually consider many different properties and contextual factors when deciding
for which POIs to visit and in which order, i.e. the type, price, location and opening hours
of the POI, the distance/transfer links to the POI and the personal interest in the POI but
also general context factors such as time of day or weather [1]. An electronic tourist guide
can assist visitors in finding optimal or near-optimal solutions to this multi-criteria opti-
mization problem. In [2] three components of an electronic tourist guide are described:
a recommendation phase that facilitates a user profile and POI data to generate a list of

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-260

260



personalized POI recommendations. In a second step, a planning algorithm determines
an optimal subset and order of these POIs taking into account various constraints such
as opening hours, traveling times or user restrictions such as start and end time of the
route. As there might be user preferences or contextual factors not being modeled in the
system it is necessary to have a third step which allows modifications of the generated
route, like removal or insertion of a POI visit. Also during plan execution it is more than
likely that visitors will need to re-plan due to external or internal causes, e.g. a POI being
overcrowded or the tourist being exhausted. In [3] an electronic tourist guide was eval-
uated in a field trial: only 55% of the actually visited sights were contained in the route
planed beforehand showing a need for route modifications on the move.
Most research performed on electronic tourist guides focuses on either the recommen-
dation of POIs or on the planning of routes. The resulting routes are packed – as this
is one of the objectives of the planning algorithm – making route modifications in most
cases impossible without rendering the complete route infeasible. Consider, for example,
adding a POI: if a gap in the route were big enough to insert a POI, the planning algo-
rithm would already have done that. Most likely a visitor would expect to reduce the visit
duration of other POIs to make room for the additional POI. On the other hand visitors
would like to close gaps after removing POIs by expanding the visit of the remaining
POIs. Additionally, moving POIs within a route might need to shorten visits as traveling
times likely increase due to deriving from the optimal ordering.
In this paper we will focus on operations that can be performed on an already given route
making it easy for visitors to modify routes to match their preferences:
We introduce the concept of collapsing the visit durations in a route to make room for fur-
ther modifications. We furthermore, introduce the corresponding concept of expanding
a route by increasing visit durations to fill gaps. We then show how user modifications
can be implemented by making use of collapsing and expanding a route. Next we discuss
removing, inserting and moving a POI, changing the visit duration of a POI and filling up
a route with additional POIs. Finally we present a system where we implemented these
ideas.

2. Related Work

Recommenders. Although this paper focuses on supporting route modification it is
worthwhile to explore how recommendations can be obtained as they can be used for
filling up a route with additional POIs. There are two main types of recommenders used
in electronic tourist guides. These are content-based recommenders and collaborative fil-
tering approaches. For content-based recommenders additional data for each POI and a
user profile for each user have to be acquired. For example in [4] an ontology is used
for categorizing each POI, e.g. as memorial. The user is then asked upon the first use of
the system to specify his interest in these categories resulting in a detailed user profile.
A semantic matching is then used to find those POIs that are most similar to the user’s
profile. Contrastingly, collaborative filtering approaches use other users’ POI selections
to learn which POIs are similar [5]: users with similar tastes are also likely to select the
same POIs. Hybrid recommenders combine both approaches to improve the quality of
recommendations [5,6]. An overview and comparison of the use of recommender sys-
tems in the field of electronic tourist guides is given in [1].

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 261



Planning. For planning purposes the optimization problem has to be formalized. [7] sug-
gests to use the OP (Orienteering Problem) as the formal framework, a derivative of the
Traveling Salesman Problem (TSP): a set of locations with an assigned score and infor-
mation about traveling times between all locations is given. Additionally a starting point
and time as well as a destination point and time is given. A solution of the OP is a route
that contains a subset of the available locations and connects the starting point with the
ending point. The optimal solution is the route that maximizes the sum of the collected
scores. The OP can be extend to consider various additional constraints such as opening
hours (Orienteering Problem with Time Windows) or to plan for multiple days (Team
Orienteering Problem). For solving the OP both exact [8] and heuristic [4] approaches
exist. In [7] an Iterative Local Search is used to solve the OP: a route is created by itera-
tively adding and removing POIs. Choosing which POI to add considers the score of the
POI and the additional required time caused by the POI insertion. Adding POIs is done
until no further POIs can be added and the algorithm is stuck in a (local) optima. Then
removing of POIs is performed to escape the local optima. Under all circumstances the
route is feasible, meaning start and end time constraints, traveling times and visit dura-
tions are considered and additional constraints such as opening hours are respected.

Electronic Tourist Guides. Various research projects have developed prototypical or
complete electronic tourist guides: The CT-Planner described in [9] uses a content-based
recommender to calculate scores for all POIs. For route generation a heuristic approxi-
mation algorithm is used. To obtain a user profile a user can specify his interests directly
or indirectly by choosing between different routes. The latter are generated by using the
recommender with a slightly modified user profile. In case the user decides for one of
these alternatives the user profile is updated accordingly. Furthermore the user can influ-
ence the route generation by selecting certain POIs as must-haves or don’ts. However,
there is no possibility to edit the generated route in detail. The system developed in [2]
uses a content-based recommender to choose POIs but also let users specify which POIs
are of interest to them. The planning is based on an Iterative Local Search algorithm. To
customize the generated route various operations such as adding, removing or moving
a POI are provided. These operations shift beginning times of all POIs after the editing
position accordingly. It is possible for the user to make modifications that violate some of
the restrictions. From the description given in [2] it does not become clear whether this
applies only to user specified restrictions such as the end time or to all kinds of restric-
tions. Violating POI restrictions such as opening hours would render routes infeasible.
Thus it is plausible that such modifications are forbidden. Permitted modification will
shift visits beyond the specified end time as needed, effectively removing this constraint.
To our knowledge, visit durations are not adjusted.

3. User-friendly editing operations

Considering the systems presented in the previous section most do either provide no
route modifications or do so via recalculating a route under modified constraints. A fine-
grained control of routes is only provided by [2] where the route end time constraint is
lifted. Depending on the type of POIs this lifting might not be enough to yield still fea-
sible routes. Consider for example POIs with very limited opening hours where shifting
results in missing the opening hours. The user is either left behind with no explanation

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes262



why his operation is not permitted or a complex explanation – probably involving multi-
ple constraints – must be generated and communicated.
We instead suppose to lift a different constraint: the visit duration of POIs. In most sys-
tems its value is either fixed per POI or estimated in advance for each user. We argue that
the visit duration is a soft constraint from a user’s point of view and the user is flexible
regarding the exact visit duration: routes do not suddenly become infeasible if a museum
visit is scheduled for a few minutes less. Of course further editing might reduce the visit
duration even more and make the route unrealistic. However, our approach has the ad-
vantage that the user can see how the route slowing becomes more and more infeasible
and receives feedback regarding why his editing operations are unfavorable. Thus we
suggest to adjust the visit durations of other POIs in order to allow editing operations un-
der most circumstances. The only exception where editing operations are still forbidden
is when visit durations cannot be shortened further or route independent conflicts make
the operation fail, e.g. visiting two POIs at the same time at different locations.
As the visit duration becomes very flexible and time can be shuffled arbitrary between
POIs we make some assumptions regarding how the system should behave when per-
forming route modifications:

• The route should always be feasible meaning all constraints are met (except the
visit duration constraint): traveling times are considered, opening hours are re-
spected, etc.

• The order of the POI remains unchanged except for the POI that is involved in the
modification.

• If there are gaps in the route they should be reduced as much as possible.
• With each POI a minimum visit duration is associated which should be respected

unless this results in a route modification becoming inexecutable. In this case the
visit duration might be reduced further still.

• The time surplus caused by gaps should be distributed “fairly” between available
POIs, meaning that time is distributed equally among all POIs. If a POI’s visit
duration cannot be extended any further the remaining time is distributed among
the other POIs.

• Also if time is needed to perform an operation, visit duration of all POIs should
be reduced in a ”fair” manner. As minimum visit durations should be respected,
time should be taken first from those POIs which are scheduled for a longer stay.
We consider the minimum visit duration as sufficient and any additional time
spent (=extra visit duration1) as not contributing to visitor’s experience. Never-
theless we want to keep the extra visit time of all POIs equal which leads to first
shortening that POI which has the most extra visit duration.

With these assumptions we can now redefine the route operations from [2]: Remove a
POI, Insert a POI at a specific position, Insert a POI at its best position and Move a POI.
Additionally we allow the user to Change the visit duration of a POI. In case the user
removes multiple POIs he might like to Fill-Up the route with POIs without specifying
the POIs to add but instead let the system decide which POIs to use.

1visit duration = minimum visit duration + extra visit duration

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 263



4. Collapsing and Expanding a Route

The different editing operations that we are going to implement either consume time or
leave additional time after they were performed. For the former we want to provide as
much flexibility as possible which means that we want to reduce the time spent on POIs
as much as possible. We call this process of transforming a given route into a route,
where every POI is only visited for no longer than its respective minimum visit duration,
collapsing a route. The delta between the old visit duration and the new visit duration is
remembered. The following pseudo code shows this function:
Collapse(route):
FORALL p in route:
diff = max(0, p.duration - p.minDuration)
p.delta += diff
newDuration = p.duration - diff
Change duration of p to newDuration

Of course changing the visit duration of a POI results in shifting all subsequent POI visits
accordingly. Shifting POI visits is a crucial part of the Iterative Local Search approach
for solving the OP. Making it efficient and also taking into account restrictions such as
opening hours is described in [7].
As mentioned before we make the assumption that the minimum visit duration is re-
spected but there might be situations where we allow shorter visit durations. We there-
fore define a total collapsing of a route, which reduces the visit duration of each POI to
a small fixed value – 1 min in our case2 – as follows:
TotallyCollapse(route):
FORALL p in route:
diff = max(0, p.duration - 1)
p.delta += diff
newDuration = p.duration - diff
Change duration of p to newDuration

The inverse operation of collapsing a route is expanding a route. To restore a previously
collapsed route we first use the saved delta and distribute the available time between
those POI visits that were previously shortened (delta > 0). If there are still gaps in the
route the remaining time is distributed equal among all POIs. Thus expanding is split up
into two steps, which differ only in the POIs being affected:
Expand(route):
ExpandHelper(route,useOnlyDelta=True)
ExpandHelper(route,useOnlyDelta=False)

Even though it is possible to calculate for each POI by how much its visit duration has
to be extended and update them at a stroke we instead opted for incrementally expand-
ing a route. This simplifies the process and makes it easy to take account of additional
constraints, e.g. opening hours. Expanding is performed by successively increasing the
visit duration of each POI one after another by a small amount – we use a step size of
1 min. For every expansion of a POI visit its corresponding delta is reduced. In case a
POI visit becomes stuck and cannot be expanded further – again opening hours being a
potential cause – we skip this POI and continue with the next one. After all POIs have
been updated we start all over again until no further expansions are possible.
The following pseudo code shows how expanding a route is performed. Note the use
of useOnlyDelta to select whether all POIs should be affected or only those with a
saved delta:

2We choose 1 min as we do not want to confuse visitors with 0 min visits

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes264



ExpandHelper(route, useOnlyDelta):
DO:
expanded = False
FORALL p in route:
IF useOnlyDelta AND p.delta == 0:
CONTINUE

IF duration increase by 1 feasible for p:
newDuration = p.duration + 1
Change duration of p to newDuration
p.delta = max(0, p.delta-1)
expanded = True

WHILE expanded

One caveat of the presented method is that POIs towards the start of a route are con-
sidered first. In case only a small amount of time becomes available it is given to those
POIs. If this happens repeatedly instead of all time becoming available at once3, time is
not fairly split between those POIs towards the beginning and those towards the end of
the route. To remedy this problem one may remember at which POI the last expansion
stopped and continue from there instead of the first POI.
Consider what happens if a route is collapsed, then some operations are performed on it
and then it is expanded again. There are three cases of how available time changes de-
pending on the performed operations: a) Same amount of time is used: with the first run
of ExpandHelper the original visit durations are restored. b) Some time was freed up:
again the original visit durations are restored as above. But there is still some time left,
which is distributed equally by the second run of ExpandHelper. c) Some time was
used up: with the first run of ExpandHelper the original visit durations could not be
restored completely, but the available time is again distributed equally. This means that
POI visits that were reduced by a larger amount during collapsing than others are those
whose time is partially taken away to account for the used up time. They are not fully
expanded any further. The last case also means that delta remains > 0 for some of the
POI visits. In order to not affect further editing operations it is necessary to reset it.
Of course expanding a route can also be used to reduce gaps in a newly generated route:
planning algorithms may schedule POIs with their respective minimum visit duration
and the resulting route is then expanded afterwards.

5. Route Editing Operations

All editing operations described in this section follow a general scheme: (totally) col-
lapsing the route, performing the actual edit and finally expanding the route. Sometimes
slight variations of this scheme are used to realize the provided editing operations.
Remove POI. As removing POIs can only result in time being freed up, collapsing the
route can be skipped and expanding the route will close the resulting gap.
Insert POI at a specific position. For insertion of an POI at a specific position we first
totally collapse the route, then insert the POI and finally expand the route:
Insert(route, poi, position):
ResetDelta(route)
TotallyCollapse(route)
Insert poi at position
Expand(route)

Totally collapsing the route might result in POI visits dropping below their minimum

3i.e. when a user can modify the visit duration interactively via a slider interface (see Section 6)

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 265



visit duration but this is either fixed when expanding the route (because other POIs’ extra
visit duration can be used) or it is necessary and there is no way around it as time has to
be freed up for the added POI.

Insert POI at its best position. If the system should determine the best insertion position
for a POI, we initially want to consider only positions which would not result in other
POI visits dropping below their minimum visit duration. Thus we start with collapsing
the route to their POIs minimum visit duration. Then we try to insert the POI. If this is not
possible we must shorten visits below their minimum visit duration with a total collapse
of the route and try the insertion of the POI again. In any case the route is expanded
afterwards:
Insert(route, poi)
ResetDelta(route)
Collapse(route)
p = find best insertion position for poi
IF p is valid:
Insert poi at p

ELSE:
TotallyCollapse(route)
p = find best insertion position for poi
IF p is valid:
Insert poi at p

Expand(route)

Move POI. When moving a POI we adhere to the general scheme of total collapsing,
performing the move and expanding.

POI visit duration change. Changing the duration of a visit depends on whether it is
shrunk or extended. In case of a shrunk collapsing the route is not necessary because no
additional time is needed. As the duration of the affected POI is set directly it must be
excluded from the following expanding of the route (lock). Otherwise its visit duration
might get re-increased. In case a visit duration is extended we first totally collapse the
route. Then we change the visit duration. If the requested new duration of the POI is not
feasible we only change it to the maximum feasible value. Again we have to make sure
that the expanding of the route will leave out the modified POI:
ChangeDuration(route, position, newDuration):
poi = route[position]
oldDuration = poi.duration
IF newDuration < oldDuration:
ResetDelta(route)
Change duration of poi to newDuration
lock poi.duration
Expand(route)
unlock poi.duration

ELSE IF newDuration > oldDuration:
ResetDelta(route)
TotallyCollapse(route)
maxDuration = max feasible duration of poi
d = min(maxDuration, newDuration)
Change duration of poi to d
lock poi.duration
Expand(route)
unlock poi.duration

Fill-up route. Routes with larger gaps might be filled up by letting the system decide
which POIs to add. The systems choice might be restricted to a set of POIs – a candidate
set. Recommenders could be used to determine the set and/or to weight POIs. For filling
up a route we first collapse all visits to their minimum visit duration. Then we perform
one step of the Iterative Local Search algorithm for the OP described in [7]: we iteratively

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes266



(a) (b) (c) (d)
Figure 1. (a) Browsing through the available events by different means. (b) Following a generated route on
the map. (c) Editing the route by moving an event. (d) Editing the route by changing the visit duration.

insert one POI after another until the route is too packed to add further POIs. In each
iteration we determine the best candidate and its best position. We then add this POI at
that position to the route and remove it from the candidate set. Afterwards we expand the
route again to close any remaining gaps:
FillUp(route, poiSet)
ResetDelta(route)
Collapse(route)
DO:
insert best POI of poiSet at best position
IF route was changed
remove inserted POI from poiSet

WHILE route was changed
Expand(route)

Our local search approach on filling up a route results in a local optimum to be returned
which might be unfortunate. However, in our experience this seems to be less problematic
as long as the route to be filled-up is not empty or near empty: the existing POIs reduce
the search space, set a general frame for the resulting route and thus make sure that the
generated plan is plausible.

6. Route Editing User Interface

The editing operations described in the previous section can be implemented via a user
interface designed to assist visitors in modifying a generated route. We implemented an
electronic tourist guide for a special kind of tourism: visiting a distributed event. A dis-
tributed event [10] is a collection of smaller, single events occurring at approximately
the same time and conforming to one overarching theme. Well known examples include
the Cannes International Film Festival, the Edinburgh Festival Fringe, and Montreal In-
ternational Jazz Festival. We focus in this paper on the Long Night of Munich Museums.
What many of these events have in common is that they have huge number of diverse
sub-events that are geographically and temporally dispersed. Thus visitors of distributed
events are facing very similar problems to those visiting a city for sightseeing purposes.
One main difference are the special shuttle buses that are provided and that connect the
different events. In the developed Android app we provide assistance for three compo-
nents of electronic tourist guides mentioned in [2]:

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 267



In a first step we determine a set of POIs of potential interest to the visitor. For this
purpose we use a recommender system [5] but do not feed the results into the route
planning algorithm. Instead the recommendations are shown to the user to allow him to
decide upon the events he is interested in. This also makes it possible to provide users
other means of accessing events [11]. Each tab in Figure 1a provides one of these options:
the user can browse events organized geographically by their position on bus routes, by
type, by searching for their name/description or by selecting them on a map. The ”Rated”
tab shows a list of already selected events.
In a next step we generate routes containing as many events as possible from the set of
selected events. This is done with an Iterative Local Search algorithm similar to [7]. The
resulting route presented to the user as a list or on a map (see Figure 1b).
Finally when the user decides to modify the route we support him on a dedicated editing
screen (see Figure 1c and Figure 1d): all the editing operations described in Section 5 are
available: when adding events the user is directed to the already known event browser
(see Figure 1a) to choose an event. Moving an event is performed by drag and drop as
depicted in Figure 1c. During the dragging of an event the route is continuously updated
to reflect the current position of the event in the route. For changing the event visit du-
ration we use a slider interface as shown in Figure 1d: dragging the slider to the right
instantaneously increases the visit duration of the selected event and decreases those of
the other events. As for each slider movement the complete route has to be collapsed and
expanded we experienced some performance problems on older low-end smartphones.
To solve these problems and provide a responsive user interface we increased the step
size to 5 min when expanding the route. This only partially expands the route and would
leave gaps of up to 4 min which we close by expanding again with a 1 min step size.
At the top of the editing screen the total time spent at events and the total traveling time
is shown. This helps users in judging the effects of an editing operation on the route as a
whole. Additionally event visits dropping below the minimum visit duration are visually
highlighted via color depending on how much they fall short of the desired visit dura-
tion. This makes it easy for the user to realize that this constraint is violated and might
encourage him to make further route modifications to remedy this problem.

7. Conclusion and Future Work

In this paper we have provided insights into how sightseeing tourists could be supported
in editing an automatically generated route. We first looked into why it is desirable to
give users the opportunity to modify a route instead of focusing on improvements to the
POI recommender or the route planning algorithms. We also gave an overview on how
current systems approach this need showing that all but one system rely on re-planning.
Only that system provides fine-grained control on route modifications to the user but
ignores the user-specified route end time. We argued that this is neither sufficient to al-
low certain route modifications in case POIs have opening hours nor do users expect
the system to dismiss their input. Thus we next made up guidelines into how an edit-
ing system should behave to meet users’ expectations such as a fair distribution of time
surplus. We finally set on six operations we want the system to support. To define these
we established and defined the concept of collapsing and expanding a route. Collapsing
is reducing all POI visits to the bare minimum while expanding a route is the inverse

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes268



operation and furthermore closes all remaining gaps in the route. With the help of these
we then provided solutions for the six operations which adhere to the guidelines made up
earlier. We showed that most operations consist of the three steps collapsing the route,
performing edit operation and then expanding the route again. Finally we looked into an
assistance system for distributed events and especially into the route editing user inter-
face that uses the operations developed in this paper. The interface provides instant feed-
back on how an operation affects the route making disadvantageous route modifications
obvious while not hindering users in performing the modifications they envisioned.
Even though some of the operations make use of ideas used by planning algorithms,
the presented solutions are independent of these and can be used in conjunction with
any route generation algorithm. Nevertheless, a tighter integration between planning and
route modifications is imaginable: the fill-up algorithm presented in this paper is a first
step in this direction. More advanced route improvement strategies could recommend ad-
vantageous editing operation sequences such as: ”removing POI A, switching POI B and
C and then adding POI D, E and F would save you a lot of traveling and would increase
the total time spend at POIs.” This would show the user a way back from a customized
route to an optimized route.
In the near future we plan to evaluate how the editing interface is used in a field trial. We
are interested in how often the available operations are used, what events they are used
on and in which way the route is modified. We plan to use metrics, such as the topical
diversity of route events, to measure how routes before and after the edit differ from each
other. This might gain insights into what properties a route generation algorithm should
take into account. If user-made route improvements can be measured it might also be
possible to use these metrics during the planning phase to judge different route options.

References

[1] Katerina Kabassi. Personalizing recommendations for tourists. Telematics and Informatics, 27(1):51–
66, 2010.

[2] Ander Garcia, Olatz Arbelaitz, Maria Teresa Linaza, Pieter Vansteenwegen, and Wouter Souffriau. Per-
sonalized tourist route generation. In Current Trends in Web Engineering, pages 486–497. Springer,
2010.

[3] Ronny Kramer, Marko Modsching, Klaus Hagen, and Ulrike Gretzel. Behavioural impacts of mobile
tour guides. ENTER, pages 109–118, 2007.

[4] Ronny Kramer, Marko Modsching, and Klaus Ten Hagen. A city guide agent creating and adapting indi-
vidual sightseeing tours based on field trial results. International Journal of Computational Intelligence
Research, 2(2):191–206, 2006.

[5] Richard Schaller, Morgan Harvey, and David Elsweiler. RecSys for distributed events: Investigating the
influence of recommendations on visitor plans. In Proc. of SIGIR, 2013.

[6] Eui-young Kang, Hanil Kim, and Jungwon Cho. Personalization method for tourist point of interest
(POI) recommendation. In Knowledge-Based Intelligent Information and Engineering Systems, pages
392–400. Springer, 2006.

[7] Pieter Vansteenwegen. Planning in tourism and public transportation. 4OR, 7(3):293–296, 2009.
[8] Marcus Poggi, Henrique Viana, and Eduardo Uchoa. The team orienteering problem: Formulations and

branch-cut and price. In 10th Workshop on ATMOS, page 142, 2010.
[9] Yohei Kurata. CT-Planner2: More flexible and interactive assistance for day tour planning. In Informa-

tion and Communication Technologies in Tourism 2011, pages 25–37. Springer, 2011.
[10] Richard Schaller. Planning and navigational assistance for distributed events. In Proceedings of the 2nd

Workshop on Context Aware Intelligent Assistance, 2011.
[11] Richard Schaller, Morgan Harvey, and David Elsweiler. Entertainment on the go: finding things to do

and see while visiting distributed events. In Proc. IIiX, pages 90–99, 2012.

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 269


