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Abstract. The margin of victory is a critical measure for the robustness of vot-
ing systems in terms of changing election outcomes due to errors in the ballots or
fraud in using electronic voting machines. Applications include risk-limiting post-
election audits so as to restore the trust in the correctness of election outcomes.

Continuing the work of Xia [24], we show that the margin of victory problem is
NP-complete for Schulze and cup elections. We also consider the exact variant of
this problem, which we show to be complete for DP in Schulze, cup, and Copeland
elections.
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1. Introduction

The computational aspects of voting, as a common method of preference aggregation, are
a central topic in the field of computational social choice, mainly due to the wide range of
applications in multiagent systems (see, e.g., the bookchapter by Brandt et al. [1]). Much
of the work so far has focused on winner determination and various types of manipulative
attacks (including manipulation [4], bribery [5], and control [6]). Other properties of
voting systems have been studied extensively from a social-choice perspective, but much
less so in terms of their computational complexity.

We are concerned with one such property: the robustness of elections. When vot-
ers cast their votes using voting machines in political elections, errors might occur in
various ways (be it by accident or with malicious intent [23]), leading to incorrect vote
counts. How many errors are affordable before the election outcome (i.e., the winner
set) changes? The margin of victory is a central concept to measure the robustness of
voting systems in terms of changing election outcomes due to errors in the ballots, or
due to fraud. It is defined as the smallest number of votes that need to be changed in a
given election so as to change its winner set. The higher the margin of victory is, the
more robust is the election. In political elections, post-election audits are used to restore
the trust in the correctness of election outcomes via “verifiable paper records” [10], and
if too many mismatches are found, an extremely costly recount of all votes is in order.
Risk-limiting audit methods [20,21,15] do not require to recount all votes, while limiting
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the risk that the result might still be wrong. A critical parameter for this is the margin of
victory.

These issues have been intensively studied from the point of view of political sci-
ences, employing mainly statistical methods and focusing on plurality voting [18,19],
scoring rules, approval voting, range voting, and single transferable vote (STV) [15,3,8].
Xia [24] was the first to study the margin of victory in terms of its computational com-
plexity while other notions of robustness in voting have been studied by Procaccia et
al. [13] and Shiryaev et al. [17] from a computational perspective. In particular, Xia
showed that while this problem is efficiently solvable for scoring rules, approval voting,
plurality with run-off, and Bucklin voting, it is NP-complete for Copeland, STV, max-
imin, and ranked pairs, and he also studied the approximability of these NP-complete
problems. Continuing this line of research, we study the complexity of the margin
of victory for Schulze and cup elections (a.k.a. sequential majority), establishing NP-
completeness as well. The Schulze rule is a particularly attractive voting system due to its
many desirable axiomatic properties [16]; its computational properties have also drawn
much attention recently (see, e.g., [12]).

While our result for cup voting requires a novel reduction, NP-hardness of the mar-
gin of victory problem for Schulze is a straightforward consequence of the NP-hardness
result for destructive bribery due to Parkes and Xia [12], along with the connection be-
tween these two problems due to Xia [24]. We add to this connection by showing that, for
multi-winner voting systems, destructive bribery can be easy, yet the margin of victory
problem can still be hard.

The main technical contribution of this paper is the study of the exact variant of
the margin of victory problem for Schulze, cup, and Copeland elections for which we
obtain DP-completeness results. Exact variants of NP-hard problems from a variety of
areas are known to be DP-complete (often with rather involved proofs; see, e.g., [22] and
the survey [14]), including the exact variants of social welfare optimization problems
in multiagent resource allocation [9]. In the exact margin of victory problem, we not
only ask whether the margin of victory of a given election meets or exceeds some given
threshold, but we ask whether or not it falls into a predetermined interval. It is known
that the size of this interval does not matter in terms of the problems’ complexity (see,
e.g., [22]), so we can fine-tune it to whatever accuracy we desire, even to just one integer,
and that is how we will define this problem.

2. Preliminaries

Elections and voting systems: An election is a pair (C,V ), where C is a finite set of
candidates and V is a list of votes (or ballots) expressing the voters’ preferences over the
candidates in C. The form of the ballots depends on the voting system used; we focus on
ballots that are (strict) linear orders of the candidates in C. For example, if C = {a,b,c}
is our candidate set, a ballot could be of the form b > c > a meaning that this voter
(strictly) prefers b to c, and (strictly) prefers c to a. Throughout this paper, we will omit
the greater-than sign, so the above preference would be written as bca.

For a given election (C,V ) and two candidates a,b ∈ C, let DV (a,b) denote the
number of votes in V that prefer a to b minus the number of votes in V that prefer b to a.
If DV (a,b)> 0, we say that a (strictly) beats b in pairwise comparison. Given an election
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(C,V ), define the weighted majority graph for (C,V ), denoted by WMG(C,V ), to be
the weighted, directed graph G with vertex set C and edges between any two distinct
vertices, where the weight of an edge (a,b) is DV (a,b) and DV (a,b) =−DV (b,a) holds
by definition.

A voting system E is a (set of) rule(s) for how to determine the winner(s) of an
election (C,V ) based on the ballots in V . We will denote the set of winners of (C,V )

under E by E (C,V ). In particular, we will consider the following voting systems.
Let α , 0 ≤ α ≤ 1, be a fixed rational number. In Copelandα elections, given an

election (C,V ), DV (a,b) is determined for every pair (a,b) ∈ C ×C. Each candidate
a receives one point for every pairwise comparison she (strictly) wins (i.e., whenever
DV (a,b) > 0), and gets α points for every tie (i.e., whenever DV (a,b) = 0). All candi-
dates with the highest score are the Copelandα winners of (C,V ).

In Schulze elections, construct the weighted majority graph G = WMG(C,V ) from
a given election (C,V ). The strength of a path from a to b in G is defined as the smallest
weight any edge on this path has. For each pair (a,b) of candidates, P(a,b) denotes the
strength of a strongest path from a to b (i.e., of a path with the greatest minimum edge
weight among all paths from a to b). All candidates a ∈C with P(a,b) ≥ P(b,a) for all
b ∈C�{a} are the Schulze winners of (C,V ). Note that a candidate a ∈C is the unique
Schulze winner of (C,V ) if and only if P(a,b)> P(b,a) for all b ∈C�{a}.

In cup (or sequential majority) elections, an election is defined by specifying (C,V )

and, additionally, a voting tree T (i.e., a complete binary tree with as many leaves as
there are candidates in C, where we assume that C contains enough dummy candidates
so as to satisfy ‖C‖ = 2k for some k, and all dummy candidates are ranked worst in V ),
and a schedule that assigns the candidates to the leaves of T . Determine the value of
DV (a,b) for each pair of candidates, a and b, that are siblings in the tree. The winner of
the pairwise comparison is assigned to the parent node. This procedure is continued until
the cup winner is assigned to the root. The schedule is known beforehand and whenever
ties occur, they are broken by a beforehand fixed tie-breaking rule.

Complexity theory: We assume that the reader is familiar with the basic notions
of the complexity classes P and NP and hardness and completeness with respect to
the polynomial-time many-one reduction, denoted by ≤p

m. Papadimitriou and Yan-
nakakis [11] introduced the complexity class DP = {A�B |A,B ∈ NP}, the class of dif-
ferences of any two NP problems, which is, together with coDP, also known as the sec-
ond level of the boolean hierarchy over NP (see [2]). It is well-known (see, e.g., [14]) that
DP contains the exact variants of many NP-complete problems, such as the following
DP-complete problem EXACT VERTEX COVER (XVC) that asks for a given undirected
graph G = (A,E) and a positive integer k whether τ(G) = k, i.e., whether the size of
a smallest vertex cover in G is exactly k.1 Changing the question to whether τ(G) ≤ k
gives the well-known NP-complete VERTEX COVER problem (see, e.g., [7]).

1A vertex cover of an undirected graph G = (A,E) is a subset A′ ⊆ A that contains at least one vertex of
each edge. The size of a smallest vertex cover is denoted by τ(G). (As V is already used to denote voter lists,
we will use A to denote vertex sets in graphs, although the common notation is V .)
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3. The Margin of Victory and Destructive Bribery

In this section, we will give the formal definitions of the investigated problems and con-
tinue the work of Xia [24] by drawing further connections between the margin of victory
and the complexity of destructive bribery. The margin of victory is defined as follows.

Definition 1 For a given voting system E and a given E election (C,V ), we define the
margin of victory to be the smallest integer � such that the winner set can be changed by
changing � votes in V , while the other votes remain unchanged. We will use the notation
MOV(E ,(C,V )) = �.

Just as Xia [24], we will focus on the decision version of this problem denoted by
E -MARGIN OF VICTORY (E -MOV) for a given voting system E , that asks for an E
election (C,V ) and a positive integer k whether MOV(E ,(C,V ))≤ k holds.

The MOV problem is closely related to the standard bribery scenario in elections that
was defined by Faliszewski et al. [5]. In particular, in E -DESTRUCTIVE UNWEIGHTED

BRIBERY (E -DUB), we are given an E election (C,V ), a designated candidate p ∈ C,
and a positive integer k, and we ask whether it is possible to prevent p from being a
unique E winner by bribing at most k voters (i.e., by changing their votes).

The above problem is defined in the so-called unique-winner model. By changing the
question to whether the designated candidate can be prevented from being an E winner
by bribing at most k voters, the problem would be defined in the so-called nonunique-
winner model (a.k.a. the co-winner model). When analyzing the relationship between
the bribery problem and the MOV problem, one has to pay close attention on whether
the voting system at hand always selects unique winners or whether the winner set may
contain more than one candidate. The following result, due to Xia [24], deals with the
former type of voting rules and displays the close connection between the margin of
victory and the standard bribery scenario in elections.

Proposition 2 (Xia [24]) Let E be a voting system that always selects a unique winner of
an election in deterministic polynomial time, and satisfies E -MOV �= /0.2 Then E -MOV
and E -DUB are ≤p

m-equivalent, i.e., E -MOV ≤p
m E -DUB and E -DUB ≤p

m E -MOV.

For voting rules that may select more than one winner, however, we now show that
the above equivalence does not hold in general, unless P could be shown to equal NP.
Note that the voting rule we will construct for showing the following theorem is not
neutral.3 Whether there exists a neutral voting rule satisfying the same properties as the
one we construct is an interesting open question.

Theorem 3 There exists a voting system K such that K -DUB ∈ P but K -MOV is
NP-complete.

Proof Sketch. Due to space constraints we only sketch the proof by providing the vot-
ing system K that always outputs at least two winners if there are at least two candi-

2As is common, we view a decision problem such as E -MOV as the language of yes-instances.
3A voting rule is called neutral if the outcome does not depend on the candidates’ naming, i.e., if any two

candidates are swapped in each vote, the outcome changes accordingly.
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dates. For an election (C,V ) with C = {p}∪C′, the winnerset in K is determined as
follows:

K (C,V ) =

{
p if C = {p}
{p}∪ cup(C′,V ) otherwise.

It is easy to see that K -DUB ∈ P. NP-hardness of K -MOV immediately follows from
the NP-hardness of cup-MOV, which we will show in Theorem 5. �

4. Margin of Victory in Schulze and Cup Voting

Xia [24] established complexity results for the margin of victory problem for various
voting rules, including all scoring protocols, STV, and Copeland elections. We now turn
to the complexity of this problem in Schulze and cup elections.

Theorem 4 For Schulze elections, MOV is NP-complete.

Proof. NP-hardness directly follows from the NP-hardness result for Schulze-DUB
shown by Parkes and Xia [12] and the fact that E -DUB ≤p

m E -MOV for each voting
system E with E -MOV �= /0. Membership of Schulze-MOV in NP is easy to see. �

Theorem 5 For cup elections, MOV is NP-complete.

Proof. This result follows from the NP-hardness of cup-DUB, which we will show
by a reduction from the well-known NP-complete problem VERTEX COVER (recall its
definition from Section 2) using the so-called UV technique introduced by Faliszewski et
al. [6]. To do so, let G=(A,E) be an undirected graph with vertex set A= {a1,a2, . . . ,an}
and edge set E = {e1,e2, . . . ,em}, and let k ∈N. We construct the cup election (C,V ) with
C = {c,d}∪E ∪P∪T , where P = {p1, p2, . . . , pm} and T is a set of dummy candidates
that will be used to ensure that the voting tree is balanced (we will come to that later).
Let Na = {e ∈ E | e∩{a} �= /0} be the set of edges incident to vertex a ∈ A.

V contains 2m(n+k−3)+6n+6k−3 voters whose preferences are listed in Table 1.
When a set of candidates, say Z ⊆ C, is given in a voter’s preference, then we assume
that the candidates in Z are ordered with respect to a (tacitly assumed) fixed order, while←−
Z denotes that the candidates are ordered in reverse. In particular, we fix the order of the
candidates in P to be p1 > p2 > · · ·> pm.

The dummy candidates in T are always positioned at the bottom of each voter’s
preference, so they lose every pairwise comparison to the candidates in C � T . This
implies that their position in the schedule is irrelevant, so we will omit them in Figure 1.

For the sake of readability and clarity, we will omit the dummy candidates in our
further arguments, and we will use the voting tree and schedule shown in Figure 1. (To
transform this tree into a complete binary tree (i.e., into a legal voting tree), the dummy
candidates in T have to be added to the three subtrees with the roots d,c, and X , respec-
tively.) Since the height of the tree is in O(logm), we have in total a polynomial number
of leaves, which ensures that the reduction is in fact polynomial-time computable.
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Table 1. List of votes V for the proof of Theorem 5

# Preference

one vote for each a ∈ A
c d Na P (E �Na) T

P c d (
←−−−−
E �Na)

←−
Na T

k votes
c d P E T

c d P
←−
E T

2(n+ k−2) votes
c E P d T

c
←−
E P d T

n+ k−3 votes c (P�{pi}) pi ei (E �{ei}) d T

for each i ∈ {1, . . . ,m} d (
←−−−−−
E �{ei}) pi ei (

←−−−−−
P�{pi}) c T

one vote P c d E T

p1 e1 pi ei pm em

X d

c

Figure 1. Voting tree of the cup election (C�T,V ) without dummies

In this election, we have the following pairwise comparisons between the candidates
in C�T :

DV (c,d)> 4k, DV (c,P) = DV (d,P) = 2k−1, DV (c,E) = DV (d,E) = 2n+2k+1,

DV (pi, p j)

{
>

≤
4k if i < j
0 if i ≥ j, DV (pi,e j) =

{
−2n−2k+5 if i �= j
−1 if i = j.

Thus, c is the unique cup winner of this election. We claim that G has a vertex cover
of size at most k if and only if c can be prevented from being a unique cup winner by
changing at most k votes.

From left to right: Assume that A′ ⊆ A is a vertex cover of size k. Change
the preferences of those k voters corresponding to A′ in the first voter group from
cd Na P(E �Na)T to Pcd Na (E �Na)T . Since A′ is a vertex cover we have that due to
these changes each ei ∈ E has one vote where she is positioned behind all candidates in
P. So we have that each pi wins her first pairwise comparison against ei by one point. In
the subelection corresponding to the subtree with root X (recall Figure 1), the relevant
pairwise comparisons are among the candidates in P and due to the fixed ordering of
these candidates in the votes, p1 is the winner of this subelection. Both c and d have lost
k votes in comparison to p1 due to the bribe, so p1 wins both pairwise comparisons and
is thus the unique cup winner of this election. So c has been successfully prevented from
winning.
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From right to left: Assume that c can be prevented from being a unique winner by
bribing at most k voters. Due to the scores only candidates from P have a chance to
prevent c from being a unique winner, so the following has to hold for the bribed election:
A candidate from P, say p1, has to be the winner of the subelection corresponding to the
subtree with root X and p1 has to win the pairwise comparisons against both d and c. For
the latter to hold, all k bribed votes have to have p1 positioned behind d and c (before
the bribe). For the former to hold, no candidate in E may win her first contest, which
implies that every pi ∈ P has to win the pairwise comparison against the corresponding
candidate ei ∈ E. So the votes that are bribed also have to rank the candidates in E better
than those in P before the bribe is conducted. With this we see that the k bribed votes
have to be from the first voter group and that the vertices corresponding to these votes
have to form a vertex cover of size k to ensure that each ei ∈ E loses the first pairwise
comparison. �

5. Exact Margin of Victory in Schulze, Copeland, and Cup Voting

In this section, we present our complexity results for the exact variants of the margin of
victory problem, which for a given voting system E is denoted by E -EXACT MARGIN

OF VICTORY (E -XMOV) and asks for a given E election (C,V ) and a positive integer
k whether MOV(E ,(C,V )) = k. In particular, we will consider this problem for the two
systems studied in the previous section, Schulze and cup, and also for Copelandα vot-
ing. (Note that Xia [24] proved that Copelandα -MOV is NP-complete.) Due to space
constraints we only provide a proof sketch for the following result in Schulze elections.

Theorem 6 For Schulze elections, XMOV is DP-complete.

Proof Sketch. For showing DP-hardness we provide a reduction from the DP-complete
problem XVC. Let G=(A,E) be an undirected graph with vertex set A= {a1,a2, . . . ,an}
and edge set E = {e1,e2, . . . ,em}, and let k be a positive integer. Without loss of gen-
erality, we assume that 6 ≤ k ≤ n and that k − 1 mod 5 = 0. Let U = E1 ∪E2 ∪E3 be
the marked union of three copies of E, which are denoted by Ei = {ei1,ei2, . . . ,eim} for
i ∈ {1,2,3}, and let Na = {ei j | e j ∩{a} �= /0 and i ∈ {1,2,3}} denote the set of all edges
in U that are incident to vertex a ∈ A. We define the Schulze election (C,V ), where
C = {c,d,e, f ,g,h, p}∪U, and V is a list of 40n+324k−132 voters, whose preferences
are specified in Table 2. When a set of candidates Z ⊆ C is given in a preference, we
assume that the candidates in Z are ordered with respect to a (tacitly assumed) fixed
order.

Figure 2 shows a subgraph of the weighted majority graph of this election that only
contains edges relevant for the argumentation. Table 3 shows the weights of the relevant
strongest paths in (C,V ); hence, c is the unique Schulze winner in this election. We will
elaborate on some useful properties of the constructed election: Since candidate c is the
unique Schulze winner, the winner set can only be changed by achieving P(c,x)≤P(x,c)
for at least one candidate x ∈ C� {c}. Since P(c,x)− 2k ≥ 12k− 2k > 12(k−1)

5 + 2k ≥
P(x,c)+2k holds for all candidates x ∈C�{c, p}, only p can tie with c when no more
than k votes can be changed. So it suffices to focus on the paths leading from c to p, and
vice versa. From p to c, the only reasonable path is ((p,d),(d,e),(e, f ),( f ,g),(g,c)).
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Table 2. List of votes V in the proof of Theorem 6

# Preference Type

one vote for each a ∈ A

h > c > g > f > e > Na > p > d > (U �Na) 1
c > g > e > f > d > Na > p > (U �Na)> h 1
h > c > g > f > d > e > Na > p > (U �Na) 1
c > f > g > e > d > Na > p > (U �Na)> h 1
h > g > c > f > e > d > Na > p > (U �Na) 1

n votes

d > p > e > f > g > c >U > h 2
h > p > d > f > e > g > c >U 2
p > e > d > f > g > c >U > h 2
h > p > d > e > g > f > c >U 2
p > d > e > f > c > g >U > h 2

12(k−1)/10 votes
h > p > d > e > f > g > c >U 2
p > d > e > f > g > c >U > h 2

3k−3+ 12(k−1)/10 votes
h > e > f > g > c > p > d >U 3
d > c > g > f > e > p >U > h 3

6k+ 12(k−1)/10 votes

h > p > g > c > f > e > d >U 2
c > d > e > f > g > p >U > h 3
h > p > c > f > g > e > d >U 2
g > d > e > f > c > p >U > h 3
h > p > g > c > e > f > d >U 2
f > d > e > c > g > p >U > h 3

6k votes

c > h > g > e > f > p > d >U 3
d > p > f > e > g > c > h >U 2
h > g > c > e > f > p > d >U 3
d > p > f > e > c > h > g >U 2

h > d > c > g > E1 > E2 > p > E3 > f > e 4a

e > f > E2 > E1 > p > E3 > g > c > d > h 4b

5n+41k−20 votes
h > d > c > f > E1 > E3 > p > E2 > g > e 5a

e > g > E3 > E1 > p > E2 > f > c > d > h 5b

h > d > c > e > E2 > E3 > p > E1 > f > g 6a

g > f > E3 > E2 > p > E1 > e > c > d > h 6b

Table 3. Weights of the strongest paths in (C,V ) in the proof of Theorem 6

x d e f g h p U

P(c,x) 12k 12k 12k 12k 12k 6k−6 > 12k

P(x,c) 12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

We can argue that when at most k changes are allowed, we have that P(p,c)≤ 12(k−1)
5 +

8(k−1)
5 = 4(k− 1) holds in this new election. The following property can be shown for

completing the proof:
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U

p d e

c g f

h

12(k−1)/5 12(k−1)/5

12(k−1)/5

12(k−1)/512(k−1)/5

6k−6

6k−66k−6

12k

12k

12k
6k−6

12k
12k

> 12k

4k−2

Figure 2. Subgraph of the WMG(C,V ) of the Schulze election (C,V ) in the proof of Theorem 6

MOV(Schulze,(C,V ))

⎧⎪⎨
⎪⎩
= k−1 if τ(G)< k
= k if τ(G) = k
> k otherwise,

(1)

where, recall, τ(G) denotes the size of a smallest vertex cover in G. We show the first
case in (1) in detail: Assume that τ(G) < k and let A′ ⊆ A be a vertex cover in G of
size k− 1. For each vertex a ∈ A, there are five voters in V of type 1 (recall Table 2),
which only differ in the ordering of the candidates {c,d,e, f ,g, p}. If for each a ∈ A′
one of the five type-1 votes is changed such that p > d > e > f > g > c > · · · holds in
this vote and these changes are carefully conducted while ensuring that all five votes are
changed equally often, it can be achieved that P(c, p) = 4k− 4 = P(p,c). So we have
that MOV(Schulze,(C,V ))≤ k−1. By changing at most k−2 votes in this election, one
could achieve that P(c, p) ≥ 4k− 2 > 4k− 4 ≥ P(p,c), so c would remain the unique
winner of the changed election. Thus we have that MOV(Schulze,(C,V ))≥ k−1, which
gives MOV(Schulze,(C,V )) = k−1. �

For the other two voting systems, we have the same complexity results, and we omit
their (similar) proofs due to space constraints.

Theorem 7 For both cup and Copelandα , XMOV is DP-complete.

6. Conclusions and Open Questions

Continuing the work of Xia [24], we have shown that the margin of victory problem
is NP-complete for Schulze and cup elections, and its exact variant is DP-complete for
Schulze, cup, and Copeland elections. For future research, it would be interesting to study
the approximability of the margin of victory also for Schulze and cup. Furthermore the
following variant of the MOV problem might be worthwile to analyze: Instead of count-
ing the number of votes that have to be changed entirely to change an election’s outcome,
the overall number of swaps (or other changes in the votes depending on the voting sys-
tem used) leading to a different winner set could be counted. This version would, e.g.,
model accidental errors in votes more naturally and allow a more fine-grained analysis.
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