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Abstract. One of the most prominent tools for abstract argumentation is the Dung’s
framework, AF for short. Although powerful, AFs have their shortcomings, which
led to development of numerous enrichments. Among the most general ones are
the abstract dialectical frameworks, also known as the ADFs. They make use of
the so–called acceptance conditions to represent arbitrary relations. This level of
abstraction brings not only new challenges, but also requires addressing existing
problems in the field. One of the most controversial issues, recognized not only in
argumentation, concerns the support or positive dependency cycles. In this paper
we introduce a new method to ensure acyclicity of arguments and present a family
of extension–based semantics built on it, along with their classification w.r.t. cycles.
Finally, we provide ADF versions of the properties known from the Dung setting.
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Introduction

Over the last years, argumentation has become an influential subfield of artificial in-
telligence [2]. One of its subareas is the abstract argumentation, which became espe-
cially popular thanks to the research of Phan Minh Dung [3]. Although the framework
he has developed is quite powerful, it has certain shortcomings, which inspired a search
for more general models [4]. Among the most abstract enrichments are the abstract di-
alectical frameworks, ADFs for short [5]. However, a framework cannot be considered a
suitable argumentation tool without properly developed semantics.

The semantics of a framework are meant to capture what we consider rational. Many
of the advanced ones, such as grounded or complete, coincide when faced with simple,
tree–like frameworks. The differences between them become more visible in compli-
cated cases. On various occasions examples were found for which none of the available
semantics returned satisfactory answers. They gave rise to new concepts, such as pru-
dent and careful semantics for handling indirect attacks [6,7], sustainable and tolerant
for self–attackers [8] or some of the SCC–recursive semantics for the problem of attack
cycles [9]. Introducing a new relation, such as support, creates additional problems.

The most controversial issue in a setting permitting support concerns the support
cycles and is handled differently from formalism to formalism. Among the best known
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ones are the Bipolar Argumentation Frameworks (BAFs) [10], Argumentation Frame-
works with Necessities (AFNs) [11] and Evidential Argumentation Systems (EASs) [12].
While the latter two discard support cycles, BAFs do not make such restrictions and in
general, neither do ADFs. This variety is not an error in any of the structures. First of all,
in a more advanced setting, a standard Dung semantics can be extended in several ways.
Moreover, since one can find arguments both for and against any of the cycle treatments,
lack of consensus as to what approach is the best should not be surprising.

Many properties of the available semantics can be seen as “inside” ones, i.e. “what
can I consider rational?”. On the other hand, some can be understood as on the “outside”,
e.g. “what can be considered a valid attacker, what should I defend from?”. Various ex-
amples of such behavior exist even in the Dung setting. An admissible extension defends
against all possible attacks in the framework. We can then restrict this by saying that
self–attackers are not rational, and thus limit the set of arguments we have to defend the
extension from. If we now add support, we can again define admissibility in the basic
manner. However, one often demands that the extensions are free from support cycles
and that we only defend from arguments not taking part in them. From this perspective
semantics can be seen as a two–person discussion, describing what “I can claim” and
“what my opponent can claim”. This is also the point of view that we follow in this paper.

Although various extension–based semantics for ADFs have already been proposed
in the original paper [5], many of them were defined only for a particular ADF subclass
and were not suitable for all types of situations. Moreover, they did not solve the prob-
lem of positive dependency cycles. The aim of this paper is to address these issues. We
introduce a family of extension–based semantics and specialize them to handle the prob-
lem of support cycles, as their treatment seems to be the greatest difference between the
available frameworks. Furthermore, we present a classification of our sub–semantics in
the internal–external fashion that we have described before. We also recall our research
on admissibility in [13] and show how it fits into the new system. Finally, we show which
known properties, such as Fundamental Lemma, carry over from the Dung framework.

1. Dung’s Argumentation Frameworks

Let us briefly recall the argumentation framework by Dung [3] and its semantics. For
more details we refer the reader to [14].

Definition 1.1. A Dung’s abstract argumentation framework (AF for short) is a pair
(A,R), where A is a set of arguments and R ⊆ A×A represents an attack relation.

Definition 1.2. An argument a ∈ A is defended by a set E in AF , if for each b ∈ A s.t.
(b,a) ∈ R, ∃c ∈ E s.t. (c,b) ∈ R. A set E ⊆ A is:

• conflict–free in AF iff for each a,b ∈ E, (a,b) /∈ R.
• admissible iff it is conflict–free and defends all of its members.
• preferred iff it is maximal w.r.t set inclusion admissible .
• complete iff it is admissible and all arguments defended by E are in E.
• stable iff it is conflict–free and for each a ∈ A\E there exists b ∈ E s.t. (b,a) ∈ R.

The characteristic function FAF : 2A → 2A is defined as: FAF(E) = {a | a is defended by
E in AF}. The grounded extension is the least fixed point of FAF .
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We would also like to recall the notion of range, as its idea will be used in the ADF
semantics. Even in the Dung setting, the concepts of the E+ and E− sets can be used to
redefine defense. Finally, we also list some of the properties of Dung’s semantics [3].

Definition 1.3. Let E+ be the set of arguments attacked by E and E− the set of arguments
that attack E . E+∪E is the range of E.

Lemma 1.4. Dung’s Fundamental Lemma Let E be an admissible extension, a and b
two arguments defended by E. Then E ′ = E ∪{a} is admissible and b is defended by E ′.

Theorem 1.5. Every stable extension is a preferred extension, but not vice versa. Every
preferred extension is a complete extension, but not vice versa. The grounded extension is
the least w.r.t. set inclusion complete extension. The complete extensions form a complete
semilattice w.r.t. set inclusion. 2

2. Abstract Dialectical Frameworks

Abstract dialectical frameworks have been defined in [5] and further studied in [13,15,
16,17,18]. Their main goal is to be able to express arbitrary relations. This is achieved by
the use of acceptance conditions, which define what sets of arguments should be present
in order to accept or reject a given argument.

Definition 2.1. An abstract dialectical framework (ADF) as a tuple (S,L,C), where S
is a set of abstract arguments (nodes, statements), L ⊆ S×S is a set of links (edges) and
C = {Cs}s∈S is a set of acceptance conditions, one condition per each argument.

An acceptance condition is a total function Cs : 2par(s) → {in,out}, where par(s) =
{p ∈ S | (p,s) ∈ L} is the set of parents of an argument s.

Please note that one can also represent the acceptance conditions by propositional for-
mulas over arguments instead of “boolean” functions [19]. It is easy to see that links L
are somewhat redundant and can be extracted from the conditions. Thus, we will use of
shortened notation and assume an ADF D = (S,C) through the rest of this paper. In order
to introduce our new semantics, we need to explain some basic notions first.

Decisiveness: At the heart of Dung’s semantics is the concept of defense. Admissibility
represents a defensible stand, where no matter what our opponent says against us, we can
provide a counter argument to it. From this also follows that given accepted arguments E
and the ones attacked by them (E+), whatever argument is left cannot further change the
status of the ones in E. This idea that an argument has a “final” assignment is captured
with the notion of decisiveness in ADFs. Its basic form, where we check the outcome
of an acceptance condition w.r.t. accepted and rejected sets of arguments, can already be
found in the original paper [5]. It is further developed in an interpretation–based form in
[13], which will be used in this paper. A two–valued interpretation v is a mapping that
assigns the truth values {t, f} to arguments. We will use vx to denote a set of arguments
mapped to x by v, where x is some truth–value. Given an argument s ∈ S, its condition
Cs and an interpretation v, we define a shorthand v(Cs) as Cs(vt ∩ par(s)). Now, in order

2A partial order (A,≤) is a complete semilattice iff each nonempty subset of A has a glb and each increasing
sequence of S has a lub.
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 ¬a∨ c b ¬c∧¬e ¬d

Figure 1. Sample ADF

to check is some (possibly partial) interpretation is decisive for s, we basically need to
check if all “bigger” interpretations stemming from it evaluate Cs in the same way:

Definition 2.2. Given a two–valued interpretation v defined on a set A, a completion of
v to a set Z where A ⊆ Z is an interpretation v′ defined on Z s.t. ∀a ∈ A v(a) = v′(a). By
a t/f completion we understand v′ that maps all arguments in Z \A respectively to t/f.

Definition 2.3. We say that an interpretation v defined on A is decisive for an argument
s ∈ S iff for any two (respectively two or three–valued) completions vpar(s) and v′par(s) of
v to A∪ par(s), it holds that vpar(s)(Cs) = v′par(s)(Cs). We say that s is decisively out/in

wrt v if v is decisive and all of its completions evaluate Cs to respectively out, in.

Example 2.4. Let ({a,b,c,d,e},{Ca : 
,Cb : ¬a∨ c,Cc : b,Cd : ¬c∧¬e,Ce : ¬d}) be
the ADF in Figure 1. Examples of decisively in interpretations for b include v1 = {c : t}.
This means that knowing that c is true, we know that the whole disjunction (and thus
the acceptance condition) are satisfied. Formally speaking, v1 is decisive as both of its
completions {c : t,a : f} and {c : t,a : t} satisfy the condition.

Acyclicity: Let us now focus on the issue of positive dependency cycles. Please note
we refrain from calling them support cycles in the ADF setting in order not to confuse
them with specific definitions of support available in the literature [10].

Informally speaking, an argument takes part in a cycle if its acceptance depends on
itself. An intuitive way of verifying the acyclicity of an argument would be to “track” its
evaluation, e.g. in order to accept a we need to accept b, for b we need c and so on. This
basic case becomes more complicated when disjunction is introduced. We then receive a
number of such “paths”, with only some of them proving to be acyclic. Moreover, they
might be conflicting one with each other. It can also happen that all acyclic evaluations
are blocked and a cycle is forced. Our approach to acyclicity is based on the idea of such
“paths” that are accompanied by sets of arguments used to detect possible conflicts.

Let us now introduce the formal definitions. In order to obtain the arguments that are
required or should be avoided for the acceptance of a given argument, we will make use
of decisive interpretations. Naturally, it suffices to focus on the minimal ones, by which
we understand that both vt and vf are minimal w.r.t. ⊆. Given an argument s ∈ S and x ∈
{in,out}, by min dec(x,s) we will denote the set of minimal two–valued interpretations
that are decisively x for s.

Definition 2.5. Let A ⊆ S be a nonempty set of arguments. A positive dependency

function on A is a function pd assigning every argument a ∈ A an interpretation v ∈
min dec(in,a) s.t. vt ⊆ A or N for null iff no such interpretation can be found.

Definition 2.6. An acyclic positive dependency evaluation acea for a ∈ A based on a
given pd–function pd is a pair ((a0, ...,an),B), 3 where B =

⋃n
i=0 pd(ai)

f and (a0, ...,an)

3Please note that it is not required that B ⊆ A
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is a sequence of distinct elements of A s.t.: 1) ∀n
i=0 pd(ai) �=N , 2) an = a, 3) pd(a0)

t =
/0, and 4) ∀n

i=1, pd(ai)
t ⊆{a0, ...,ai−1}. We will refer to the sequence as the pd–sequence

and to B as the blocking set. We will say that an argument a is pd–acyclic in A iff there
exist a pd–function on A and a corresponding acyclic pd–evaluation for a.

We will write that an argument has an acyclic pd–evaluation on A if there is some
pd–function on A from which we can produce the evaluation. There are two ways we
can “attack” an acyclic evaluation. We can either discard an argument required by the
evaluation or accept one that is capable of preventing it. This corresponds to rejecting a
member of a pd–sequence or accepting an argument from the blocking set. We can now
formulate this “conflict” by the means of an interpretation:

Definition 2.7. Let A ⊆ S be some set of arguments and a ∈ A s.t. a has an acyclic pd–
evaluation acea = ((a0, ...,an),B) in A. We say that a two–valued interpretation v blocks

acea iff ∃b ∈ B s.t. v(b) = t or ∃ai ∈ {a0, ...,an} s.t. v(ai) = f.

Example 2.4 (Continued). Let us now show why we store the blocking set. For argument
b there exist two minimal decisively in interpretations: v1 = {a : f} and v2 = {c : t}.
The interpretations for a and c are respectively w1 = {} and z1 = {b : t}. Therefore, on
{a,b,c} we have two pd–functions, namely pd1 = {a : w1,b : v1,c : z1} and pd2 = {a :
w1,b : v2,c : z1}. They result in one acyclic evaluation for a: ((a), /0), one for b: ((b),{a})
and one for c: ((b,c),{a}). Let us analyze the set E = {a,b,c}. We can see that accepting
a “forces” a cycle between b and c. The acceptance conditions of all arguments are
satisfied, thus this simple check is not enough to verify if a cycle occurs. If we checked
only if the members of the pd–sequences are accepted, we would also get the wrong
answer. Only looking at the whole evaluations shows us that b and c are both blocked by
a. Although b and c are technically pd–acyclic in E, we see that their evaluations are in
fact blocked and this type of conflict needs to be taken into account by the semantics.

3. Extension–Based Semantics of ADFs

Although various semantics for ADFs have already been defined in the original paper
[5], only three of them – conflict–free, model and grounded – are still used (issues with
the other notions can be found in [13,15,16]). Moreover, the treatment of cycles and their
handling by the semantics was not sufficiently developed. In this section we will address
all of those issues. Recall that there is no consensus among available bipolar frameworks
as to how support cycles should be treated. Therefore, we would like to explore the
possible approaches in the context of ADFs by developing appropriate semantics.

The classification of the sub–semantics that we will adopt in this paper is based
on the inside–outside intuition presented in the introduction. Appropriate semantics will
receive a two–element prefix xy−, where x will denote whether cycles are permitted
or not on the “inside” and y on the “outside”. We will use x,y ∈ {a,c}, where a will
stand for acyclic and c for cyclic constraints. As the conflict–free and naive semantics
focus only on what we can accept, we will drop the prefixing in this case. Although
the model, stable and grounded fit into our classification (see Theorem 3.15 and [20]),
they have quite unique naming and further annotations are not needed. We are thus left
with admissible, preferred and complete. The BAF approach follows the idea that we
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can accept arguments that are not acyclic and we allow our opponent to do the same.
The ADF semantics created in [13] also shares this view. Therefore, they will receive
the cc− prefix. In contrast, AFNs and EASs do not permit cycles both in extensions
and in attackers. Thus, the semantics following this line of reasoning will be prefixed
with aa−4. Although we believe that a non–uniform approach can be suitable in certain
situations (i.e. ca− and ac−), for now we will focus only on the aa− and cc− ones.

Conflict–free and naive semantics: In the Dung setting, conflict–freeness meant that
the elements of an extension could not attack one another. In ADF setting, this notion
is strengthened by also providing required support. This represents the intuition of argu-
ments that can stand together presented in [14].

Definition 3.1. A set of arguments E ⊆ S is a conflict–free extension of D iff for all
s ∈ E we have Cs(E ∩ par(s)) = in.

In the acyclic version of conflict–freeness we also need to deal with the conflicts
arising on the level of evaluations. To meet the formal requirements, we first have to
show how the notions of range and the E+ set are moved to ADFs.

Definition 3.2. Let E ⊆ S a conflict–free extension of D and vE a partial two–valued
interpretation built as follows:

1. Let M = E and for every a ∈ M set vE(a) = t;
2. For every b ∈ S\M that is decisively out in vE , set vE(b) = f and add b to M;
3. Repeat Step 2 until no new elements are added to M.

By E+ we understand the set of arguments vf
E and we will refer to it as the discarded

set. vE now forms the range interpretation of E.

However, this notion of range is quite strict as it requires an explicit “attack” on all possi-
ble arguments. This is not always a desirable property, since depending on the approach
we might not treat cyclic arguments as valid and hence want them “out of the way”.

Definition 3.3. Let E ⊆ S a conflict–free extension of D and va
E a partial two–valued

interpretation built as follows:

1. Let M = E. For every a ∈ M set va
E(a) = t.

2. For every b ∈ S\M s.t. every acyclic pd–evaluation of b in S is blocked by va
E , set

va
E(b) = f and add b to M.

3. Repeat Step 2 until no new elements are added to M.

By Ea+ we understand the set (va
E)

f and call it the acyclic discarded set. va
E now forms

the acyclic range interpretation of E.

We can now define an acyclic version of conflict–freeness and the naive semantics:

Definition 3.4. A conflict–free extension E is a pd–acyclic conflict–free extension of
D iff every argument a ∈ E has an unblocked acyclic pd–evaluation on E w.r.t. vE .5

4More explanations can be found in [20].
5Since we are in a conflict–free setting, it suffices to check whether E ∩B = /0 to see if an evaluation is not

blocked. Consequently, it does not matter which version of range we use.
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Definition 3.5. The naive and pd–acyclic naive extensions are respectively maximal
w.r.t. set inclusion conflict–free and pd–acyclic conflict–free extensions.

Example 2.4 (Continued). The conflict–free extensions of our ADF ({a,b,c,d,e},{Ca :

,Cb :¬a∨c,Cc : b,Cd :¬c∧¬e,Ce :¬d}) are /0,{a},{b},{d},{e},{a,d},{a,e},{b,c},
{b,d},{b,e},{a,b,c},{b,c,e} and {a,b,c,e}. As a blocks evaluations of b and c,
{a,b,c} and {a,b,c,e} are not pd–acyclic conflict–free. Naive and pd–acyclic naive ex-
tensions are respectively {{a,d},{b,d},{a,b,c,e}} and {{a,d},{a,e},{b,d},{b,c,e}}.

Let us briefly look at the discarded sets of {a,d}. Since a blocks the evaluations of
b and c, they will be included in the acyclic version. However, since none of them is
decisively out w.r.t. just {a}, they will not appear in the standard version. It is easy to see
that presence of d permanently discards e and thus it is in both sets.

Model and stable semantics: The concept of a model basically follows the intuition
that if something can be accepted, it should be accepted:

Definition 3.6. A conflict–free extension E is a model of D if ∀ s ∈ S, Cs(E∩ par(s)) =
in implies s ∈ E.

Verifying whether a condition of an argument s is met does check the effect of ac-
cepting s on E, thus it can happen that including s breaks conflict–freeness of E. Conse-
quently, it is clear to see that model semantics is not universally defined. Moreover, the
extensions might not be maximal w.r.t. ⊆, as visible in the continuation of Example 2.4.

The model semantics was used as a mean to obtain the stable models. The main
idea was to make sure that the model is acyclic. Although the original reduction–based
method was not adequate [15], the initial idea still holds and we use it to define sta-
bility. Although the produced extensions are now incomparable w.r.t. set inclusion, the
semantics is still not universally defined.

Definition 3.7. A model E is a stable extension iff it is pd–acyclic conflict–free.

Example 2.4 (Continued). Out of all conflict–free extensions, only {a,d},{a,e} and
{a,b,c,e} are models. {a} itself is not a model, since Cd({a}∩{c,e}) = in and Ce({a}∩
{d}) = in and we thus we can still accept some arguments. Recall that {a,b,c,e} was
not pd–acyclic conflict–free. Consequently, {a,d} and {a,e} are our stable extensions.

Grounded semantics: The grounded semantics introduced in [5] is defined in the terms
of a special operator. Although it might look complicated at first, this is nothing more
than analyzing decisiveness using the set, not the interpretation form [20].

Definition 3.8. Let ΓD(A,R) = (acc(A,R),reb(A,R)), where acc(A,R) = {r ∈ S | A ⊆
S′ ⊆ (S\R)⇒Cr(S′ ∩ par(s)) = in} and reb(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S\R)⇒Cr(S′ ∩
par(s)) = out}. Then E is the grounded model of D iff for some E ′ ⊆ S,(E,E ′) is the
least fix–point of ΓD.

Example 2.4 (Continued). As noted in [5], the grounded extension can be obtained by
applying the operator to ( /0, /0). Let us compute acc( /0, /0). Obviously, we can accept a.
The condition of c is already out, and so are the ones of b, d and e when we consider
S′ being respectively {a},{e} and {d}. It is easy to see that for now, reb( /0, /0) remains
empty – S′ such as {a,c},{b}, /0 and /0 evaluate respectively b,c,d and e to in. Next
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step is ΓD({a}, /0). However, by reasoning presented above no further arguments can be
accepted or rejected and we reach a fixpoint. Thus, {a} is our grounded extension.

Admissible and preferred semantics: In [13] we have presented our first definition of
admissibility, before the sub–semantics classification was developed. The new, simplified
version of our previous formulation, is now as follows:

Definition 3.9. A conflict–extension E ⊆ S is cc–admissible in D iff every e ∈ E is
decisively in w.r.t to the range interpretation vE .

It should be noted that decisiveness w.r.t. range encapsulates the defense known
from the Dung setting. If an argument is decisively in, then any set of arguments that
would have the power to out the acceptance condition is “prevented” by the interpreta-
tion. Hence, the statements required for the acceptance of a are mapped to t and those that
would make us reject a are mapped to f. The former encapsulates the required “support”,
while the latter contains the “attackers” known from the Dung setting.

When working with the acyclic semantics, we not only have to defend the mem-
bers, but also their acyclic evaluations. Example 2.4 shows that although decisiveness
encapsulates defense of an argument, it might not be the case for its evaluation.

Definition 3.10. A pd–acyclic conflict–free extension E is aa–admissible in D iff every
e ∈ E 1) is decisively in w.r.t. acyclic range interpretation va

E , and 2) has an unblocked
acyclic pd–evaluation on E s.t. all members of its blocking set B are mapped to f by va

E .

Definition 3.11. A set of arguments is xy–preferred in D iff it is maximal w.r.t. set
inclusion xy–admissible, where x,y ∈ {a,c}.

Example 2.4 (Continued). Recall our ADF ({a,b,c,d,e},{Ca : 
,Cb : ¬a∨c,Cc : b,Cd :
¬c∧¬e,Ce : ¬d}) and that {b,c} was a pd–acyclic conflict–free extension. Its standard
and acyclic discarded sets are just {d}. It is easy to see, that both arguments are decisively
in w.r.t. both range interpretations. Although uttering a would not change the values of
the conditions, it would still force a cycle between b and c. Thus, the acyclicity is not
“defended” and {b,c} is cc, but not aa–admissible. Similar follows for {b,c,e}. /0 and
{a} are trivially both cc and aa–admissible. Since the discarded sets of {e} include d, so
are {e} and {a,e}. By the reasoning above, it is also easy to see that {a,b,c},{b,c,e} and
{a,b,c,e} are cc (though not aa) admissible. Finally, apart from /0,{a} and {a,e}, also
{a,d} is aa–admissible. Its acyclic discarded set is {b,c,e} and thus decisiveness and
evaluation defense are preserved. Since the standard set is just {e}, d is not decisively
in and the extension is not cc–admissible. The set {a,b,c,e} is the only cc–preferred
extension, while {a,d} and {a,e} are aa–preferred.

Complete semantics: Completeness represents an approach in which we have to accept
everything we can safely conclude from our opinions. In the Dung setting “safety” means
defense, while in the bipolar setting it is strengthened by providing sufficient support. In
a sense, it follows the model intuition that whatever we can accept, we should accept.
However, now we not only use an admissible base in place of a conflict–free one, but
also defend the arguments in question. Therefore, instead of checking if an argument is
in, we want it to be decisively in.
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Definition 3.12. A cc–admissible extension E is cc–complete in D iff every argument in
S that is decisively in w.r.t. to range interpretation vE is in E. An aa–admissible extension
E is aa–complete in D iff every argument in S that is decisively in w.r.t. to acyclic range
interpretation va

E is in E.6

Example 2.4 (Continued). It is easy to see that since a can always be accepted, only
{a,d},{a,e} and {a} are aa–complete. From this also follows that cc–admissible ex-
tensions such as /0,{e},{b,c}{b,c,e} are not cc–complete. Since the discarded set of
{a,b,c} is {d}, e can still be included in the extension and thus it is also disqualified.
Therefore, we obtain three cc–complete sets: {a}, {a,e} and {a,b,c,e}.

Properties: Let us close the paper with the properties of our semantics. Although the
study provided here will by no means be exhaustive, we would like to show how the lem-
mas and theorems from the original paper on AFs [3] are shifted into this new setting7.

Even though every pd–acyclic conflict–free extension is also conflict–free, it does
not mean that every aa–admissible is cc–admissible. These approaches differ signifi-
cantly. The first one makes additional restrictions on the “inside”, but due to acyclicity
requirements on the “outside” there are less arguments a given extension has to defend
from. The latter allows more freedom as to what we can accept, but also gives this free-
dom to the opponent, thus there are more possible attackers. Moreover, it should not
come as a surprise that these differences pass over to the preferred and complete seman-
tics, as visible in Example 2.4. Our results show that admissible sub–semantics satisfy
the Fundamental Lemma. Moreover, the relations between the semantics presented in [3]
are preserved by some of the specializations.

Lemma 3.13. CC Fundamental Lemma: Let E be a cc–admissible extension, vE its
range interpretation and a,b∈ S two arguments decisively in w.r.t. vE . Then E ′ = E∪{a}
is cc–admissible and b is decisively in w.r.t. v′E.

Lemma 3.14. AA Fundamental Lemma: Let E be an aa-admissible extension, va
E its

acyclic range interpretation and a,b ∈ S two arguments decisively in w.r.t. va
E . Then

E ′ = E ∪{a} is aa–admissible and b is decisively in w.r.t. v′E.

Theorem 3.15. Every stable extension is an aa–preferred extension, but not vice versa.
Every xy–preferred extension is an xy–complete extension for x,y ∈ {a,c}, but not vice
versa. The grounded extension might not be an aa–complete extension. The grounded
extension is the least w.r.t. set inclusion cc–complete extension.

4. Conclusions and future work

In this paper we have introduced a method for detecting positive dependency cycles in
ADFs and a family of semantics based on it. Our results show that they satisfy ADF
versions of Dung’s Fundamental Lemma and that appropriate sub–semantics preserve the
relations between stable, preferred and complete approaches. Our future work focuses
on shifting the mentioned bipolar frameworks into the ADF setting and proving that their

6No further assumptions as to the defense of the evaluations are needed, as visible in Lemma 3.14.
7The relevant proofs can be found in [20].
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semantics are properly generalized by the presented approaches. Moreover, we would
like to study the complexity of the new semantics. Final aim is to provide an efficient
implementation, as the existing one was created purely for verification purposes and
leaves a lot of room for optimization.
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