
Predicting Players Behavior
in Games with Microtransactions

Ondřej Pluskal a Jan Šedivý a

a Czech Technical University in Prague, Czech Republic

Abstract. This paper focuses on predicting player behaviour in two-player games
with microtransactions. Typically the games are for free and companies generate
their revenue by selling in-game goods. We show creation of a users behaviour
model, which are then used in a recommendation system increasing in-game goods
purchases. We focus on learning techniques in a novel way, predicting the time of
purchases rather than the most likely product to be purchased. The player model
is based on in-game signals, such as players success, curiosity, social interactions
etc. We had access to a Pool Live Tour game dataset made by Geewa. We report
promising results in predicting the purchase events.

Keywords. machine learning, feature extraction, online games, data mining

1. Introduction

In this paper we specifically focus on how to improve the monetization of two-player on-
line games. The game is typically free but to gain a special game advantage players may
purchase in-game goods improving their skills. They purchase the goods in small pay-
ments, microtransactions, for real-currency. To increase the revenue users are bombarded
with ads [5]. The problem is that very frequent advertisements are do not typically lead
to increased revenue because of advertisement fatigue and advertisement wear out.

Both phenomenons are recognized in marketing models [9]. Advertisement fatigue
is the event of a customer no longer liking or buying goods from the advertisement,
because the advertisement is bothering them too much. Advertisement wear out means
that the customer will ignore the advertisement and it would have no effect.

These two negative effects can be reduced by advertising the in-game goods only
when the player is likely to make the purchase. When the ad’s timing is correct the like-
lihood of converting through the advertisement is increased. This improves the revenue.
Building such a system by an expert is impossible, simply because we are analysing a
large-scale dataset of thousands of players.

We tested our novel idea on a Pool Live Tour (PLT) game made by Geewa. PLT
is a virtual pool game, that can be played in a web browser or on a tablet. This game
is played by 2.5 million daily active users1 all over the world. The in-game good are
better cues giving a slight advantage. Certainly, buying a better cue does not guarantee
a win it only increases player’s chances. To design the model Geewa provided us with

1Collected from http://corporate.geewa.com/game/pool-live-tour/ on 2nd Feb 2014

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-230

230

two datasets, dataset D1 with a sample of monthly users’ activity, totalling 272k unique
user ids, and dataset D2 with monthly activity of a subset of users, that registered that
month and bought in-game item, totalling 11.5k unique user ids. The datasets contain
client actions collected from the clients as well as events generated by the server. The
datasets in their raw form contain over 30 GB.

We show creation of a model from the player logs that predicts the players’ readiness
to buy a cue after finishing a match. In the next section we review the behaviour predic-
tion in general. We will also discuss impact of some of the recommendation systems. In
Section 3 we explain our approach to the behaviour prediction as a machine learning task
and develop and evaluate the model. In Section 4 we show the properties of the datasets
and how the feature extraction was done. In Section 5 we describe the testing and show
the results of our experiments. We conclude our observations and set our goals for future
work in Section 6.

2. Related Work

In the literature there are a few studies concerning player modelling using machine learn-
ing and data mining methods. We have identified a few trends in the literature, from
matchmaking, user segmentation, to cheater detection. Up to our knowledge, nobody
published any work about building recommendation systems in games. This section
therefore covers not only player modelling, but also recommendation systems.

In cheater detection studies there are several studies using machine learning and data
mining methods. The studies define the problem as a classification problem. They use
derived rules [7], SVM [13] and Hidden Markov Models [16] with a set threshold. The
features were consisting of playtime lengths[7] or action frequencies [13]. Bot detection
tasks are studied in several game settings. These are mainly MMOGs2 [7,13] and FPS3

games [16].
More descriptive models were made in the case of segmentation [3,4,14], a prob-

lem of finding distinct groups of users. Segmentation is viewed in all of these articles as
unsupervised machine learning problem. Two papers consider player segmentation task
[3,4], the third segments organised groups of players called guilds [14]. Player segmen-
tation is done using cumulative features including playtimes, game specific estimates of
success (e.g. number of trials per level, number of kills etc.). The approaches used for
this task vary from NMF[14], k-means, Simplex Volume Maximization[3], to SOM[4].
In research the main challenge is the number of users and therefore the problem of large-
scale datasets. All the interesting information are extracted from game logs, that the pro-
ducers store in databases acquired by telemetry. The games used in player segmentation
are both single player games [4] as well as multiplayer games [3,14].

There are more papers[10,15] using supervised machine learning. Another paper
tries to predict the players’ maximal progress in a single player game [10]. This is done
using machine learning methods, by monitoring gameplay features in the early levels of
the game and solving this problems both as classification problem as well as regression
problem. Both problem abstractions show promising results. Another paper [15] studies

2Massive Multiplayer Online Games
3First Person Shooter

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 231

the prediction of strategy that a competitive RTS4 player would play from his actions
done in game at certain time point. This study aims to creating an AI that by predicting
the strategy probabilities would infer correct counter strategy.

Since up to our knowledge in the research of player modelling there is no relevant
literature of how to present players with in-game goods we have tried to find resources
in the setting of web recommendation systems aimed at recommending relevant goods,
entertainment or web pages to specific users based on their preferences or browsing
history.

In recommendation systems there are many ways from which data we should predict
what a user might like. This can be done via contextual information, where in advertise-
ment we try to find ads with similar context to the site. Also user based recommenda-
tions, where we look at similar users and recommend goods to them that others purchases
(Collaborative filtering). And the last approach is that we use sequential data and try to
find sequential patterns that might help us what the user might want to see next. We try to
find out similarities with web recommendation, which is in active research for more than
ten years[11]. Also hybrid approaches [8] using combinations of different approaches
can be seen mainly in the Netflix Prize competition, where researchers improved the
accuracy of the Netflix recommendation system by 10%.

Other approaches use sequential patterns [17,12]. The idea comes from web-page
recommendation, where a users browsing in some domain might share the same brows-
ing sequential patterns as other users. Finding the most common patterns and creating a
patricia trees from them is the core idea. Then assuming the Markov property (depen-
dence of next state only on previous state, here states are web pages) the recommenda-
tion system can show the most probable web pages by traversing the patricia tree and
suggesting the most probable pages.

To the best of our knowledge there exists no study that would directly solve the issue
of dynamic advertisement space generation presented in this paper. This approach can
bring the notion of smart recommendation to games, where we can address the player
directly in the time, he is most likely to buy a new virtual item.

3. TASK DEFINITION

The main motivation of this paper is to increase the revenue generated by games using
microtransactions by reducing the amount of advertisement sent to the user. In the ideal
case we would like to suggest to the user to purchase in-game items only in the times he
would really buy the in-game item.

We will be explaining our approach on the PLT game. In this game there are two
currencies. The first one is coins, that can be acquired by playing, daily rewards and
earning trophies. The second one is gold coins, that can be only acquired by purchase
using real currency. The task at hand is predicting the buy of a cue for gold coins. We
divided the task into two stages, first we try to predict that the player would buy a cue
of any kind, then we decided to only predict the gold cue buys. Both stages use only
users of which we have information from their registration. For the second stage we use a
segment of paying users as a subset of all users whose behaviour we would like to model.

4Real Time Strategy

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions232

�����
�

��	
�

��	
�
�

�����
�
�

�
�

�����������

�
�

Figure 1. Visualization of xi and yi for player u.

We have decided to model the problem of timely in-game item recommendation as a
supervised machine learning task, particularly a binary classification task. The example
is a tuple (xi,yi), where xi corresponds to a feature vector containing information about
the activity of player u from registration to the end of game i. Fig 1 depicts the xi, yi
relationship on an example of a single user. The yi is whether the player u bought a cue
in between the start end of game i and the end of game i+1. Because we have only two
targets, we define yi = −1 if the player didn’t buy between games i and i+ 1, yi = 1 if
the player bought between games i and i+1.

Since we described the task as a binary classification tasks, we can use several mea-
sures to score classifiers performance. We could use accuracy, precision and recall or area
under a ROC curve (AUC) [6]. We decided to use AUC because it generally maximizes
the True Positive Rate (TPR) for every False Positive Rate (FPR). This is a good measure
for this problem, because upon creating the recommendation system the operator can
choose the FPR and then set a threshold on the scoring decision function.

4. DATA COLLECTION

Two datasets of raw data in form of logs were provided by Geewa from their game PLT.
The data come from their internal reporting system, that is used by their analytics in
order to better understand how the players are playing the game.

These are live data from real players in their homes captured by telemetry and stored
on Geewas side. The datasets contain logs from the client residing in player’s comput-
ers as well as actions generated by the server. The player base is from users from 187
countries all over the world. We were kindly provided with 2 datasets D1 and D2 from
Geewa. D1 is drawn as a small sample of all users and all of their actions generated by
client and server in one month (19th Mar 2013 - 18th Apr 2013). D2 is a set of all users
that registered and bought some cue in one month (1st Nov 2013 - 30th Nov 2013). The
size of raw data is 24 GB for D1 and 6.6 GB for D2.

4.1. Data Preprocessing

The log data contain information about user logins, their in-game actions, from starting
a game to shooting with a cue. The dataset was provided in a single csv file. We had to
split the single file into a file for each player and those needed to be sorted according to
the time when they were generated. Both datasets are exported from relational databases
in form of one large table with all events in a structured form.

The dataset D1 consists of a subset of all users. This means that out of 272k users for
example we have 181k users who played one game and 78k users who played 10 games.
Since we need full user history, we need the users who have newly registered, which out

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 233

of the total 272k users is only 57k users who registered. Only 6728 players have played
at least 10 games, newly registered and bought some cue. These players were used for
the first task of prediction of cue buys.

The dataset D2 consists of a subset of players who bought a gold cue. This process
unfortunately yielded only 6,838 players who registered and played at least 10 games.

4.2. Feature Extraction

We will now describe how we created the feature vector xi. We created a set of features
extracted from the logs containing information about the players progress, success and
curiosity. Also there is a difference in over which period the features are extracted. They
can be extracted from the registration until the game end, but they can also be extracted
from several games before the game end or even in time periods, e.g. in the last 5 hours.

We define a set of all basic features F . These are the basic features extracted from
the logs, that are in F :

• Number of matches: Number of matches ma the player played in both main
game modes, matched and friend games.

• Distribution of match types: Number of each game type the player played.
There are 2 different match types in PLT. These are matched games mm (the player
is matched against an opponent according to his skill), friend games m f (player
challenges his friend through some social platform).

• Distribution of levels played: A player can play matched games in different
game levels in the play mode. There are levels present at the moment. The ex-
tracted feature mi ∀i ∈ {1,2, ...,14} is the number of games played at each level.

• Performance in matches: The number of wins w in different game types. From
the game point of view each of the two competitive game types (matched games
wm and friend games w f) the number of wins for both match types wa. Also the
number of wins per level in matched games is measured wi. In matched games
the player bets a fixed amount of coins and wins his and his opponent’s bet, or
loses everything. The stakes are the higher the higher is the level.

• Match properties: Number of shots mns, time spent in game tm.
• Player curiosity: Number of shown opponents cards cpc, cue galleries ccg, own-

ers card coc, shop cs.
• Number of trophies: Number of trophies a a player got through achievements (e.

g. winning several games in row, sinking several balls in a row etc.). The player
also gets a small reward of additional coins for each trophy.

• Bonus coins: A player can get coins for free in two ways, by receiving a daily-
bonus package cdb or by depleting all coins and receiving a free-bonus package
c f b.

• Amount of coins: Current coin balance cb. The coins are used to bet and play
games. The bet value is set at each level and if the player wins, he gets back both
bets of both players. If the player loses he gains nothing. The player can spend
coins for various in-game items, for example cues. Also the player can buy coins
for real currency.

• Amount of winnings: The cumulative amount of gold a player has won is used
to unlock levels. For each level there is a set threshold for winnings, if the player

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions234

exceeds the threshold he has the option to play at that level. The feature is denoted
as cw.

• Rank-ups: When a player is able to play at a higher level (he has just unlocked
the level or he has enough coins to play at a higher level) he is shown a dialog, that
he is able to play at higher level. The number of these shown dialogs is encoded
in feature cr.

• Time from registration: How much time mt passed between the end of game
and registration.

• Inventory: Number of already bought cues bc and the subset of gold cues bgc.

As we said the feature extraction can be done in three different ways. We will be
explaining them using a generic feature f . One is by extracting the cumulative features
from registration up until game i, f (i). The second one is by extracting the features over
the last k games, f (k)(i). We call this extraction method match windowing. The third is
extracting features over a certain time period t, f̂ (t). We call this time windowing.

The feature vector is described in equation 1. The t time in time window features ĥi
t

is in hours.

x =
(f1, ..., fn, f (1)1 , ..., f (1)m , f (10)

1 , ..., f (10)
m ,

ĥ(1)1 , ..., ĥ(1)l , ĥ(24)
1 , ..., ĥ(24)

1 , ĥ(168)
1 , ..., ĥ(168)

l)
fi ∈ F ∪R

hi ∈ { ma,mm,m f ,m1, ...,m14,
wa,wm,w f ,w1, ...,w14}∪R

(1)

We are using a smaller feature vector for the games played before the first 10 games,
since for computing the features g(10)

i we need to have at least 10 games played by the
user. We divide each of the datasets D to two parts, D(1−9) and D(10), where feature
vectors from D(1−9) do not have the f (10)

i features, but the rest is the same as described
in equation 1.

5. EXPERIMENTS

The methodology used for evaluation is based on measuring the AUC. In order to create
a valid training protocol, we divided the dataset into two parts, training set and testing
set, where training set is 20% and testing set is 80%. If parameter tuning is needed in
order to find the best model we use 5-fold cross-validation.

5.1. User based and game based dataset divisions

The most important issue when constructing a testing protocol is the proper division
into training, validation and testing sets, so that the examples are i.i.d.(independent and
identically distributed). In this task we can split either based on user, or based on games.
In the previous section we described how to extract the tuples D = (xu

i ,y
u
i),∀u,∀i. The

split based on games would be done, by considering every tuple (xu
i ,y

u
i) independent on

u. This could lead to having a feature vector from particular user u in both training and
testing set, i.e. game 11 in training and game 12 in testing set. But this contradicts with

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 235

Table 1. This table shows the difference between validation and testing error with different splits. It ilustrates
overfitting with different techniques.

Validation AUC Testing AUC Change

Game split 74.76% 73.06% -1.7

User split 75.07% 75.99% +0.92

Table 2. This table consists of the properties of each of the different datasets.

D1−9
1 D10

1 D1−9
2 D10

2

No. buys 6,838 11,601 445 3750

No. games 83,160 383,703 35,271 445,554

No. players 9,240 6,161 3,919 3,511

the independency of the two sets. Also we suggest that the performance on new users
would be lower for the game split.

We made an experiment to support our claims and the results are shown in table 1
using a Random Forest on D(10)

1 . The dataset was divided into a training set and testing
set using a user split. The validation error is the error using 5 fold cross-validation using
the respective splitting on training set. The testing error is the performance of the clas-
sifier trained on the whole training set evaluated on the testing set. We can see that our
assumption were confirmed empirically.

5.2. General cue and gold cue predictions

Since we are not capable of computing the window features for the early matches, we
decided to divide the dataset into two parts. One are games 1-9 and the second part are
the games 10 up to what the player accomplished to play in given month. The dataset
will be labelled D(1−9) and D(10).For dataset D1 we will perform the experiment for all
cues, since there are only 299 gold buys. For dataset D2 we will be making experiments
on gold cues. The feature vectors will be the same for both settings.

From the characteristics of the dataset shown in table 2, we can see that the datasets
have a property of being unbalanced. This means that we have to choose the classifiers
accordingly. We have chosen scikit5 library in python for the training and evaluation of
the classifiers.

As the classifier to test the performance we have chosen Random Forest [1], linear
SVM [2] and a Decision Tree. They were chosen, because they have the option to han-
dle unbalanced classification tasks, due to the ability to assign class weights. The class
weights used were inversely proportional to class frequencies. The Random Forest is a
well performing classifier in various different tasks and linear SVM represents a simple
but well grounded model. For the classification task we used a small decision tree in
order to create a simplified view of the problem. The Decision Tree has maximum depth
set to 3 in order to give the reader an idea what are the most discriminative features and
how do they work.

Z-normalization was performed on the respective training sets when training the
SVM, because the scales in each feature are different. The scales do not affect the tree

5Version 0.14 http://scikit-learn.org/stable/

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions236

Table 3. Results of the experiments for each classifier and dataset.

Random Forest SVM Decision Tree

D(1−9)
1 75.37% 71.22% 71.53%

D(10)
1 75.99% 73.25% 68%

D(1−9)
2 79.69% 78.65% 76.96%

D(10)
2 87.22% 76.72% 78.27%

Figure 2. ROC curve of D(10)
1 Figure 3. ROC curve of D(10)

2

based classifiers. SVM’s regularization constant C was tuned on the validation sets. The
parameters tuned on the Random Forest were maximum number of feature, minimum
number of features and number of estimators.

In table 3 we can see the performance of each classifier on each of the two datasets.
We can see that the performance on the first dataset is significantly lower than the per-
formance on the second dataset. We suppose the reason for higher performance of Ran-
dom Forest over SVM is the fact, that the dataset is clearly not linearly separable. The
Random Forest can infer much more complex models than linear ones [1]. Also we can
see that the models’ performance using only a small decision tree is significantly lower
that each of the Random Forests.

In Figures 2 and 3 we can see the ROC curves for all the datasets computed over the
testing set. In each figure the cross is the operating point of the classifier.

Both ROC curves show, that the classifiers default operating point was trained on
a very low FPR. This corresponds to not suggesting the cues to the player many times.
An operator can adjust the threshold to move the TPR as well as FPR higher, in order to
raise the advertisement ratio.

The relative feature importance can be computed from each of the trained random
forests[1]. We are plotting only the first 20 highest scoring features in order to see, what
features are most important and to check whether all the types of designed features are
used by the random forest. In figures 4 and 5 we can see, that all types of different features
are present. These include to cumulative, time window and game window features.

For both cases D(10)
1 and D(10)

2 we can see similar features scoring high. One ex-
ception is feature importance of the number of previously purchased cues bgc is 0.19 in

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 237

Figure 4. Feature importances of D(10)
1

Figure 5. Feature importances of D(10)
2

figure 5. This is due to the fact, that many players buy only one cue and the acquisition of
a second cue is for the most cases unlikely. Another positive result is the appearance of
many different types of features, including cumulative, time window and game window
features.

Also we can see that among the highest scoring features there is no feature consid-
ering friend matches. The reason is that friend matches are less common than matched
matches. In the general cue case we can see that an important feature is the number of
clicks on opponent cue gallery. From opponent’s cue gallery he can see he is playing
against a player with better cue. Using these feature importance plots also might indicate
to the developers key components of the game that lead to possible design changes.

6. CONCLUSION AND FUTURE WORK

We presented a system predicting player purchase applicable on games with microtrans-
actions. Unlike a typical recommendation system we are not solving the problem of what
we should recommend to the player, but when is the right time to recommend purchase
of in-game goods. This approach allows dynamic advertisement placements.

The task is defined as a classification problem deciding whether to display or not an
advertisement at the end of a game. This decision is based on the prediction whether a
player would buy an in-game item after a match. The features used are of three types,
cumulative, game windows and time windows.

We created models predicting two actions general in-game items purchases and in-
game items purchases for hard currency leading to real revenue. Our experiments have
shown that the Random Forest algorithm was performing the best for both cases. For
the general case we have achieved 76% AUC and for the hard currency 87% AUC. We
have used the decision trees to study features differentiating power. We have found that
the most discriminative features are different for each case. Information about feature
importances can be useful to the game designers in order to improve the game and where
to focus their design goals.

This system is yet to be tested in practice, because the only way how to measure
the real impact on revenue is by A/B testing. We optimistically hope that the correct
advertisement placement timing will make the players buy the in-game items for hard
currency more frequently or earlier than today. This will bring higher revenue to the
company.

We plan to use these models in other tasks such as cheater, bot detection and churn
prediction in the future. The developed models can help to solve also these big problems.

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions238

7. ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS14/072/OHK3/1T/13.

References

[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[2] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min.

Knowl. Discov., 2(2):121–167, June 1998.
[3] A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau. Guns, swords and data: Clustering of player behavior

in computer games in the wild. In Computational Intelligence and Games (CIG), 2012 IEEE Conference
on, pages 163–170, 2012.

[4] Anders Drachen, Alessandro Canossa, and Georgios N. Yannakakis. Player modeling using self-
organization in tomb raider: underworld. In Proceedings of the 5th international conference on Compu-
tational Intelligence and Games, CIG’09, pages 1–8, Piscataway, NJ, USA, 2009. IEEE Press.

[5] Canossa Alessandro. El-Nasr Magy Seif, Drachen Anders. Game Analytics: Maximizing the Value of
Player Data. Springer, 2012.

[6] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874, June 2006.
[7] Ah Reum Kang, Jiyoung Woo, Juyong Park, and Huy Kang Kim. Online game bot detection based

on party-play log analysis. Computers & Mathematics with Applications, 65(9):1384 – 1395, 2013.
Advanced Information Security.

[8] Yehuda Koren and Robert M. Bell. Advances in collaborative filtering. In Recommender Systems
Handbook, pages 145–186. Springer, 2011.

[9] Moorthy S. Lillien G., Kotler P. Marketing Models. Prentice Hall, 1992.
[10] Tobias Mahlmann, Anders Drachen, Julian Togelius, Alessandro Canossa, and Georgios N. Yannakakis.

Predicting player behavior in tomb raider: Underworld. In CIG, pages 178–185. IEEE, 2010.
[11] R. Suguna and D. Sharmila. An efficient web recommendation system using collaborative filtering and

pattern discovery algorithms. International Journal of Computer Applications, 70(3):37–44, May 2013.
Published by Foundation of Computer Science, New York, USA.

[12] Usha Rani M. Suneetha K. Web page recommendation approach using weighted sequential patterns and
markov model. Global Journal of Computer Science and Technology, 2012.

[13] Ruck Thawonmas, Yoshitaka Kashifuji, and Kuan-Ta Chen. Detection of mmorpg bots based on behav-
ior analysis. In Proceedings of the 2008 International Conference on Advances in Computer Entertain-
ment Technology, ACE ’08, pages 91–94, New York, NY, USA, 2008. ACM.

[14] C. Thurau and C. Bauckhage. Analyzing the evolution of social groups in world of warcraft. In Com-
putational Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 170–177, 2010.

[15] Ben G. Weber and Michael Mateas. A data mining approach to strategy prediction. In Proceedings of
the 5th international conference on Computational Intelligence and Games, CIG’09, pages 140–147,
Piscataway, NJ, USA, 2009. IEEE Press.

[16] S.F. Yeung, J.C.-S. Lui, Jiangchuan Liu, and J. Yan. Detecting cheaters for multiplayer games: theory,
design and implementation[1]. In Consumer Communications and Networking Conference, 2006. CCNC
2006. 3rd IEEE, volume 2, pages 1178–1182, 2006.

[17] Baoyao Zhou, Siu Cheung Hui, and Kuiyu Chang. An intelligent recommender system using sequential
web access patterns. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on, volume 1, pages
393–398 vol.1, 2004.

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 239

