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Abstract. We introduce a framework which is based on probabilistic De-
scription logics (Prob-DL), to represent and solve multi-criteria discrete
alternative problems by calculating expected utility. To our knowledge,
this is the first ever approach for calculating expected utility using a
Description logics based formalism.
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1. Introduction

Since the first serious attention of multi-attribute utility theory (MAUT) in [7,4]
to solve problems regarding multi-criteria decision making (MCDM), numerous
approaches have been proposed, including probabilistic, possibilistic, fuzzy and
graphical models [2,15,5] amongst others. In parallel, preference representation
has become an ongoing research subject in artificial intelligence, gaining more
popularity every day, which also lets the discipline to deal with the problems from
Decision Theory. To represent preferences and encode decision-theoretic problems,
a relatively new common approach stepping forward over the last decade is the
use of logical languages [16,3,18,11,12,14,13].

Description Logics (DL) is a family of logic languages which is mainly based
on decidable fragments of first order logic. It has been designed to be used as
a formalism in the field of knowledge representation, and it has become one of
the major approaches over the last decade. In the context of the Semantic Web,
it embodies a theoretical foundation for the OWL Web Ontology Language, a
standard defined by the World Wide Web Consortium.

In this paper, we introduce a formal framework which is based on probabilis-
tic Description Logic Prob-DL ([10]), a family of DL languages designed to model
subjective uncertainty. The aim of our framework is to encode and solve decision
problems via computing expected utility using the inference services specific to
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the employed language (Prob-ALC in our case). To our knowledge, this is also
the first DL-based framework aimed to calculate the expected utility. In our ap-
proach, we represent preferences of the decision maker (agent), from the utility
theory perspective, where each criteria has an assigned utility value (weight). We
consider alternatives in the form of ABoxes, and criteria as concepts. We represent
decision maker’s background knowledge via a Prob-DL knowledge base.

The framework can be applied to multiple criteria discrete alternative prob-
lems (see [17]). In general, it can be applied to every domain where background
knowledge which is relevant for our decisions, can be shared, matched and re-
lated via knowledge bases in terms of ontologies. One motivation is that, within a
DL-based decision making framework, one can express the dependency between
attributes/criteria using the concept hierarchy and evaluate an alternative (a
choice) in terms of its logical implications.

In the remainder of the paper, we first briefly present preliminaries in Prob-
DL, in Section 2. Then, we introduce our framework and discuss an example in
Section 3. In Section 4, we discuss the related works. We conclude the paper with
a brief outline and ideas about future research in Section 5.

2. Basic Prob-DL

Probabilistic Description Logics family, Prob-DL is proposed in [10] as a fragment
of First-Order Logic of Type-2 probability (see [6]). Type-2 probability refers to
subjective uncertainty, or degree of belief e.g., “Tweety the bird flies with prob-
ability greater than 0.9”, whereas Type-1 probability refers to statistical proba-
bility. Therefore, a probabilistic logic which solely models Type-1 probabilities,
fails to represent the above statement since it can be either true or false (i.e.,
Flies(Tweety) holds with probability of either 0 or 1).

We assume that the reader has familiarity with the basic DL [1].To introduce
the basic notions and notations, following [10], we give the definition of Prob-
ALC as a probabilistic counterpart of ALC. NC , NR, NI are denumerable sets of
concept names, role names and individual names respectively. The syntax of the
concepts in Prob-ALC extends ALC inductively as follows:

C ::= A | ¬C | C �D | ∃r.C | P≥nC | ∃Prel nr.C (1)

where A ∈ NC , C and D are concepts, r ∈ NR, rel ∈ {≥, >} and n ∈ [0, 1]. C�D
is an abbreviation for ¬(¬C � ¬D), ∀r.C for ¬∃.¬C, � for C � ¬C and ⊥ for
¬�. Furthermore, P<nC is an abbreviation for ¬P≥nC, P≤nC for P≥1−n¬C, and
P>nC is for P<1−n¬C. A TBox is a finite set of axioms (concept inclusions) C 

D, which represents the ontology. A probabilistic ABox A is defined according to
the following rule

A ::= C(a) | r(a, b) | ¬A | A ∧ A′ | P≥nA (2)

where C ∈ NC , r ∈ NR, a, b ∈ NI , n ∈ [0, 1], A and A′ ranges over probabilistic
ABoxes. Abbreviations (i.e., Prel nA) are defined similarly as for concepts. A
knowledge base K is a pair (T ,A) where T is a TBox and A is an ABox.
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The semantics of Prob-DL is defined by generalizing the standard semantics
of DL . In particular, a probabilistic interpretation has the form

I = (ΔI ,W, (Iw)w∈W , μ), (3)

where ΔI is the non-empty domain, W is a non-empty set of possible worlds, μ
is a discrete probability distribution on W , and for each w ∈ W , Iw is a classical
DL interpretation with domain ΔI . It is supposed that aIw = aIw′ for all a ∈ NI

and w,w′ ∈ W , therefore we write aI in short. For A ∈ NC , the probability that
a ∈ ΔI is an A, is defined as

pIa(A) = μ({w ∈ W | a ∈ AIw}). (4)

Similarly, for r ∈ NR, the probability that a, b ∈ ΔI are related by r, is defined
as

pIa,b(r) = μ({w ∈ W | (a, b) ∈ rIw}). (5)

This is extended to complex concepts C, by defining the extension CIw of complex
concepts by mutual recursion on C. The definition of pIa(C) is exactly as above
(i.e., A is replaced by C), and as the case for non-probabilistic concepts are defined
in parallel to classical-DLs (e.g., (C �D)Iw = CIw �DIw), we give only the cases
with probabilistic concepts:

(Prel nC)Iw = {a ∈ ΔI | pIa(C)rel n}

(∃Prel n.C)Iw = {∃b ∈ CIw : pIa,b(r)rel n}
(6)

A probabilistic interpretation I satisfies a concept inclusion C 
 D if CIw ⊆
DIw for all w ∈ W . The interpretation I is a model of a TBox T if it satisfies
all inclusions in T . Similarly, Iw satisfies assertions parallel to classical DLs (i.e.,
Iw |= C(a) iff aI ∈ CIw), and this is defined inductively for ABoxes. Again we
provide the probabilistic case;

Iw |= Prel n(A) iff pI(A)rel n (7)

where pI(A) is the probability that an ABox A holds and it is defined as

pI(A) = μ({w ∈ W | Iw |= A}). (8)

Note that, in this semantics Prel n(C(a)) and (Prel nC)(a) are equivalent. It is
said that I is a model of A if Iw |= A for some w, and is a model of K = (T ,A)
if it is a model of both T and A. A knowledge base K is consistent if it has a
model. For convenience, we restrict ourselves to the language Prob-ALCc which
does not allow probabilistic roles, that is ∃Prel n.C. This is because Prob-ALCc

is expressive enough for our purpose and also expectedly it provides much better
complexity results (the consistency in full Prob-ALC is 2-exptime-hard, whereas
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for Prob-ALCc it is exptime-complete) [10]. For the procedure for consistency
check and details we refer the reader to [10].

As mentioned in [10], standard semantics of Prob-ALC does not support
deducing the probability of independent events (i.e., p(A∧B) = p(A) · p(B)). For
that reason, Prob-ALCindep is introduced (see [10]) as an extension of Prob-ALC,
which allows independence constraints in the form of indep(C,D) in the TBox;
C, D being concepts, pId (C) · pId (D) = pId (C �D).

3. Decision Bases and Expected Utility

We model a discrete multi-criteria decision problem from the agent’s perspec-
tive in the sense that in the light of background knowledge and ranked outcomes
which choice (alternative) should the agent take? Here, ranking of outcomes are
projected by agent’s subjective utility values, and background knowledge is rep-
resented by a probabilistic knowledge base. We note that, although we assume
the basic Prob-ALCc as our base for clarity, the main working principle of our
framework is not based on a specific Prob-DL language. We also note that, in
this paper we do not concern ourselves with problems regarding elicitation. We
assume that agent’s preferences are sufficiently elicited.

3.1. Representing Discrete Multicriteria Decision Problems

We represent the background knowledge of the agent by the Prob-DL knowledge
base K, which includes the hierarchy T of probabilistic concepts and assertions
about individuals which are represented in A. The choice set C represents a priori
alternatives which utilities yet are unknown to the agent. U is the criteria set
where each of its element consists of non-probabilistic concept denoted by Yi and
a corresponding value denoted by ui.

Definition 1 (Decision Base). A decision base, D = (K, C,U) is a triple with;

• K = (T ,A) is Prob-DL knowledge base (background knowledge) in which
T is a probabilistic general acyclic TBox and A is a probabilistic ABox,

• C = {Ch1, . . . , Chn} is a choice box, a non-empty finite set of choices,
each being a probabilistic ABox,

• U = {〈Y1, u1〉, . . . , 〈Ym, um〉} is a utility box (UBox), a finite set of non-
probabilistic concepts Yi (criterion) and a corresponding basic utility ui ∈
R

+ with Yi ≡T Yj =⇒ ui = uj,

with the restrictions that no nested probabilistic constructor occurs in D (e.g.,
P≥n(P>n(C))), and for each probabilistic concept Prel nC, rel ∈ {≥, >} and n ∈
(0, 1].

In a description logic decision base, we refer to a choice or alternative, as a
list of specifications about individual(s) (DL), e.g., for a car buyer, choices can
be technical specifications about cars whereas for a medical doctor, they can be
treatment/medication alternatives. Notice that, one could also give an alternative
definition that allows probabilistic concepts to occur in UBox. However, this in
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turn yields so much expressivity which is not very intuitive and without immedi-
ate obvious benefits. Also, we did not prefer to allow concept or role assertions
in UBox, for a simpler and intuitive exposition of the framework (including the
sequel). However, to make distinction between individuals and provide more ex-
pressivity from the utility perspective, one can extend the definition. Recall that
basic utility values are solely subjective, serving our purpose. Also, we have re-
stricted them to be non-negative reals for the sake of a simpler exposition in the
sequel. This restriction can optionally be removed to model a particular decision
problem conveniently.

3.2. Subjective Expected Utility

Given that Prob-DL is developed to represent subjective uncertainty, and basic
utility values for each criterion is specified, now we can define the subjective
expected utility of a choice. For that purpose, let us introduce few useful notions:

• clashK(C) = {C ′(a) | {C(a), C ′(a)} is inconsistent : K |= C ′(a) ∧ a ∈
Ind(A)} where Ind(A) is the set of individuals occuring in A,

• The function int : A → 2[0,1] for int(C(a)) = [n, 1] if C is in the form
of P≥ nD(a); int(C(a)) = [1, 1] if C is a non-probabilistic concept. Simi-
larly, for the concepts with other probabilistic concept constructors (e.g.,
int(C(a)) = (n, 1] if C is in the form of P> nD(a)),

• ℘rel(A) = inf{
⋂

C(a)∈A{int(C(a))}} where rel ∈ {≥, >},

Informally, for any given concept C, clashK(C) denotes the set of all entailed
assertions (from knowledge base K) which yields a clash. A clash is considered
as the form of [C(a),¬C(a))], or in particular [P<αC(a), P≥βC(a)] where β ≥ α,
due to abbreviations of probability constructors. The function int outputs the
probability interval for a given assertion. The function ℘rel gives the infimum of
the intersection interval of all concept assertions in a given ABox. Contrary to
Analysis, we leave infimum of an empty set as undefined.

Definition 2 (Expected Utility). The expected utility Urel of a choice Ch w.r.t
D = (K, C,U) is,

Urel(Ch) = Σ{〈Yi,u〉∈U}℘
rel(clashK∪Ch(P≤0Y )) · u

where Ch ∈ C, K ∪ Ch is consistent and K ∪ Ch ∪ P≤0Y (a) is inconsistent
for an a ∈ Ind(Ch ∪ A), rel ∈ {≥, >}.

Informally, (subjective) expected utility of a choice is the sum of the products
between the infimum of the intersection of intervals of probabilities that criteria
are satisfied, and basic utilities of criteria in U , that are satisfied by that choice
w.r.t. the knowledge base. Intuitively, a knowledge base and a choice (K∪Ch) will
entail a criterion Y with a degree of probability more than zero, if P≤0Y yields
inconsistency (w.r.t. K ∪ Ch) for any a ∈ Ind(Ch ∪ A). Semantically, Urel(Ch)
is interpreted as rel utility of a choice, e.g., U≥(Ch) = 40 means that Ch has
utility of at least or equal to 40. Note that Urel yields a complete and transitive
preference relation � over choices;
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Ch1 � Ch2 ⇐⇒ Urel(Ch1) ≥ Urel(Ch2). (9)

In a similar fashion, an upper bound for the expected utility w.r.t. <,≤ can be
defined via the help of using sup in ℘rel instead. We conjecture that the use of
sup and inf can induce a characterisation of risk-seeking and risk averse agents
respectively, once the maximum expected utility is defined. We leave this to future
work. In the sequel, we will drop rel, and write just U instead for the sake of
simplicity.

From the definition above, it follows that the utility of an inconsistent al-
ternative/choice (with respect to the knowledge base) is undefined. Thus we re-
strict ourselves to assess only the consistent decisions. This naturally provides us
a service to eliminate alternatives which can cause inconsistencies.

Notice that calculating the utility of a choice, can be thought of as answering
a series of consistency checking problems. We speculate that it is at least of the
complexity of the consistency checking problem (of the employed Prob-DL lan-
guage) in the size of the given UBox. We leave a detailed formal investigation on
complexity issues to future work.

Now, given the decision base and the expected utility of a choice Ch, one can
easily define the type of the problem such as calculating the maximum expected
utility:

Chmax = argmax
Ch

{U(Ch) | Ch ∈ C} (10)

This can be generalised in terms of picking up the best n choices together.

Chn
max = arg max

(Ch1,...,Chn)
{U(

n⋃

i=1

Chi) | Ch1, . . . , Chn ∈ C and n ≤ |C|} (11)

Or it can be logically restricted to a situation that agent can pick up at most
one choice (mutually exclusive), with the following definition.

Definition 3 (Mutual Exclusion). A decision base D = (K, C,U) is mutually ex-
clusive if for every Chi, Chj ∈ C with i �= j, Chi ∪ Chj ∪ K is inconsistent.

In general, in order to model the concerned type of a decision problem,
one can bring some restrictions on C and U . Also, in U one can express com-
plement attributes that is the utility of having both attribute is greater than
sum of each, e.g, 〈TechnicallySkilled, 20〉 and 〈FluentInEnglish, 30〉 whereas
〈TechnicallySkilled 
 FluentInEnglish, 70〉. Similarly one can express substi-
tute attributes i.e., having both attribute has a lower basic utility than each.

3.3. Example: Hiring an employee

We give an example on an agent (employer) giving a decision on hiring an em-
ployee based on criteria such as friendliness, punctuality, being technically skilled
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T = {∃hasPassed.Toefl 
 P≥0.7FluentInEnglish,

Australian 
 FluentInEnglish,

∃hasStudied.Math 
 P≥0.9TechnicallySkilled,

∃hasStudied.Business 
 P≥0.4TechnicallySkilled,

∃StudiedIn.EliteUni 
 P≥0.8Smart,

∃StudiedIn.AverageUni 
 P≥0.5Smart,

P≥0.8Friendly � Punctual 
 Reliable}

A = {EliteUni(UniB),

AverageUni(UniA)

Ch1 = { StudiedIn(Alice, UniB), Ch2 = { StudiedIn(Bob, UniA),

Australian(Alice), hasStudied.Math(Bob),

hasStudied.Business(Alice), hasPassedToefl(Bob)}

Punctual(Alice),

P≥0.8Friendly(Alice)}

U = { 〈TechnicallySkilled, 90〉,

〈FluentInEnglish, 70〉

〈Smart, 55〉,

〈Friendly, 20〉,

〈Reliable, 60〉}

Figure 1. Employer’s background knowledge K = (T ,A), choices set CBox C = {Ch1, Ch2}
representing two candidates for the job position, and UBox U on criteria and respective weights
representing the preferences for the position.
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etc. It can be thought of as impressions of the employer about two candidates
after interviews.

Some of the information (subjective) given in Figure 1, is if someone studied
in a elite university, she is smart at least with the probability 0.8. If an individual
is known to be an Australian than she is certainly fluent in English. Moreover it
is defined that P≥0.8Friendly(Alice) and a Punctual individual is Reliable. It
can be interpreted that the agent also has the impression that Alice is punctual
(which might follow from a possible scenario that she appeared on time to the
interview) etc.

The interested reader can check that the expected utility of both choices and
see that Ch1 � Ch2 since U(Ch1) ≥ 70+90×0.4+55×0.8+0.8×20+60 = 226
whereas U(Ch2) ≥ 0.9 × 90 + 0.5 × 55 + 0.7 × 70 = 157, which is not a surprise
as Bob fails to satisfy reliability and friendliness.

Notice that using Prob-ALCindep
c , one can calculate the expected utility

w.r.t. an extended UBox including a criterion such as 〈TechnicallySkilled �
FluentInEnglish, 100〉. In this case, the probability of TechnicallySkilled �
FluentInEnglish is implicitly inferred to be ≥ 0.63 for Bob, in turn, getting an
additional score of 63.

4. Related Work

Preference representation using logical languages has become popular over the
last decade. Many of these approaches are based on propositional logic [3,8,18].
DL languages are used for preference representation in [9,11,12,14,13,16], yet most
of them are not including uncertainty. Regarding the first use of DL in the context
of MAUT, [14,13], Ragone et al focus on multi-issue bilateral negotiation. In [11,
12], they mainly discuss how to compute utilities (without uncertainty), where
preferences are represented by weighted DL-formulas (preference set), just as
UBox in our approach.

According to their terminology, our approach can be understood as an
implication-based approach. They define logical implication in terms of member-
ship, i.e., m |= C iff m ∈ CI . The minimal model that they introduced in order
to define the minimal utility value is more restrictive than ordinary models in
DL. They change this definition to ordinary models in their next paper [12], while
keeping the formal machinery the same (except the way they compute utilities).
Hence, in addition to not dealing with uncertainty, the main difference of our
approach is the formal extension to multiple alternatives and the use of ABoxes,
which provides considerable expressivity.

To our knowledge, the only work which attempts to ground MCDM problems
to (fuzzy) DL formally is [16]. The main difference is the choice of fuzzy DL
as formalism to deal with uncertainty. Although the terms utility and preference
are not explicitly used, it consists of preferences implicitly. They base their work
on a standard MCDM feature, a decision matrix wherein the performance score
of each alternative over each criteria is explicitly stated. Criteria are expressed
as fuzzy concepts. Among alternatives, the optimal alternative (w.r.t the fuzzy
knowledge base) is the one with the highest maximum satisfiability degree. In the
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explained framework, authors do not explicitly make a distinction between the
knowledge base and the set of criteria. In general, the focus of the work is to show
the potential and flexibility of fuzzy DL in encompassing the usual numerical
methods used in MCDM, rather than leveraging the practicality of description
logics in MCDM for expressing relations and handling inconsistencies between
criteria, alternatives, and the knowledge base.

5. Conclusion and Further Plan

We have introduced a description logic based framework, to effectively express
and solve decision problems of multi-attribute discrete alternatives.

As the major part of the utility theory and decision making literature is con-
cerned with uncertainty, we based our approach on probabilistic description logics
Prob-DL ([10]). In particular, the probabilistic extension allowed us to compute
the subjective expected utility of choices in terms of their logical implications.
This will allow us in our further work, to access the essential utility theory liter-
ature from the DL perspective, along with lots of new application possibilities.

One major direction is to investigate the decision theoretic properties of the
utility function U , and the expressivity of D, defining some restrictions on the
UBox. Another major research direction is to extend the framework to sequential
decisions (e.g. Di → Di+1, sequence of decision bases). Once sequential decisions
are defined, we will be able to represent policies and define a planner. Further-
more, it can be extended to represent collaborative decision making scenarios as
well as game theoretical set-ups by considering more than one agent and speci-
fying restrictions between their choice sets and knowledge bases. For instance in
an arbitrary set-up, rules of the game could be a subset of intersection of both
agent’s knowledge bases, then the knowledge bases would get extended according
to each players choices if each player can see what others choose. It can be checked
whether a game-theoretical condition is satisfied, in terms of some corresponding
conditions on ontologies.

Currently, we are working on the implementation of the basic framework as a
Protégé2 plug-in. Our plugin is planned to consist of an editor for the definition of
UBoxes and choices, while the background knowledge is loaded via the standard
interfaces of Protégé. Our extension will then be able to compute the utility of the
given choices w.r.t background knowledge and display a ranking of choices. The
development of our Protégé plugin is motivated by the idea to demonstrate the
benefits of our approach to a set of different application scenarios where decision
making is involved.
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