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Abstract. This paper presents a supervised algorithm for separating speech from
background non-stationary noise (piano music) in single-channel recordings. The
proposed algorithm, based on a nonnegative matrix factorization (NMF) approach,
is able to extract speech sounds from isolated or chords piano sounds learning the
set of spectral patterns generated by independent syllables and piano notes. Mo-
roever, a sparsity constraint is used to improve the quality of the separated signals.
Our proposal was tested using several audio mixtures composed of real-world piano
recordings and Spanish speech showing promising results.
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1. INTRODUCTION

Separation of a target source (speech) from background non-stationary noise (piano) is
still a challenging problem in artificial intelligence, signal processing and music research.
The speech refers to vocal sounds used in a human communication whereas the piano
sound refers to the sounds generated by a piano instrument.

Several approaches to separate speech and background non-stationary noise have
been proposed in the last years [1] [2] [3]. Schmidt et.al [1] presented a method, based
on non-negative sparse coding, for reducing wind noise in recordings of speech based on
a pre-estimated source model only for the noise. In [2], a sparse latent variable model is
proposed which can be employed for the decomposition of time/frequency distributions
to perform separation of sources from single-channel recordings. In [3], speech is mod-
eled using a non-negative hidden Markov model, which uses multiple non-negative dic-
tionaries and a Markov chain to jointly model spectral structure and temporal dynamics
of speech.

Non-negative matrix factorization (NMF) has been successfully applied in the field
of speech and music processing in recent years [4] [5] [6] [7] [8] [9]. Lee and Seung
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[10] [11] developed standard NMF, a technique for multivariate data analysis in which an
input magnitude spectrogram, represented by a matrix X , is decomposed into the product
of two non-negative matrices W and H,

X ≈WH (1)

where each column of the basis matrix W represents a spectral pattern from an active
sound source. Each row of the gains matrix H represents the time-varying activations
of a spectral pattern factorized in the basis matrix. In general, NMF approaches can be
classified into three categories [12]

Supervised: all spectral patterns both the target and non-target source are trained previ-
ously to the separation stage.

Semisupervised: only spectral patterns from the target source or non-target source are
trained previously to the separation stage.

Unsupervised: no training stage is used. Instead, the factorization process is performed
using different type of constraints.

In this work, we propose a supervised NMF approach to separate speech and poly-
phonic piano music in single-channel recordings. Our proposal is composed of two
stages: training and separation. In the training stage, the system learn the spectral pat-
terns from sounds related to syllables of Spanish speech and sounds from musical iso-
lated piano notes. Using the previous patterns, our proposed algorithm is able to decom-
pose a monaural audio mixture into speech and piano signals. As it will be explained
later, we have used a sparsity constraint in order to improve the quality of the speech and
minimizing the interference of the piano and vice versa.

This paper is organized as follows. In section 2, the proposed method is depicted in
detail. In section 3, test data, experimental setup and metrics are explained. In section 4,
experimental results are shown. Finally, the conclusions and future work are presented
in section 5.

2. PROPOSED METHOD

The scheme of the proposed method is shown in Figure 1. Because of our proposed
method is based on a supervised NMF approach, it needs a two training stages. The first
one is related to factorize the spectral patterns of the syllables of the speech. The second
one is related to factorize the spectral patterns of the piano notes. The most used cost
functions are the Euclidean (EUC) distance, the generalised Kullback-Leibler (KL) and
the Itakura-Saito (IS) divergences. However, in this work, the KL and IS divergences
have been analyzed because they have provided the best results in the separation stage.

2.1. Speech training stage

To obtain the spectral patterns Ws of the speech, a speech database Ds was generated
recording, using a portable recorder Zoom H4n [13], a set of different syllables of the
Spanish language. Specifically, the speech database is composed of 420 syllables: 5 syl-
lables of one letter, 118 syllables of two letters, 291 syllables of three letters and 6 sylla-
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Figure 1. Overview of the proposed supervised NMF approach

bles of four letters. The selection of the syllables was made taking into account the most
likely syllables to be spoken in the Spanish language. In the factorization process, we
have considered Ks spectral patterns to model each syllable.

In order to estimate the speech basis Ws or gains Hs matrices, the iterative algorithm
proposed in [11] [12] can be applied,

• Kullback-Leibler divergence

Ws =Ws �
(

Xsy � (Ws ·Hs)
−1
)
·HT
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1 ·HT
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Hs = Hs �
W T

s ·
(

Xsy � (Ws ·Hs)
−2
)

W T
s · (Ws ·Hs)

−1 (5)

where � is the element-wise product operator, T is the transpose operator, Xsy is the
magnitude spectrogram of each syllable and 1 is an all-one elements matrix. The speech
training procedure is summarized in Algorithm 1

Algorithm 1 Training of Speech Spectral Patterns
1 for each syllable do

2 Compute the speech magnitude spectrogram Xsy from a syllable of the database Ds.
3 Initialise all rows of the gain matrix Hs with random positive values.
4 Initialise all columns of the basis matrix Ws with random positive values.
5 Update bases Ws using eq. (2) or (4)
6 Update gains Hs using eq. (3) or (5)
7 Repeat steps 5-6 until the algorithm converges (or the maximum number of iterations

MaxIter is reached).
8 end for

2.2. Piano training stage

To obtain each spectral patterns Wp of a piano instrument, the piano database Dp was
generated using samples of notes from a piano instrument [14]. Specifically, the piano
database is composed of 88 sounds of isolated piano notes played on a normal intensity.
In the factorization process, we have considered Kp spectral patterns to model each piano
note.

The piano update rules to compute Wp and Hp are similar to speech ones (see eq.
(2-5)) replacing Xsy for the magnitude spectrogram Xpi of each musical note from a
piano instrument and replacing Ws to Wp and Hs to Hp. The piano training procedure is
summarized in Algorithm 2

Algorithm 2 Training of Piano Spectral Patterns
1 for each note do

2 Compute the piano magnitude spectrogram Xpi from a piano note of the database Dp.
3 Initialise all rows of the gain matrix Hp with random positive values.
4 Initialise all columns of the basis matrix Wp with random positive values.
5 Update bases Wp using eq. (2) or (4)
6 Update gains Hp using eq. (3) or (5)
7 Repeat steps 5-6 until the algorithm converges (or the maximum number of iterations

MaxIter is reached).
8 end for

As a consequence of using a supervised NMF approach, Ws and Wp are pre-
computed and known in the training stages and held fixed during the factorization process
in the separation stage.
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2.3. Separation stage

The magnitude spectrogram X of a mixture signal x(t) can be performed by the Short-
Time Fourier Transform (STFT) using a N samples Hamming window and J samples
time shift. The mixture spectrogram X is composed of a speech Xs and a piano Xp spec-
trograms,

X = Xs +Xp (6)

, where each spectrogram Xs or Xp represents the specific spectral features exhibited
by the speech and piano instrument. In this manner, our factorization model is defined

X̂ ≈ X̂s + X̂p ≈ (Ws ∗Hs)+(Wp ∗Hp) (7)

being X̂ , X̂s, X̂p, Ws, Wp, Hs and Hp the estimated mixture spectrogram, the estimated
speech spectrogram, the estimated piano spectrogram, the speech and piano spectral pat-
terns and the speech and piano gains.

The speech Hs and piano Hp gains update rules are shown using the Kullback-Liebler
divergence (eq. (8) and (9)) and Itakura-Saito divergence (eq. (10) and (11)) [12] with a
sparsity (speech λs or piano λp) constraint [4]

Hs = Hs � W T
s · (X � ((Ws ·Hs)+(Wp ·Hp))

−1)

W T
s ·1+λs

(8)

Hp = Hp �
W T

p · (X � ((Ws ·Hs)+(Wp ·Hp))
−1)

W T
p ·1+λp

(9)

Hs = Hs � W T
s · (X � ((Ws ·Hs)+(Wp ·Hp))

−2)

W T
s · ((Ws ·Hs)+(Wp ·Hp))−1 +λs

(10)

Hp = Hp �
W T

p · (X � ((Ws ·Hs)+(Wp ·Hp))
−2)

W T
p · ((Ws ·Hs)+(Wp ·Hp))−1 +λp

(11)

where � is the element-wise product operator and the T is the transpose operator .
Once the update rules have been performed, the estimated spectrograms X̂s and X̂p

are used to compute soft masking Ms (speech) and Mp (piano) (Wiener masking) since it
provides less artifacts in the resynthesis but increases the amount of interference between
speech and piano.

Ms =
X̂s

X̂s + X̂p
(12)

Mp =
X̂p

X̂s + X̂p
(13)
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The phase information related to the speech is computed by multiplying the mask
Ms with the complex spectrogram related to the mixture signal x(t). The inverse trans-
form is then applied to obtain an estimation of the speech signal xs(t). The computa-
tion of xp(t) is performed in a similar procedure taking into account Mp. In algorithmic
approximation, the separation procedure is detailed in Algorithm 3.

Algorithm 3 Speech and Piano Separation
1 Compute the magnitude spectrogram X of the mixture signal.
2 Initialise Hs and Hp with random nonnegative values.
3 Initialise Ws and Wp from the training stage.
4 Update Hs using eq. (8) or eq. (10)
5 Update Hp using eq. (9) or eq. (11)
6 Repeat steps 4-5 until the algorithm converges (or the maximum number of iterations MaxIter

is reached).
7 Reconstruction of the estimated speech signal xs(t)
8 Reconstruction of the estimated piano signal xp(t)

3. EVALUATION

3.1. Test data

To evaluate the performance of the proposed method, we have created a test database D
composed of 10 mixtures signals. Each mixture signal is composed of a 20 seconds du-
ration speech and polyphonic piano excerpt. Each piano excerpt has been randomly ex-
tracted from the MAPS database [15]. Each speech excerpt has been randomly extracted
from a set of 44 sentences spoken by a Spanish speaker. From these sentences, we have
selected 10 excerpts of 20 seconds duration. Highlight that the set of syllables and piano
notes used in the training are not the same used in the test in order to validate the results.

To evaluate different acoustic scenarios, the test database D has been mixed using
-5, 0 and 5 dB of signal-to-noise ratio (see Table 1).

Table 1. Acoustic scenarios in the evaluation process.

Name SNR(dB)

D−5 -5
D0 0
D5 5

3.2. Experimental setup

The proposed method has been tested using different configurations of parameters:
N = (4096,2048,1024), J = (2048,1024), maxIter = (100,200,300,500). However, we
have used N = 4096(93ms), J = 1024(23ms) and maxIter = 100 because a preliminary
study showed that that configuration showed better results and lower computational cost.
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Assuming the previous configuration (N, J and maxIter), separation results will be an-
alyzed taking into account the type of divergence (KL or IS), the number of spectral
patterns Ks −Kp = (1− 1,3− 1,3− 3,5− 1,5− 5,10− 1) and the sparsity parameters
λs − λp = (0 − 0,0 − 1,0.3 − 0.7,0.5 − 0.5,0.5 − 0.7,0.5 − 1,0.7 − 0.3,0.7 − 0.5,1 −
0,1−0.5,1−1).

3.3. Metrics

Three metrics [16] are used to measure the performance of the proposed method: source-
to-distortion ratio (SDR), which reports about the overall quality of the separation pro-
cess; source-to-interferences ratio (SIR), which provides a measure of the presence of
piano sounds in the speech signal and vice versa; and source-to-artifacts ratio (SAR),
which reports about the artifacts in the separated signal due to separation and/or resyn-
thesis.

4. EXPERIMENTAL RESULTS

The proposed method was evaluated using all the possible combinations (type of diver-
gence, number of spectral patterns and sparsity parameters) explained in section 3.2. Ex-
perimental results indicated that the best results were obtained using the optimal config-
urations shown in Table 2.

Table 2. Optimal configurations for speech-piano separation

Name Divergence Ks Kp λs λp

C1 IS 5 5 1 1
C2 KL 5 5 1 0.5

The optimal configurations C1 and C2 use a number Ks −Kp = 5 speech and piano
spectral patterns because this is the minimum number of patterns to model the spectral
diversity exhibited by speech and piano (in a less proportion). Moreover, both config-
urations show the sparsity constraint active to improve the quality of the speech. As a
consequence of the monophonic feature of speech, the speech sparsity parameter λs is
higher that piano sparsity λp because speech is more sparse than piano instrument. As
a example, a 6-seconds mixture spectrogram (Figure 2) and the output of the proposed
method (Figure 3) using the configuration C2 are shown. It can be observed how our pro-
posal has successfully extracted the main features of the speech sounds in the estimated
spectrogram.

Separation results are shown in Figure 4 in which the standard NMF (λs = λp =
0), the optimal configurations C1, C2 and the ideal case are compared. The ideal case
shows the best SDR, SIR and SAR since in this case, the estimated speech is composed
of the speech used in the mixing process to create the test database. It can be seen how
all metrics (SDR, SIR and SAR) increase to evaluate a more ideal acoustic scenario.
This fact is because our system performs better separation when the speech exhibits a
higher power compared to the piano signal. In the three acoustic scenarios we can observe
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Figure 2. Time-frequency representation of a mixture composed of speech and piano sounds

Figure 3. Time-frequency representation of the estimated speech using the configuration C2

the configuration C1 achieves the best SDR-SAR results considering the quality of the
estimated speech but the speech contains a higher interference from piano. However, the
configuration C2 provides worse results taking into account the quality of the estimated
speech (the speech is still clearly intelligible) but a lower interference from piano. Under
our opinion, both configurations C1 and C2 can be selected as the best one because the
fundamental criterion depends on the subjective quality provided by the highest SDR-
SAR or SIR to each listener.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a system for separating speech from background non-
stacionary noise (polyphonic piano music) in single-channel recordings. Our system,
based on a supervised NMF approach, is able to learn most of spectral patterns of the
syllables of the Spanish speech and the spectral patterns of the piano notes. Moreover, a
sparsity constraint has been modeled to improve the separation results. An advantage of
our system is its flexibility to analyze another type of non-stationary noise replacing the
spectral patterns of piano by the spectral patterns of the specific non-stationary noise.
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Figure 4. SDR-SIR-SAR results comparing: (a) the standard NMF (λs = λp = 0), (b) Configuration C1, c)
Configuration C2 and (d) Ideal case. Test database D−5 (top); Test database D0 (middle); c) Test database D5
(bottom)

Results show that a small number of speech and piano spectral patterns is needed
to model the spectral diversity exhibited by speech. The optimal configurations use the
sparsity constraint to improve the quality of the speech. The configuration C1 is the best
considering the quality of the estimated speech but the configuration C2 is the best one
taking into account the minimum interference from piano.

Our future work will be focused on two topics. Firstly, developing a semi-supervised
approach in order to allow the system to learn the unknown patterns active in the mixture.
Secondly, a study of the influence of the speech spectral patterns in the performance of
the separation taking into account different voices of different vocal characteristics.
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