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Abstract. We propose a new parallel search algorithm – A! – based on cooperating
A∗ search agents, concurrency and a secondary tiebreaking heuristic. The search
agents in A! share information asynchronously and trade some of their indepen-
dence for additional search focus and a more global view of the search task. A! is
inherently nondeterministic due to the implicit randomness of instruction schedul-
ing, but given a consistent primary heuristic, it still finds optimal solutions for the
single-source shortest path problem (SSSP). A! combines into a single coopera-
tive search algorithm the breadth available in parallel execution and the depth-first
orientation of both locally and globally informed search.

We experimentally show that A! outperforms both vanilla A∗ and an explicitly
randomized, noncooperative parallel A∗ variant. We present an empirical study on
cooperation benefits and scalability in the classic 15-puzzle context. The results
imply that cooperation and concurrency can successfully be harnessed in algorithm
design, inviting further inquiry into algorithms of this kind.
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1. Introduction

Search features in numerous real world applications from pathfinding to resource opti-
mization. Application of heuristic information can improve searching performance by
providing focus for search space exploration. While heuristics distinguish promising ar-
eas of the search space from those less likely to lead to progress, there still remains plenty
of searching to do, as there typically exist multiple equally good directions to pursue.

For the single-source shortest path problem (SSSP) the standard heuristic search
method is the A∗ algorithm [1]. A∗ follows a best-first strategy that considers both known
distance from the start node and an estimate for the remaining distance to a goal node.
As a graph-based algorithm, A∗ is fundamentally hard to parallelize: best search direc-
tions depend on overall search progress. Nonetheless, there has been some success in
parallelizing best-first search both locally and in a distributed fashion, mostly through
insightful search space partitioning and redundancy elimination [2–6].

In this work we explore parallel heuristic search that is based on cooperation and
dependence rather than on work division and independent execution. We focus on the
cooperation of multiple distinct worker components, algorithmic agents, executing con-
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currently and communicating asynchronously. Our main hypothesis is that cooperating
agents searching together can be more effective than agents searching in isolation. We
test our hypothesis in a series of computational experiments and look for some general
trends. This paper summarizes the research presented in full as a master’s thesis [7].

The contribution of this paper is a new kind of cooperative heuristic search algo-
rithm, a parallel variant of A∗, dubbed A!. A! features cooperating search agents that
share information and collectively maintain a secondary tiebreaking heuristic. Agents in
A! explore the search space in an implicitly random fashion, directed by this dynamic
ranking heuristic. Indeed, we view cooperation simply as another layer of heuristic focus,
a depth-first orienting sense of global search progress.

We empirically evaluate A! by solving instances of the standard 15-puzzle bench-
mark problem. The performance of A! is compared with vanilla A∗ and a randomized
non-cooperative parallel A∗ variant. We show that A! outperforms both methods. The im-
plementation is not as such competitive against state-of-the-art parallel 15-puzzle solvers,
but rather a first step in applying cooperation as a secondary heuristic.

We begin with a discussion on cooperative search in the next section and then de-
scribe the A! algorithm. Results from computational experiments on 15-puzzles are dis-
cussed in Section 4. Related work is discussed briefly before the conclusion in Section 5.

2. Constructing cooperative search

Kishimoto et al. [4] note that combining heuristic search and parallel processing is chal-
lenging because of three kinds of overheads. Search overhead occurs when the parallel
version expands more nodes than the sequential one, typically as a result of non-disjoint
search space division between search agents. Synchronization overhead refers to the idle
time wasted at synchronization points, such as locks on shared data. Finally, communi-
cation overhead occurs whenever information is exchanged.

Parallel search is usually based on search space division, the goal being the removal
of search overhead [4]. This renders synchronization and communication the bottlenecks.
The parallelism in heuristic search algorithms is therefore typically very simple, with
search agents mostly working independently. While this approach is common in general
parallel computing as well, it does not fully leverage the parallel potential of modern
multi-core shared-memory systems.

In this work we focus on removing the synchronization overhead and also give
up precise communication patterns. Instead of maintaining a clear separation between
search agents, we emphasize their close cooperation. Specifically, we make use of asyn-
chronous message passing and nondeterministic instruction scheduling, and build a co-
operation mechanism that is powered by the indeterminacy inherent in concurrency. We
explore computation that is implicitly random as opposed to being explicitly randomized.

The idea in cooperative search is to direct and focus the search by sharing informa-
tion among concurrently operating search workers [8, 9]. The goal is to search faster as
a collective, with each agent utilizing the information they obtain. The hypothesis under-
lying this work is that cooperating agents outperform agents in isolation: search agents
make good use of shared information and the overall effort benefits from cooperation.

Fundamentally, cooperation is communication: cooperating agents consume and
contribute messages, whereas isolated agents keep to themselves. Parallel search is by
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default concurrent when the cooperation between the agents is unconstrained and asyn-
chronous. Instead of enforcing determinism and working against the natural disorder of
concurrency, in this work we embrace it and try to use it to our advantage.

We wish to have a cooperation mechanism that enables information sharing among
concurrently operating search workers and is both effective and lightweight enough for
this extra effort to be worth it. We wish to augment heuristic search in an unobtrusive
way with a basic cooperation mechanism and set the stage for concurrent phenomena.

Instead of a rigid master-slave approach, we want the overall global search to be
managed collegially by several processes. We do away with superfluous synchronization
and rather embrace asynchronous interaction. A∗ is point-initialized by nature, so having
a portfolio of different approaches would make sense, but to study cooperation specifi-
cally, we stick to a uniform strategy. In the terminology of Crainic and Toulouse [8], our
full cooperation policy can then be classified as pC/C/SPSS.

3. The A! algorithm

3.1. Overview

The A! (a-bang) algorithm is a parallel best-first heuristic search that employs asyn-
chronously communicating software agents as concurrently cooperating search workers.
Given a graph, a start node, a goal predicate and two heuristic functions – a primary and
secondary one, denoted h(u) and ĥ(u,v), for all u and v in the graph – A! finds a single
pair shortest path from the start node to a goal node.

A! consists of N agents that each run a distinct upgraded version of A∗ search. Each
agent performs a heuristic search starting from the start node, but also participates in the
cooperation effort: the agents share information about their progress with their fellow
agents. An additional message broker entity can be used to streamline communications.

The primary heuristic is the one used in an A∗-like graph search itself, while the
secondary heuristic serves as a tiebreaker between equally good next-to-open candidate
nodes. Vanilla A∗ simply maintains an estimated value priority queue, but A! workers
aim to discern differences between nodes valued equally interesting in the queue.

This is the crux of A!: where vanilla A∗ always selects the head of the estimated
value priority queue, A! agents choose among up to k most promising nodes of equal
value based on information they individually acquire during the search.

As information is diffused asynchronously, A! workers have varying notions of
search progress. When the priority queues and candidate sets have some differences, the
agents diverge, but directed by the heuristics, they also meander close together again.
A! generates diversity from concurrency, but also maintains cohesion through heuristics.

For the information to share, best encountered nodes are a simple, effective choice.
This directly implies a distance-to-best-based secondary heuristic, where each worker is
directed towards the areas of the search space that have been fruitful in the past. More
elaborate information sharing and utilization schemes are well worth exploring in appli-
cations, but lie outside the main focus of this work.

Note that the degenerate case of a single A! agent is not necessarily vanilla A∗. With
only a single agent passing progress information to the secondary heuristic function, the
search turns into a momentum-based eager search, where candidates close to recently
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opened ones are ranked high among nodes that are equal with respect to the primary
heuristic. This momentum effect is visible later on in the experiments.

Finally, A! retains the optimality of A∗ in the sense that the solution paths are the
shortest possible, if the primary heuristic is consistent. The secondary heuristic only se-
lects the order in which areas of the search space get explored. The primary and sec-
ondary heuristics can be the same distance measure, but this is not necessary in general.

3.2. Algorithm details

Next we present the entire A! algorithm as a collection of pseudocode snippets. We
begin with Algorithm 1, which serves as the main body of the algorithm. In short, we
simply launch a collection of search workers and wait for one of them to finish. We
encapsulate the cooperation communication into a message broker entity that takes care
of the communication scheme following a publish-subscribe pattern.

Given the problem instance, including the two heuristic functions, the algorithm re-
turns a path from the start node to the found goal node, if one is reached. The path is de-
rived from a path map of successor nodes by the first worker to find a goal. Solution dis-
covery triggers main program termination and solution path retrieval via getPath(..).

The workers run A!Solver, outlined in Algorithm 2, which has four parts inside a
loop that is repeated until program termination. The first part, lines 6–7, is the node visit,
where we check whether the current node is a goal based on the isGoal predicate. If it
is, we derive the solution path and terminate, if not, we mark the node visited.

The second part, lines 8–14, is the A∗ expansion. We use the primary heuristic func-
tion to estimate remaining distances for the legal neighbors of the current state and up-
date the data structures as we discover new nodes. The priority queue openHeap main-
tains the unopened node queue ordered by estimated total cost. The pathMap maps nodes
to one another, establishing the successor relation used in solution path derivation.

The third part, lines 15–16, is a cursory peek into the up-to-date openHeap. In
A! we examine some interesting nodes and select among them according to the sec-
ondary heuristic, whereas in vanilla A∗ we simply draw one node from the top. The peek
is a bounded traversal of the priority queue, where we build a list – the peekList – of
nodes with a cost equal to the top node. If there are no nodes left, the search terminates.

The final part, lines 17–18, contains the selection routine, which for A! is given as
Algorithm 3. After one of the nodes has been selected – in one way or another – it is
removed from openHeap and turned into current. Removing nodes is a relatively fast
operation for some priority queue implementations, including the Fibonacci heap.

Algorithm 1 : A!Search

Require: N > 0, NODE start, PREDICATE isGoal, HEURISTIC h, ĥ
Ensure: path from start to nearest node satisfying isGoal is shortest possible

1: mb ← MsgBroker()
2: for i = 0 to N do

3: workers[i]← A!Solver(mb.portOut,mb.portIn,s, isGoal,h, ĥ)
4: end for

5: for each worker in workers in parallel worker.launch() end for

6: wait for termination
7: return path ← getPath(workers)
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Algorithm 2 : A!Solver

Require: PORT portIn, portOut, NODE start, PREDICATE isGoal, HEURISTIC h, ĥ
1: openHeap ← FibonacciHeap〈INTEGER,NODE〉
2: closedSet ← Set〈NODE〉
3: pathMap ← Map〈NODE,NODE〉
4: current ← start
5: repeat

6: if isGoal(current) then terminate(current,start, pathMap) end if

7: closedSet.add(current)
8: for each n in current.getNeighbors() do

9: if closedSet.contains(n) then continue end if

10: g ← current.g+dist(current,n)
11: f ← g+h(n)
12: improved ← openHeap.update(n, f )
13: if improved then pathMap.update(n,current) end if

14: end for

15: peekList ← openHeap.getPeekList()
16: if isEmpty(peekList) then terminate() end if

17: current ← A!Select(peekList, portIn, portOut,h, ĥ)
18: openHeap.remove(current)
19: until termination

The selection routine A!Select is the real core of the A! algorithm: it contains the
cooperation functionality and the application of the secondary heuristic. In the first part,
lines 1–2, the cooperation routine asyncRecv brings new information into the agent.
The read is asynchronous and nonblocking in that if there is nothing to receive, the
algorithm proceeds without any delay. The routine in Algorithm 3 gives a version with
best-information being shared, but other schemes can naturally be constructed here.

The second part features the inclusion of the new information, lines 3–8, as encap-
sulated into the secondary heuristic function, ĥ. The peekList is sorted on ĥ and the
highest ranking node is selected. The third part, lines 9–12, mirrors the first part: new
data is sent for others to process. The listing shows a small communication overhead
optimization, where the agent only informs others, if it believes that it has made progress.

Alternative selection policies to A!Select include the random (A?) and vanilla (A∗)
selection routines. The former selects nodes at random from the peeklist, while the latter
simply takes the head of the list. We proceed with an evaluation of these selection policies
in a series of computational experiments.

4. Solving 15-puzzles with A!

In this section we describe experiments based on repeated executions of three versions of
heuristic search, all based on a single implementation: vanilla A∗, a randomized parallel
variant A?, and the cooperative A!. We focus on two dimensions that are especially
interesting from a cooperative search point of view: the overall benefit from cooperation
and the extent to which the methods are scalable. We first describe the experimental
setting and then present the computational results. More results can be found in [7].
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Algorithm 3 : A!Select

Require: LIST peekList, PORT portIn, portOut, HEURISTIC h, ĥ
Ensure: select is the most promising node in peekList according to ĥ on best

1: update, updateH ← asyncRecv(portIn)
2: if updateH < bestH then best,bestH ← update,updateH end if

3: select ← peekList.pop()
4: selectD ← ĥ(select,best)
5: for each node in peekList do

6: d ← ĥ(node,best)
7: if d < selectD then select,selectD ← node,d end if

8: end for

9: if h(select)< bestH then

10: best,bestH ← select,selectH
11: asyncSend(portOut,{best,bestH})
12: end if

13: return select

4.1. Experimental setting

The implementation used in the experiments is based on an A∗ for n-puzzles implementa-
tion by Brian Borowski2 (BBI). The Java program features an A∗ solver as well as a ver-
sion of IDA∗, of which the former was extended to a cooperative version in this work. All
tests were executed on a cluster comprising a mixture of blade servers featuring 2.6GHz
Opteron 2435, 2.67GHz Xeon X5650, and 2.8GHz Xeon E5 2680 v2 processors.

Two standard heuristics were used in the experiments: Manhattan distance with lin-
ear collisions (LC) [10], and a 6-6-3-partitioned static disjoint pattern database for the
15-puzzle (PDB) [11]. PDB was chosen as the primary heuristic and LC-to-best as the
secondary heuristic: we use the database to focus on the right areas of the search space
and break ties between equal valued nodes by LC-distance to the best observed node.

The test suite is a randomly generated collection of 15-puzzle instances. Instances
were solved with BBI and grouped by the length of the optimal solution path, the shortest
sequence of moves from the start position to the goal position. Randomly generated
impossible instances – off-parity with respect to the target goal state – were discarded.

The instances within a given optimal length group proved to differ greatly in their
difficulty: the average number of nodes examined during the search for instances in any
group covers a range of several orders of magnitude. Further, as the methods under evalu-
ation have stochastic and nondeterministic properties, runs on a given instance are them-
selves subject to nontrivial variation. The grouping is still justified, as with enough in-
stance in each group, some general trends become apparent.

The experiments focused on the number of nodes opened by the winning agent,
which was found to be a reasonably good metric. The goal in this work was not to build
a competitive 15-puzzle solver, but to study cooperation effects in A!, so runtime is not
considered here. Still, the winning agent measure reflects both the total work done by
all agents – including repetition – and, to some extent, the total runtime as well. This
follows from agents exploring states at roughly the same rate given a core per agent.

2http://www.brian-borowski.com/Software/Puzzle/
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Figure 1. Relative performance of A∗ (x-axis) and A! (y-axis). The solid line is par, so data points below it
represent instances for which A! performs better than A∗. Agent count is evaluated in five batches – 1, 2, 4,
6, and 8 agents – with the respective trend lines showing how the configurations compare. With trend lines
approaching 1

2 , the winning agents in multi-agent A! open roughly half the states of a vanilla A∗ run.

4.2. Computational results

The experiments give an overview of the performance of A! in comparison with vanilla
A∗ and a non-cooperative random selection variant A?. We first show that A!, featuring
cooperation and the secondary heuristic based ranking, overcomes both vanilla A∗ and
A?. Second, we show that while the returns are diminishing, having more agents im-
proves the overall performance of both A? and A!, but that A! clearly outperforms A?,
making a preliminary case in favor of cooperation.

To see how A! fares against the competition, we set the algorithms to solve a suite
of instances and observed how many search graph vertices the winning agents open.
Figure 1 shows 100 15-puzzles from each of the 40–59 optimal path length groups run
on A∗ and A! in five agent configurations: 1, 2, 4, 6, and 8 agents. We use the median
of five runs: this was found to be a reasonable compromise between result quality and
available computing resources.

We see the majority of the points falling under the solid par-line, indicating that
search using A∗ is more sluggish than with A!: more states get visited before the optimal
solution path is found. Some instances above the par-line – especially for the one agent
case – show the vanilla algorithm outperforming A!, likely due to the secondary heuristic
being misinformed about the best direction. This is the cost from going depth-first over
breadth: all heuristics can be fooled. The trend lines still validate A!. With eight agents,
the slope approaches 1

2 , indicating that on average A! needs to see only half the states as
vanilla A∗. Similar results for A! vs. A? are found in [7].

Searching efficiently in parallel requires a scalable algorithm. Figure 2 shows that
A! outperforms A∗ and A?, and that adding new agents to A! increases its performance.
The figure shows runs in optimal length groups, with means of the 100 instances in each
group forming a trend line for each of the agent configurations. The group trends are
normalized with respect to vanilla A∗ performance. Finally, the trend lines themselves
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Figure 2. A∗-normalized length group means demonstrating scaling benefit from adding more agents. Each
line represents a set of instances run over several configurations and repeats, for each method and with the
performance scaled to the vanilla A∗ case. We can see the relative benefit of adding more agents, but also
diminishing returns for each expansion. The trend lines overlap to a moderate extent – further illustrated by the
mean – suggesting rudimentary asymptotic bounds for the approaches.

are averaged over for a pair of thick mean-of-means curves that summarize over the
thousands of data points drawn evenly from the 40−59 optimal path length range.

We see that A?, perhaps in the spirit of random restarting (repeated local search),
initially performs worse than A∗, as the random selection policy is inferior to a system-
atic approach, but then with more agents the probabilities turn in its favor. In contrast,
A! already starts off well, due to the momentum effect, and gains more power as more
agents begin to cooperate.

For some of the groups in Figure 2, A! gets close to the 1
2 threshold in A∗-relative

expansion, which also appears to be a plateau for general scalability with regards to
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this implementation if not the approach itself. While individual groups exhibit erratic
behavior, the overall trend is quite clear: A! outperforms A∗ and A?, and scales to at least
a few agents, but with diminishing returns.

5. Related work

Cooperation has been an theme in AI research for years [12, 13]. The taxonomy work of
Crainic and Toulouse [8, 14] is a good place to start exploring the literature on coopera-
tive search. Alba et al. [15] offer extensive surveys on a closely related field of parallel
metaheuristics. A! is perhaps best categorized as distributed search [5], but the approach
is motivated by a multi-agent system view of algorithmic cooperation [7].

Barbucha [16] and Ouelhadj and Petrovic [9] present ideas that are similar to A!, but
feature cooperation more in terms of traditional parallelism. In A! we propose viewing
cooperation as a dynamic heuristic, and present unconstrained concurrency and close
interaction as a source of search diversity and performance.

Classical planning tasks make good benchmarks and are often featured in parallel
A∗ papers to give the methods credibility beyond puzzles [2, 4]. However, in these con-
texts, cooperation effects are rarely studied directly. Information exchange, mostly con-
sidered from a search space partitioning and distributed load balancing angle, appears
to not have been considered from the heuristic point of view taken in this work. Most
A∗ parallelizations are deterministic and the rest explicitly randomized.

Without search space partitioning, parallelism can be achieved in search through
parallelizing node processing in a heavy graph, as in the chess machine Deep Blue [17].
Algorithm portfolios and hybrids are another easy way to exploit parallelism, an exam-
ple being the ManySAT solver [18]. Machine learning methods have also been success-
fully applied to the discovery of parallel configurations for search [19]. Load balancing
through duplicate detection [2], hashing [3, 4], or transposition tables [5] might well be
useful in improving exploration diversity also in A!.

6. Conclusion

The 15-puzzle experiments show that the cooperative A! algorithm outperforms both
vanilla A∗ and the non-cooperative random parallel variant A? in this context. Adding
more agents to A! clearly improves performance, but the returns are diminishing. Search
overhead – the lack of explored path diversity – appears to be a limiting factor in A! per-
formance and an issue worth addressing in future work.

A∗ expands the search broadly in all directions and in an orderly fashion, in a
sense being forgetful about search history. A!, in contrast, prefers depth and emphasizes
progress and search momentum. A? is forgetful as well, but through explicit randomiza-
tion, the agents can stumble on the right path faster than in systematic browsing – given
enough agents. A! embraces concurrency and implicit randomization: the parallel agents
cooperate in a nondeterministic way in focusing the search effort in areas that have been
found promising. The secondary heuristic serves as a global compass that augments the
search when the primary heuristic fails to disambiguate between candidates.

A! combines into a single approach multiple unfinished algorithmic ideas: con-
current execution, asynchronous interaction, implicit randomization, globally informed
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depth-first orientation, and the use of a secondary heuristic. A far more detailed study is
needed for explicating the exact contribution of each of these factors in A! performance.
The approach should also be validated in other contexts.

Still, the experiments indicate that nondeterministic cooperation emerging from
asynchronous message exchange can be beneficial in heuristic search. Next steps could
also include combining A! and cooperation ideas with other parallel A∗ techniques.
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