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Abstract. Over the years, inconsistency management has caught
the attention of researchers of different areas. Inconsistency is a prob-
lem that arises in many different scenarios, for instance, ontology
development or knowledge integration. In such settings, it is impor-
tant to have adequate automatic tools for handling conflicts that may
appear in a knowledge base. We introduce an approach to consolida-
tion of belief bases based on a refinement of kernel contraction that
accounts for the relation among kernels using clusters instead. We
define cluster contraction-based consolidation operators contraction
by falsum on a belief base using cluster incision functions, a refine-
ment of kernel incision functions.

1 Introduction

Inconsistency management is admittedly an important problem that
needs to be faced in many modern computer systems. Several impor-
tant approaches to handle inconsistency had been proposed in Arti-
ficial Intelligence (AI), specially in the areas of belief revision and
argumentation. In particular, belief revision deals with the general
problem of the dynamics of knowledge, i.e., how belief states change
and evolve through time, solving possible inconsistencies in the pro-
cess. The work of Alchourrón, Gärdenfors and Makinson where the
AGM model is presented [1], is currently considered the cornerstone
from which belief revision theory has evolved (see [8]). Contrac-
tion is one of the basic change operators defined in the AGM model,
the result of contracting a belief base K by a sentence α is a pos-
sibly smaller set of beliefs from which α can no longer be logi-
cally inferred. One approach to contraction, known as kernel con-
traction [3, 4], is based on removing elements from the α-kernels of
K , which are (minimal) subsets of K that contribute to entailing α.

We focus on a different belief change operation called consoli-
dation; this operation is inherently different from contraction as the
ultimate goal of consolidation is to obtain a consistent belief base
rather than removing a particular formula from it. Nevertheless, con-
solidation can be defined in terms of contraction; a natural way of
achieving this is to take an inconsistent belief base and restore its
consistency by attending every conflict in it, a process that is known
in the belief revision literature as contraction by falsum [4]. In this
work, we analyze consolidation operators that take an inconsistent
belief base and apply special functions, called incisions functions, in
order to restore consistency. Instead of treating conflicts locally as
made in classic kernel contraction, we present incisions that account
for global considerations to improve the efficiency of the consistency
restoration process, avoiding unnecessary deletions that sometimes
arise from the classic approach because of its generality.
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2 Kernel and Cluster Contraction-based Belief
Base Consolidation

We first introduce some necessary notation that will be used through-
out the paper. We assume a propositional language L built from a set
of propositional symbols P . This language is closed under classical
propositional logic symbols. We denote propositional letters using
lower-case Latin letters and propositional formulæ using lower-case
Greek letters, possibly using subscripts; but, we reserve ρ and � to
represent incision functions.

An interpretation is a total function from P to {0, 1}, and the set
of all interpretations is denoted with W . An interpretation ω ∈ W
is a model of a formula α iff it makes α true in the classical way,
denoted with ω |= α. The set of all models of a formula α is
mods(α) = {ω ∈ W | ω |= α}. Furthermore, ⊥ stands for an
arbitrary contradiction. A belief base, denoted by K , is a finite set
of propositional formulæ. The set of models of belief base K are
mods(K ) = {ω ∈ W | ω |= α for all α ∈ K}. We denote with
KL the set of all belief bases that can be built from L. Finally, a K
is consistent iff mods(K ) �= ∅; and K is inconsistent otherwise.

The work of Hansson in [3] describes how a contraction opera-
tor can be modeled by means of incision functions. These operators
contract a belief base by a formula α by taking each minimal sets
that entails α, and producing “incisions” on the set so α is no longer
entailed from it. This approach is known as kernel contraction.

We define the consolidation process as the application of incision
functions over the minimal inconsistent subsets of a belief base. We
will call such sets kernels; we recall the formal definition from [3].

Definition 1 (Kernels) Let K be a belief base. The set of kernels of
K , denoted K⊥⊥⊥, is the set of all X ⊆ K such that mods(X) = ∅
and for every X ′ � X it holds that mods(X ′) �= ∅.

A kernel incision function takes a set of kernels and selects for-
mulæ in them to be deleted from K [3].

Definition 2 (Kernel Incision Function) Let K be a belief base,
and K⊥⊥⊥ be the set of kernels for K . A kernel incision function
is a function ρ : 2KL �→ KL such that (i) ρ(K⊥⊥⊥) ⊆ ⋃

(K⊥⊥⊥),
and (ii) for all X ∈ K⊥⊥⊥, if X �= ∅ then (X ∩ ρ(K⊥⊥⊥)) �= ∅.

Based on kernel incision functions we define kernel contraction-
based belief consolidation operators as follows.

Definition 3 (Kernel Contraction-based Consolidation Operator)
Let K be a belief base, K⊥⊥⊥ be the set of kernels for K and ρ be
a kernel incision function. A kernel contraction-based consolidation
operator Υρ for K is defined as Υρ(K ) = K \ ρ(K⊥⊥⊥).

If we strive for minimal loss of information, then this operator has
the important drawback of solving conflicts locally to every kernel;
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even if the function only removes one formula from each kernel, the
incisions may be too drastic from a global point of view:

Example 1 Consider the following inconsistent knowledge base
K = {p, q, r, p → ¬r,¬(q ∧ r)}. For belief base K we have
that K⊥⊥⊥ = {κ1, κ2}, where κ1 = {p, r, p → ¬r} and
κ2 = {q, r,¬(q ∧ r)}. Now, suppose we have an incision func-
tion such that ρ(κ1) = {r} and ρ(κ2) = {q}; we then have that
Υρ(K ) = K \ ρ(K⊥⊥⊥) = K \ {q, r}. Then, for κ2 we delete q
from K in order to solve the conflict. However, this is unnecessary,
as r will not be in the final belief base anyway, since it is deleted to
solve the conflict in κ1, and thus the conflict in kernel κ2 is already
solved, and there is no need to further remove propositions from κ2.

In the following we present an approach that avoids this by con-
templating only incisions to the belief base that are globally optimal
with respect to the amount of information lost. The proposal is based
on the use of clusters [7, 5, 6]; which are built upon an overlapping
relation θ: given two kernels κ1, κ2 ∈ K⊥⊥⊥ we say they overlap,
denoted κ1θκ2, iff κ1

⋂
κ2 �= ∅. Furthermore, θ∗ is the equivalence

relation obtained through the reflexive and transitive closure of θ.

Definition 4 (Clusters [7]) Let K be a belief base, K⊥⊥⊥ be the
set of kernels for K , and θ the overlapping relation. A cluster of K
is a set ς =

⋃
κ∈[κ] κ, where [κ] ∈ K⊥⊥⊥/θ∗. We use K⊥⊥⊥⊥ to

denote the set of all clusters for K .

Intuitively, a cluster groups together kernels that share formulæ, in a
transitive way. The use of clusters instead of kernels can help to pre-
vent situations like the one presented in Example 1 since they show a
more global picture of how the formulæ are related in respect to con-
flicts. It is important to remember that by design the removal of any
single formula within a kernel makes the set no longer inconsistent;
however, this is not necessarily the case for clusters [5]. Therefore,
in order to define incision functions over clusters, we cannot simply
reuse Definition 2, instead, we introduce the notion of cluster incision
functions, which are refinements of the ones introduced earlier.

Definition 5 (Cluster Incision Function) Let K be a belief base
and K⊥⊥⊥ and K⊥⊥⊥⊥ be the set of kernels and clusters for K ,
respectively. A cluster incision function is a function � : 2KL �→ KL
such that (i) �(K⊥⊥⊥⊥) ⊆ ⋃

(K⊥⊥⊥⊥), and (ii) for all X ∈ K⊥⊥⊥⊥
and Y ∈ K⊥⊥⊥ such that Y ⊆ X it holds that for some α ∈ Y ,
Y ∩ �(K⊥⊥⊥⊥) = {α}.

Now, based on cluster incision functions we define a new operator,
namely cluster contraction-based consolidation operator, as follows.

Definition 6 (Cluster Contraction-based Consolidation Operator)
Let K be a belief base, K⊥⊥⊥ and K⊥⊥⊥⊥ be the set of kernels and
clusters for K , respectively, and � be a cluster incision function.
A cluster contraction-based operator Ψ� for K is defined as
Ψ�(K ) = K \ �(K⊥⊥⊥⊥).

Condition (ii) in Definition 5 ensures that all conflicts are solved once
we delete the selected formulæ. Example 2 shows the behavior of
a cluster contraction-based operator Ψ� with respect to the choice
made in Example 1.

Example 2 Consider belief base K from Example 1; we have the
following set of clusters K⊥⊥⊥⊥ = {ς1}, with ς1 = {p, q, r, p →

¬r,¬(q ∧ r)}, because r belongs to both kernels in K⊥⊥⊥. For a
cluster contraction-based operator Ψ� based on a cluster incision
function �, possible incisions are �(ς1) = {p, q}, and �(ς1) = {r}.
Consider option �(ς1) = {p, q}. Thus, Ψ�(K ) = K \�(K⊥⊥⊥⊥) =
K \ {p, q}. Note that if we were to choose r for deletion then to
also choose q (i.e., the option considered in Example 1) is no longer
a viable option for a cluster incision function, as if we choose both
formulæ then the set �(K⊥⊥⊥⊥) ∩ κ2 will no longer be a singleton
set, violating the second condition from Definition 5.

Every cluster contraction-based consolidation operators is also a
kernel contraction-based one.

Proposition 1 Let Ψ� be a cluster contraction-based consolidation
operator. Then, Ψ� is a kernel contraction-based consolidation op-
erator.

The converse does not hold, i.e., a kernel contraction-based opera-
tor is not necessarily a cluster contraction-based operator, as kernel
incision functions are not necessarily cluster incision functions.

As hinted by Examples 1 and 2, a clear benefit of using cluster-
based consolidation operators is that some unnecessary deletions
can be avoided by clustering conflicts. It can be shown that clus-
ter contraction-based consolidation operators always remove at most
the same number of formulæ than kernel contraction-based ones; the
following proposition formalizes the result.

Proposition 2 Let K be a belief base, � and ρ be a cluster incision
function and a kernel incision function, and Ψ� and Υρ their respec-
tively associated cluster and kernel contraction-based consolidation
operators over K . Then, we have that |Υρ(K )| ≤ |Ψ�(K )|.

3 Conclusions and Future Work
In this paper we focus on an approach to consolidation of belief bases
defined on terms of belief base contractions [1]. We have proposed
and developed a new class of belief bases consolidation operators,
called cluster contraction-based operators, and shown that they are
more efficient in consistency restoration than the classic approach,
from the point of view of minimal loss of information. Future work
will involve a deeper analysis of the differences with both kernel con-
traction and the AGM approach, by exploiting the relation between
incision and selection functions [2].
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