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Abstract. There are many situations in which two or more agents
(e.g., human or computer decision makers) interact with each other
repeatedly in settings that can be modeled as repeated stochastic
games. In such situations, each agent’s performance may depend
greatly on how well it can predict the other agents’ preferences and
behavior. For use in making such predictions, we adapt and extend
the Social Value Orientation (SVO) model from social psychology,
which provides a way to measure an agent’s preferences for both its
own payoffs and those of the other agents.

The original SVO model was limited to one-shot games, and as-
sumed that each individual’s behavioral preferences remain constant
over time—an assumption that is inadequate for repeated-game set-
tings, where an agent’s future behavior may depend not only on its
SVO but also on its observations of the other agents’ behavior. We
extend the SVO model to take this into account. Our experimental
evaluation, on several dozen agents that were written by students in
classroom projects, show that our extended model works quite well.

1 Introduction

Many multi-agent domains involve human and computer decision
makers that are engaged in repeated collaborative or competitive
activities. Examples include online auctions, financial trading, and
computer gaming. Repeated games are often viewed as an appropri-
ate model for studying these kinds of repeated interactions between
agents. Compared to one-shot games, repeated games are much more
complex as they allow agent to adapt their behavior between the
rounds. The relevant literature contains many demonstrations of how
an agent’s behavior can change as it develops a better understanding
of the other agents’ behavior [6, 1, 3, 8, 4].

In order to model the behavior of an agent and predict its perfor-
mance, we adapt and extend a construct, Social Value Orientation
(SVO), from social psychology [2]. SVO theory assumes that in in-
terpersonal interactions, an individual’s choices depend not only on
his/her own payoffs but also on his/her preferences for the other in-
dividual’s payoff, and that these preferences remain stable over time.
SVO theory provides a way to measure these preferences, and exper-
imental validations of these measurements on human subjects.

If a human writes an agent to act as the human’s delegate in a
multi-agent environment, one might expect the computerized agent
to have social preferences as well. Knowing an agent’s social pref-
erence would make it possible to make informed guesses about the
agent’s future actions.
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A critical limitation of the SVO model is that it only looks at
agent’s preferences in one-shot games. This is inadequate for pre-
dicting agents’ behaviors in the situations where the agents interact
with each other repeatedly. An agent’s actions may depend on both
its SVO and its model of the other agent’s behavior. To use the SVO
model effectively in repeated games, it is necessary to extend the
SVO model to take into account how an agent’s behavior will change
if it interacts repeatedly with various other kinds of agents.

Our contributions in this paper are as follows (for details, see [5]).
First, we extend the SVO model by developing a behavioral signa-
ture, a model of how an agent’s behavior over time will be affected
by both its own SVO and the other agent’s SVO. Second, we pro-
vide a way to measure an agent’s behavioral signature, and meth-
ods for using behavioral signatures to predict agents’ performance.
Third, we present experimental results using agents that students
wrote to compete in repeated-game tournaments. The experimen-
tal results show that our predictions are highly correlated with the
agents’ actual performance in tournament settings. This shows that
our proposed model is an effective way to generalize SVO to situa-
tions where agents interact repeatedly.

2 Modeling Computer Agents

Even if an agent has a fixed SVO in general, its actions toward a
specific agent may depend on its past experience of that agent. For
example, an agent that is normally cooperative might behave aggres-
sively toward another agent that behaved aggressively toward it in the
past. SVO measurements do not capture this influence on an agent’s
behaviors, because SVO measurements are always done on one-shot
games against an abstract opponent. This non-repetitive interaction
assumption is not valid in most multi-agent environments. In the en-
vironment we used, the repeated interaction is modeled by a repeated
game with unknown number of iterations. In order to model the be-
havior of an agent, we use a modified version of Ring method, a
well-known technique for measuring SVO used in social psychology
[7] to measure social preferences of agents.

In the technical report [5], we present a way to measure the social
preferences of a computer agent after the agent played n iterations
with a tester agent. We also define a behavioral signature for an agent
x to be a vector Θn(x) of x’s social preferences when x plays against
nineteen different tester agents after n iterations. Each tester agent is
a memoryless agent whose social preference is constant and unique.
Therefore, behavioral signature of an agent takes into account how
the agent’s behavior will change if it interacts repeatedly with various
other kinds of agents. For details, see the technical report.

If we know the behavioral signatures of two agents x and y, we can
estimate the cumulative payoff when x and y play with each other.
Below, we summarize the results of experiments with two methods,
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Player 22x2 symmetric game
A1 A2

A1 (a, a) (b, c)Player 1
A2 (c, b) (d, d)

Figure 1. Stage game. The values a, b, c, d are generated randomly.

E0(x, y) and En(x, y), of estimating x’s average payoff when it
plays with y for N iterations (where N > n). The first method,
E0(x, y), only uses (initial) SVO of x and y. The second method,
En(x, y), uses the behavioral signatures of both agents. E0(x, y) is
actually a degenerated case of En(x, y) when n = 0, because the
behavioral signature becomes initial social preferences of the agent
when n = 0.

3 Experiments

For our experimental evaluation, we used a large collection of agents
that were written by students in several advanced-level AI and Game
Theory classes. In each case, the students wrote their agents to com-
pete in a round-robin tournament among all the agents in their class.
To attain a richer set of agents, the classes were held at two different
universities in two different countries: one in the USA, and one in
Israel.

Our experimental studies involved measuring the agents’ behav-
ioral signatures, playing round-robin tournaments among the entire
set of agents, and comparing the agents’ performance with the pre-
dictions made by our model. To eliminate random favorable payoff
variations, we randomized the series of games, and used the same
series between all agents in the population. The instructions stated
that at each iteration, they will be given a symmetric game with a
random payoff matrix of the form shown in Figure 1. We did not tell
the students the exact number of iterations in each repeated game.
The total agent’s payoff will be the accumulated sum of payoffs with
each of the other agents. For motivational purposes, the project grade
was positively correlated with their agents overall ranking based on
their total payoffs in the competition. Overall, we collected 71 agents
(47 from the USA and 24 from Israel).

In the following experiment, the total number of iterations (N) is
100, and the number of runs is also 100. We predicted the average
payoff of all possible games of any two students’ agents (including
playing with itself, i.e., 71 × 71 data points for each run), using the
methods mentioned in Section 2.

Figure 2 shows mean square error between predicted payoffs and
actual payoffs. Regardless the value of n, their mean square errors
are low, comparing with the average payoff ≈ 5.5. When n = 0, the
accuracy of En is good (mean square error = 0.284). As n increases,
the accuracy of En also increases until n = 20, at which point it
levels off.

When n = 0, En degenerates to E0 which only considers the
(initial) SVO value of the agents. When n > 0, En takes the agents’
adaptive behaviors into account by considering their behavioral sig-
natures. The better performance of En shows that our extended SVO
model works better in repeated games than the original SVO model.

4 Conclusions

We have extended the SVO model from social psychology, to pro-
vide a behavioral signature that models how an agent’s behavior over

Figure 2. Mean square error of predicted payoffs (when student agents
play in a tournament). n is the number of iterations before measuring an

agent’s behavioral signature.

multiple iterations will depend on both its own SVO and the SVO of
the agent with which it interacts. We have provided a way to measure
an agent’s behavioral signature, and a way to use this behavioral sig-
nature to predicting the agent’s performance. In our study of agents
that were designed to play a repeated stochastic game in classroom
tournaments, the predictions made by our model were highly corre-
lated with the agents’ actual performance.
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