A Privacy-preserving Model for the Multi-agent Propositional Planning Problem

Andrea Bonisoli and Alfonso E. Gerevini and Alessandro Saetti and Ivan Serina¹

1 Introduction

Over the last years, the planning community has formalized several models and approaches to multi-agent (MA) planning (e.g., [1, 2, 3]). One of the main motivations in MA planning is that some or all agents have private knowledge that cannot be communicated to other agents during the planning process and the plan execution.

The most known model for MA planning is MA-STRIPS [1]. In MA-STRIPS, the set of the executable actions is partitioned into n sets $\{A_i\}_{i=1}^n$, such that A_i is the set of actions the *i*-th agent is capable of executing. A proposition is considered *private* if it is required and affected only by the actions of a single agent. All other propositions are considered *public*. An action is private if all its preconditions and effects are private; the action is considered public, otherwise. An efficient approach [2] using MA-STRIPS is the multi-agent (distributed) formulation of A^* (MA- A^*). In MA- A^* , no agent has complete knowledge of the search state, and hence during the A^* search each agent sends a message to the other agents including a representation of the state under expansion, where, for sake of the agents' privacy, private propositions are encrypted.

The approach described in [2], which uses the MA-STRIPS formulation of MA planning, does not fully guarantee the privacy of the involved agents when: at least one public proposition is confidential (i.e., it should be kept hidden from some agent), or the identity/existence of at least one agent is confidential, and hence only certain authorized agents can communicate with her. E.g., consider four agents act: the retailer (R), the courier (Co), the retailer's supplier (Su), and the retailer's customer (Cu). Customer Cu needs to have goods G that are not currently in the retailer's shop (Sh). Retailer R sends a purchase order to its supplier Su for the shipment of a package P containing G. Express delivery courier Co moves package P from the supplier's factory (F) to the retailer's shop. Assume also that (pack Su G P F) is an action of agent Su; (load Co P F) is an action of agent Co; (unpack Cu G P Sh) is an action of agent Cu; (in G P) and (loadable P) are two (positive) effects of (pack Su G P F); (loadable P) is a precondition of (load Co P F); and, finally, (in G P) is a precondition of (unpack Cu G P Sh). Essentially, actions (pack Su G P F), (load Co P F), and (unpack Cu G P Sh) represent, respectively, that at factory F supplier Su packs goods G in package P, making package P loadable, courier Co loads package P from F, and, at shop Sh, customer Cu unpacks goods G from package P.

According to the approach described in [2], for this scenario

propositions (in G P) and (loadable P) are public; hence, when agent supplier Su communicates the state obtained by executing its action (pack Su G P F) to agent courier Co, proposition (in G P) is not encrypted. The negative effect of this information exchange is that the privacy of the customer is violated, as it makes the courier know the content of package P. In order to preserve the privacy of the involved agents, the supplier should not communicate (in G P) to the courier. Moreover, while proposition (in G P) needs to be communicated to the retailer's customer so that the customer will be able to unpack goods G from package P, there should be no (direct) contact between the retailer's supplier and the retailer's customer.

In this abstract paper, we propose a model that preserves the privacy of the involved agents, and, discuss how the MA- A^* search algorithm can be adapted to implement our model.

The model of MA planning that is most similar to the one we propose here is the model adopted by MAP-POP [3]. MAP-POP is a multi-agent planning system searching the space of partial-order plans by an A^* POP algorithm. Each agent selects a (partial) plan π from an open list, chooses an open (sub)goal g from the selected plan, computes a set of plans refining π to achieve g, sends the refined plans to every other agent, and receives the plans refined by other agents. Our model of MA planning avoids the global broadcasting and, by restricting message passing to certain agents, guarantees that the identity/existence of certain agents remains confidential.

2 Privacy-preserving Multi-agent Planning

A privacy-preserving multi-agent planning problem for a set of agents $\Sigma = \{\alpha_i\}_{i=1}^n$ is a tuple $\langle \{A_i\}_{i=1}^n, \{F_i\}_{i=1}^n, \{I_i\}_{i=1}^n, \{G_i\}_{i=1}^n, \{M_i\}_{i=1}^n \rangle$ where:

- A_i is the set of actions agent α_i is capable of executing, and such that for every pair of agents α_i and α_j , $A_i \cap A_j = \emptyset$;
- F_i is the set of relevant facts for agent α_i ;
- $I_i \subseteq F_i$ is the portion of the initial state relevant for α_i ;
- $G_i \subseteq F_i$ is the set of goals for agent α_i ;
- M_i ⊆ F_i × Σ is the set of messages agent α_i can send to the other agents.

Facts and actions are literals and pair $\langle Pre, Eff \rangle$, respectively, where Pre is a set of positive literals and Eff is a set of positive or negative literals. Let X + / X - denote the positive/negative literals in set X, respectively. Let \mathcal{MG} be the graph induced by $\{M_i\}_{i=1}^n$, where nodes represent agents, and edges represent possible information exchanges between agents; i.e., an

 $^{^1}$ Università degli Studi di Brescia, email:{name.surname}@unibs.it

edge from node α_i to node α_j labelled p represents the agent α_i 's capability of sending p to agent α_j . In order to have welldefined sets $\{M_i\}_{i=1}^n$, $\forall \alpha_i, \alpha_j \in \Sigma$, $\forall p$ s.t. $p \in F_i$ and $p \in F_j$, there should be a path in \mathcal{MG} from the node representing α_i to the node representing α_j formed by edges labelled p, if $p \in I_i$, or $\exists a \in A_i \cdot p \in Eff+(a)$, or $\exists a \in A_i \cdot p \in Eff-(a)$.

A plan for a multi-agent planning problem is a set $\{\pi_i\}_{i=1}^n$ of n single-agent plans. Each single agent plan is a sequence of happenings. Each happening of agent α_i consists of a (possibly empty) set of actions of α_i , and a (possibly empty) set of exogenous events. Exogenous events are facts that become true/false because of the execution of actions of other agents; in this sense, these events cannot be controlled by agent α_i . Formally, $\pi_i = \langle h_i^1, \ldots, h_i^l \rangle, h_i^j = \langle A_i^j, E_i^j \rangle, A_i^j \subseteq A_i, E_i^j \subseteq \bigcup_k F_k$, for $i = 1 \ldots n$, $j = 1 \ldots l$, $k \in \{1, \ldots, i-1, i+1 \ldots, n\}$. The execution of plan π_i generates a state trajectory,

 $\langle s_i^0, s_i^1, \dots, s_i^l \rangle$, and a sequence of messages, $\langle m_i^1, \dots, m_i^l \rangle$, where $s_i^0 = I_i$ and s_i^j and m_i^j are defined as follows, for $j = 1 \dots l$ and $k = 1 \dots i - 1, i + 1 \dots n$:

$$\begin{split} s_i^j &= s_i^{j-1} \cup \bigcup_{\substack{a \in A_i^j \\ i \to k}} Ef\!\!f + (a) \cup E + {}_i^j \setminus \bigcup_{\substack{a \in A_i^j \\ i \to k}} Ef\!\!f - (a) \setminus E - {}_i^j, \\ m_i^j &= \bigcup_k sm + {}_{i \to k}^j (n-1) \cup \bigcup_k sm - {}_{i \to k}^j (n-1), \text{ with} \\ sm + {}_{i \to k}^j (\tau) &= \left\{ \langle p, \alpha_k \rangle | \langle p, \alpha_k \rangle \in M_i, p \in \bigcup_{\substack{a \in A_i^j \\ i \to k}} Ef\!\!f + (a) \cup rm + {}_i^j (\tau-1) \right\} \\ sm - {}_{i \to k}^j (\tau) &= \left\{ \langle \neg p, \alpha_k \rangle | \langle p, \alpha_k \rangle \in M_i, p \in \bigcup_{\substack{a \in A_i^j \\ i \in A_i^j}} Ef\!\!f - (a) \cup rm - {}_i^j (\tau-1) \right\} \\ rm + {}_i^j (\tau) &= \left\{ p \mid \langle p, \alpha_i \rangle \in \bigcup_k sm + {}_{k \to i}^j (\tau) \right\}, \\ rm - {}_i^j (\tau) &= \left\{ p \mid \langle \neg p, \alpha_i \rangle \in \bigcup_k sm - {}_{k \to i}^j (\tau) \right\}, \\ rm + {}_i^j (0) &= rm - {}_i^j (0) = \emptyset. \end{split}$$

We say that the single-agent plan π_i is *consistent* if the following conditions hold for $j = 1 \dots l$ and $\tau = 1 \dots n - 1$:

$$\begin{array}{ll} (1) \quad E+_{i}^{j} = \bigcup_{\tau} rm+_{i}^{j}(\tau), \ E-_{i}^{j} = \bigcup_{\tau} rm-_{i}^{j}(\tau); \\ (2) \quad \forall a, b \in A_{i}^{j} \cdot Pre(a) \cap Eff-(b) = Pre(b) \cap Eff-(a) = \emptyset; \\ (3) \quad \forall a, b \in A_{i}^{j} \cdot Eff+(a) \cap Eff-(b) = Eff+(b) \cap Eff-(a) = \emptyset; \\ (4) \quad \forall a \in A_{i}^{j}, \forall e \in E-_{i}^{j}(\tau) \cdot Pre(a) \cap e = \emptyset = Eff+(a) \cap e = \emptyset \end{array}$$

Basically, (1) asserts that at planning step j all the exogenous events for agent α_i are the positive/negative literals α_i receives during the information exchange; (2) and (3) assert that at planning step j agent α_i executes no pair of mutually exclusive actions; finally, (4) asserts that at planning step jagent α_i executes no action that is mutex with some action executed by other agents.

Let $\langle s_i^0, s_i^1, \ldots, s_i^l \rangle$ be the state trajectory generated by single-agent plan π_i . Plan π_i is executable if $Pre(a) \subseteq s_i^{j-1}$, $\forall a \in A_i^j, j = 1 \ldots l$. Plan π_i is valid for agent α_i if it is executable, consistent, and achieves the goals of agent α_i , i.e., $G_i \subseteq s_i^l$. A multi-agent plan $\{\pi_i\}_{i=1}^n$ is a solution of the multiagent privacy-preserving planning task if single-agent plan π_i is valid for agent α_i , for $i = 1 \ldots n$.

The main difference with existing models to multi-agent planning, like [3], is related to sets $\{M_i\}_{i=1}^n$ and the purpose for which agents use them. Essentially, M_i determines the messages agent α_i can generate during the execution of its plan, that can be sent to other agents without loss of privacy. E.g., for the MA scenario described above, $\langle (in G P), R \rangle \in M_{Su}$, and $\langle (in G P), Cu \rangle \in M_R$. Therefore, when agent supplier Su packs goods G into package P, Su communicates that G is in P to agent retailer R; when R receives this communication, R sends it to agent customer Cu, so that courier Co has no access to message (in G P), and there is no direct contact between the retailer's seller and the retailer's customer.

In the rest of the paper, we describe how MA- A^* [2] can be adapted to handle our problem model. Briefly, in MA- A^* each agent considers a separate search space, since each agent maintains its own open list and, when an agent expands a state *s* from its open list, the agent uses its own actions. The open search states that are relevant to different agents are shared, i.e., when *s* is expanded each agent sends to the others a representation of *s* obtained by encrypting private propositions. In order to preserve the privacy according with $\{M_i\}_{i=1}^n$, each agent α_i generates its own key that will be used to encrypt every proposition in F_i except those that α_i sends to or receives from other agents. Agents that are capable to communicate proposition *p* initially exchange a (shared) key to encrypt *p*.

At the beginning, each agent α_i constructs its own (partially encrypted) description I'_i of the initial global state of the MA scenario. Initially, α_i sets I'_i to I_i . For each agent α_k α_i is capable to communicate with, α_i encrypts the portion of I'_i formed by all propositions $p \in F_i$ such that $\langle p, \alpha_k \rangle \notin M_i$. Specifically, α_i encrypts p by using the encryption key of p, if it exists; while α_i encrypts p by using its own encryption key, otherwise. Then, α_i sends the resulting state to α_k . When agent α_i receives a description of the initial state, α_i decrypts the portion of the state formed by the (encrypted) propositions in F_i and computes the union between the resulting state and I'_i . If such a state I''_i is different from I'_i , agent α_i sets I'_i to I''_i , and, for each agent $\alpha_k \alpha_i$ is capable to communicate with, α_i sends the description of I'_i to α_k as described before. This procedure is repeated until, for every agent α_i , I'_i does not change anymore. Similarly, subsequently each agent constructs its own (partially encrypted) description G'_i of the initial global set of goals of the MA scenario.

Then, each agents α_i performs the MA- A^* procedure from initial state I'_i to achieve the goals G'_i . The important difference w.r.t. the procedure described in [2] concerns the information exchange among agents. Agents send messages only to agents they can communicate with, instead of sending broadcast messages. The exchanged messages still include (partially encrypted) description of the world state, but the encrypted propositions of these messages are different. Specifically, when agent α_i expands a state, for every other agent α_k α_i can communicate with, agent α_i encrypts the portion of the state formed by every proposition p such that $\langle p, \alpha_k \rangle \notin M_i$ by using the encryption key of p, if exists, or its own encryption key, otherwise. Then, α_i sends the resulting state to α_k .

REFERENCES

- Ronen I. Brafman and Carmel Domshlak, 'From one to many: Planning for loosely coupled multi-agent systems', in *Proc. of* the 18th ICAPS, (2008).
- [2] Raz Nissim and Ronen I. Brafman, 'Multi-agent A* for parallel and distributed systems', in *Proc. of the 11th AAMAS*, (2012).
- [3] Alejandro Torreño, Eva Onaindia, and Óscar Sapena, 'An approach to multi-agent planning with incomplete information', in *Proc. of the 20th ECAI*, (2012).