
Checking The Correctness of Agent Designs Against
Model-Based Requirements

Yoosef Abushark1 and Michael Winikoff2 and Tim Miller3 and James Harland1 and John Thangarajah1

Abstract. Agent systems are used for a wide range of applications,
and techniques to detect and avoid defects in such systems are valu-
able. In particular, it is desirable to detect issues as early as possible
in the software development lifecycle. We describe a technique for
checking the plan structures of a BDI agent design against the re-
quirements models, specified in terms of scenarios and goals. This
approach is applicable at design time, not requiring source code. A
lightweight evaluation demonstrates that a range of defects can be
found using this technique.

1 Introduction

Autonomous agents are widely-used for developing systems that are
highly dynamic in nature in a broad range of domains [6]. While
there are many agent development paradigms, the Belief-Desire-
Intention (BDI) model [12] is a mature paradigm that has been
adopted by several agent development platforms. Most existing work
on verifying BDI agent systems has focused on formal verification
([3]), particularly using model checking techniques ([4]) and theo-
rem proving ([13]), or on runtime testing [10]). Such work tends
to focus on the verification of complete agent programs, requiring
source code. However, it is long established that early detection and
resolution of software defects saves time and money [2, Page 1466].
Our aim therefore is to develop a suite of lightweight techniques,
supported by tools, for detecting defects at the design phase, prior to
implementation.

We have recently developed techniques for checking the functional
correctness of agent-based designs with respect to communication
protocol models [1]. The novelty of our approach is that it requires
only design-phase models, and no source code. In this paper, we build
on this previous work with a technique for checking the functional
correctness of agent designs with respect to requirements models.

In this work, we propose a mechanism, grounded in the
Prometheus methodology [11, 8], for checking that the detailed plan
structures conform to the requirements specified in terms of scenar-
ios and goals. We believe our approach is generalisable to other BDI
methodologies (see [14] for a recent survey).

We use the conference management system [9] as an example.
This system helps in managing the different phases of the confer-
ence review process, including submission, review, decision and pa-
per collection. In the submission phase, the system should be able to
assign a number for each submission and provide receipts to authors.
After the specified submission deadline, the system assigns papers to
the reviewers, who review the paper. After receiving the reviews, the

1 RMIT University, Melbourne, Australia.
2 University of Otago, New Zealand.
3 University of Melbourne, Australia.

system supports making decisions on whether to accept or reject each
paper, notifying the authors. Then, the system collects the accepted
papers and prints them as conference proceedings.

Requirements specifications in agent-oriented software engineer-
ing [14, Section 4] generally include scenarios, which are instances
of the desired execution behaviour, and goals, which are intended
states of the system. In the Prometheus methodology, scenarios con-
sist of a sequence of steps, where each step can be an action, a per-
cept, a goal to achieve, or a sub-scenario. Figure 1 shows a scenario
for the conference management system. Note that the aim of the sce-
nario is to capture an example trace through the system’s behaviour,
and it therefore does not specify a complete set of execution traces.
However, as we shall see, we can use the information in scenarios and
goal overview diagrams to construct constraints that must be met by
the detailed design of a multi-agent system designed to meet these
requirements.

Percept
Goal
Action
Percept
Goal
Goal
Action
Percept
Goal
Goal

Review Phase
Invite Reviewers
Send_Invitations
Reviewers_Preferences
Collect Prefs
Assign Reviewers
Give_Assignments
Review_Report
Collect Reviews
Get PC Opinions

Review Management
Review Management
Review Management
Review Management
Assignment
Assignment
Assignment
Review Management
Review Management
Review Management

Type Name Role
1

10

2
3
4
5
6
7
8
9

Figure 1: Review Scenario Description

2 Technical Approach

To check the agent designs (i.e. the detailed structure of plans within
agents), we compare all possible executions of the agent designs
against the desired traces specified by the scenarios. We trans-

form the design models from Prometheus-specific informal mod-

els into Petri nets. This has two benefits. First, it generalises the
approach, making it applicable to other methodologies. Second, it
allows us to leverage existing tools and techniques. Specifically,
we transform scenarios, with additional information from the goal
overview diagram, into Petri nets, and also translate agent designs
into a Petri net (via a plan graph). We then verify that all traces of the
design Petri net are valid with respect to the scenario Petri net.

Our process has three steps:
1. Transforming specification models into Petri nets. In addition

to considering the scenario, we also need to consider the goal
overview diagram because a goal in the scenario may be realised
in the agent design by achieving its sub-goals, or through its par-
ent. Although a scenario is a single sequence of steps, the result

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-953

953

Plan-Graph

Invite Reviewers

SendEmail
Invitation

SendPortal
Invitation

Handle
Preferences

Organise
PreferencesAssignments

GiveAssignments
ViaEmail

GiveAssignments
ViaPortal

Send_
Invitations

ReceiveReview
Report

Collect
Reviews

Reviews
Handler

Get PC
Opinions

AskPCAbout
Review

Start

HandleAmbiguitySendClarification

Collect Prefs

ReviewerIssue
Notification

NotifyReviewer

Review
Phase

Reviewers_
Preferences

Legend
Start Node Plan Goal MessageAction Percept

Invite_Reviewer
_Via_Email

Invite_Reviewer
_Via_Portal

Give_Assignments

Review_Report

(a) Plan graph

Legend

Transition
Place

Petri-NetStartTInvite Reviewers

SyncT2

SyncT1

SendPortalInvitation

SendEmailInvitation

LinkT1 HandlePreferences

HandleAmbiguity

OrganisePreferences

GiveAssignmentsViaPortal

GiveAssignmentsViaEmail

LinkT2

ReceiveReviewReport ReviewsHandler

ReviewerIssueNotification NotifyReviewer

Collect Reviews

Get PC Opinions

Review_Report

Give_Assignments

Assignments Collect Prefs

SendClarification

Reviewers_PreferencesSend_Invitations

Invite_Reviewer_Via_Portal
Invite_Reviewer_Via_Email

Sync1

Sync2

Review Phase

Start

synchronisation fragment

(b) Petri net

Figure 2: Plan graph and Petri net for the Review scenario

is a set of sequences, because a goal step can be realised in the
detailed design by implementing its descendants, or its parent.

2. Extracting all possible execution traces from agent designs: We
create a plan graph [5] from the detailed design by starting with
the entity that corresponds to the first step of the scenario, and
then recursively traversing links in the agent designs. Plan graphs
are structures that show the static view of agents with respect to
a particular scenario. Each path through a plan graph represents
one execution trace of the system, and each of these traces should
conform to the requirements specified by the scenario. To execute
traces, we translate the plan graph into a Petri net, and then use the
standard reachability graph construction [7] to obtain all possible
traversals of the plan graph.

3. Executing design traces against the Petri nets: We check each of
the possible traces of the plan graph’s Petri net NP against the
scenario Petri net NS , and note any discrepancies.

3 Example

Consider Figure 2a, which contains intentionally seeded four de-
fects: a plan (Invite Reviewers) that posts multiple goals (non-
determinism), resulting in traces with wrong ordering of steps; a
missing scenario step (Assign Reviewers goal step); and introducing
two new entities (HandleAmbiguity and SendClarification actions)
that result in the existence of some traces that only cover part of
the scenario. After executing the 12,951 traces of NP , four defects
in the design were revealed: one inconsistent ordering, one miss-
ing step and two incomplete paths. For instance, Review Phase, In-
vite Reviewer Via Email, Send Invitations, Reviewers Preferences,
Collect Prefs and Give Assignments . . . is one of the traces of NP .
The execution of NS would be terminated at the transition that is as-
sociated with the Assign Reviewers goal step place, since it is missing
in the trace. Since that the execution was terminated without reaching
a termination place, an error was recorded.

We have implemented the proposed approach as an eclipse plug-in
that integrates with the Prometheus Design Tool (PDT).

REFERENCES

[1] Y. Abushark, J. Thangarajah, T. Miller, and J. Harland. Checking con-
sistency of agent designs against interaction protocols for early-phase
defect location. In AAMAS, 2014. (To appear).

[2] B. Boehm. Understanding and controlling software costs. Journal of
Parametrics, 8(1):32–68, 1988.

[3] M. Dastani, K. Hindriks, and J. Meyer, editors. Specification and Veri-
fication of Multi-agent systems. Springer, Berlin/Heidelberg, 2010.

[4] L. Dennis, M. Fisher, M. Webster, and R. Bordini. Model check-
ing agent programming languages. Automated Software Engineering,
19(1):5–63, 2012.

[5] T. Miller, L. Padgham, and J. Thangarajah. Test coverage criteria for
agent interaction testing. In AOSE XI, volume 6788 of LNCS, pages
91–105. Springer, 2011.

[6] S. Munroe, T. Miller, R. Belecheanu, M. Pechoucek, P. McBurney, and
M. Luck. Crossing the agent technology chasm: Lessons, experiences
and challenges in commercial applications of agents. Knowledge engi-
neering review, 21(4):345, 2006.

[7] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[8] L. Padgham, J. Thangarajah, and M. Winikoff. Tool support for agent
development using the Prometheus methodology. In International Con-
ference on Quality Software, pages 383–388. IEEE, 2005.

[9] L. Padgham, J. Thangarajah, and M. Winikoff. The Prometheus design
tool – a conference management system case study. In AOSE VIII,
volume 4951 of LNCS, pages 197–211. Springer, 2008.

[10] L. Padgham, J. Thangarajah, Z. Zhang, and T. Miller. Model-based test
oracle generation for automated unit testing of agent systems. IEEE
Transactions on Software Engineering, 39(9):1230–1244, 2013.

[11] L. Padgham and M. Winikoff. Developing intelligent agent systems: A
practical guide. John Wiley & Sons, Chichester, 2004.

[12] A. S. Rao, M. P. Georgeff, et al. Bdi agents: From theory to practice.
In ICMAS, volume 95, pages 312–319, 1995.

[13] S. Shapiro, Y. Lespérance, and H. Levesque. The cognitive agents spec-
ification language and verification environment for multiagent systems.
In AAMAS’02, pages 19–26, 2002.

[14] M. Winikoff and L. Padgham. Agent Oriented Software Engineering. In
G. Weiß, editor, Multiagent Systems, chapter 15. MIT Press, 2 edition,
2013.

Y. Abushark et al. / Checking the Correctness of Agent Designs Against Model-Based Requirements954

