
Novel architecture of a digital neuron for FFNN
employing special multiplication

Roman Záluský1, Daniela Ďuračková, Viera Stopjaková, Lukáš Nagy and Vladimı́r Sedlák

Abstract. This paper presents the design of a new architecture of
digital neurons for use in the feed-forward neural networks (FFNN)
and their subsequent implementation on a chip. The proposed neuron
uses a special type of multiplication realized by AND gate. Com-
parison of usual ways of implementing digital feed-forward neural
networks using fixed/floating point numbers to the novel architec-
ture using the special multiplication was performed. Consequently,
the investigated FFNN architectures were implemented into FPGA
and ASIC, where the chip area was the main concern. Chip area and
other features of both the new neural network architecture and stan-
dard NN architectures we compared and evaluated.

1 Introduction

The neural networks represent very important part of the artificial in-
telligence. Calculation of output activity of huge number of neurons
is very demanding on the computer performance. Hardware imple-
mentation offers parallel data processing and therefore, the calcula-
tion of such a network is very fast. Artificial neuron itself is a com-
plex element, which includes the operations of multiplication, sum
and non-linear functions. Using sandard data formats and circuits,
only a small number of neurons can be feasibly implemented on the
chip to realize the basic operations. Therefore, novel neural network
architectures that would use neurons working with operations might
significantly help to reduce the network complexity. This would also
ensure less chip area overhead and therefore, much larger number of
neurons on the chip could be implemented.

In this article, a novel NN architecture that uses a new type of
serial multiplication employing a simple AND gate is presented, and
the achieved results as well as the main advantages are discussed.

2 Theoretical part

Some systems are very difficult to describe, or are so complex that
their description is almost impossible. If we have input data and the
required outputs, it is possible to approximate the response of the
system. As universal approximators are widely used artificial neural
networks that are trained on a given problem. Basic principles of
neural networks are referred in [8]- [7].

Operation of a neural network has two modes. The first phase
is learning or also called training. In this phase, it is necessary to
train the neural network on a given problem. For training, so-called
the training data set is used, which is composed of the inputs and
the related expected output values. Learned knowledge is stored in
the synaptic weight coefficients w and threshold coefficients ϑ. The

1 Slovak University of Technology, Institute of Electronics and Photonics,
Ilkovicova 3, Bratislava, Slovakia, e-mail: roman.zalusky@stuba.sk

learning period is followed by the run mode. In this phase, the neural
network is able to solve the problem that it was trained for. During
the run mode, weights and threshold coefficients are constant. The
basic element of the neural network is a neuron. A model of the neu-
ron consists of several inputs xi, potential of the neuron ξi, and the
activation function s(ξi). The potential is obtained by multiplication
of inputs xi with the corresponding weights wij and their subsequent
summation and addition to the threshold coefficient ϑi, as stated in
equation 1. The output activity of a neuron is given by processing the
neuron potential ξi using the activation function s(ξi), as stated in
equation 2. The activation function has a specific shape and signifi-
cantly affects the function of the neuron. There are many types of the
activation functions refered in [8] [6] [7] [4]. Type of used activation
function depends on the network topology and the particular applica-
tion. For classification purposes and applications, the most suitable
type is the sigmoidal function, described by equation 3, where A and
B are maximum and minimum of the sigmoidal function and α is the
slope.

ξj(x,w, ϑ) =
m∑

j=1

wij ∗ xj + ϑj (1)

yi = s(ξi) (2)

s(ξ) =
B +Ae−αξ

1 + e−αξ
(3)

By arrangement of neurons in several layers, one can obtain the
multi-layer feed-forward neural network. Layers are divided into the
input layer, hidden layers and the output layer. In feed-forward NN,
the input data is distributed and processed in only in the direction
from input to output. Neurons of one layer are interconnected to the
neurons from the next layer. Thus, the outputs activities yi in the
current layer depends only on the output activities of neurons in the
previous layer.

3 Proposed architecture

In this section, the design of the new architecture of a digital neu-
ron is described. As already mentioned, the main advantage of neu-
ral networks is their parallelism, which can be fully reached through
their implementation in hardware. The role of each neuron is to sum
weighted input signals and process them using the nonlinear func-
tion. The neuron itself performs operations such as multiplication,
addition and nonlinear function. Additionally, there are several digi-
tal numeric formats for data representation. Data can be represented
by fixed-point or floating-point numbers. In the ANN implementa-
tion approaches, we focus on the computation speed, the network

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-933

933



complexity and area overhead on the chip. In our research, five dif-
ferent types of neurons that work with fixed point numbers, floating-
point numbers and with use of the new special multiplication em-
ploying AND gate [1] [3] have been proposed. Mathematical oper-
ations can be realized in series or in parallel, where each of these
approaches has its advantages and disadvantages. We designed two
architectures of a neuron for fixed point numbers data format. The
difference between them is in using serial or parallel multipliers. We
also designed another two neuron architectures, the first has been
optimized and the other using non-optimized neuron. In these ex-
periments, we utilized more possibilities of implementation of the
nonlinear activation function.

The advantage of solution with fixed-point number is mainly the
simple implementation of mathematical operations. Data was repre-
sented by 9-bit direct code, where the most significant bit is a sign
and remaining 8 bits represent the numeric value. Such data repre-
sentation can express numbers from the interval <−255; 255>.

Another type of the architecture is based on working with num-
bers using floating-point (FP) [9] [5]. The format of floating-point
numbers is specified in IEEE 754 standard [2]. In addition to the
FP format, the standard also specifies the rules for implementing the
basic mathematical operations such as addition, subtraction, multi-
plication, division, remainder after division, square root, comparison
ant it defines two basic FP formats. The first format is a single pre-
cision FP (32 bits) and a double precision (64 bits). Hardware re-
alization of mathematical operations with numbers in FP formats is
rather difficult task, because the format itself is very complex, for
example due to large amounts of the number of bits. Complexity of
circuits is greatly reduced by using less-bit FP formats. For our pur-
poses, the most preferred format is Microfloat. It uses only 8 bits
(1 byte) to store a floating-point number. The range of values in
floating point precision in Microfloat format in standardized form
is <−240 ; 240>.

3.1 Digital neuron using a special multiplication

The main disadvantage of solutions using integers as well as floating-
point numbers is the high complexity of units performing mathemat-
ical operations. Therefore, we developed a new method for serial
multiplication using simple AND gate. In the proposed method of
serial multiplication, the potential of the neuron is calculated in one
step, because the operations of multiplication and summation are per-
formed simultaneously. This brings a significant simplification of the
neuron circuitry resulting in less area overhead.

y = a� b (4)

ξ =
m∑

j=1

wi � xj + ϑ (5)

The method of multiplication using AND gate is based on subse-
quent multiplication of two numbers bit by bit using a simple 2-input
AND gate. Numbers are always in the interval <0; 1>, because a
given number is part of the specified range. This means that by two
4-bit numbers it is possible to express 16 values. Therefore, a given
number will be the n-th of this value. For example, number 5 would
be 5/15. We will refer to the operations of multiplication symbol as
� (equation 4). Multiplication operation is performed over a time in-
terval called ”time window”. Length of the time window is defined
as the maximum value, which the number can take. To perform the

Figure 1. Encoding the number from the beginning of time window

Figure 2. Encoding the number symmetrically around the center of the
time window

product of n-bit numbers, a and b are the lengths of the time win-
dow 2n − 1 time units. For the proper function of multiplication, it
is necessary that coefficients are encoded in time. One number has
to be encoded in the time from the beginning of the time window
(Fig. 1). For example, number 5 would have first five units of time
(clock cycles) value of 1 and then value of 0. The other number has to
be encoded in the time symmetrically around the center of the time
window as shown in Fig. 2. In the multiplication process, it does
not matter, which number is encoded one way or another but both
numbers must be encoded in different ways. The operation of multi-
plication is implemented by gating encoded numbers a and b of the
individual moments of time window. The product of multiplication
is spread over time (Fig. 3). The final result of multiplication is count
of the ones in the time window. This multiplication has an effect of
natural rounding. In order to be able to work also with negative val-
ues, it is necessary to extend the numbers a and b with the signs as

and bs. Sign of result ys is then calculated using the logic function
XOR.

Figure 3. Example of multiplication of numbers a = 5/15 and b = 8/15, the
product of multiplication y is 3/15

In conventional architectures, the calculation of the neuron poten-
tial is realized in two steps. Firstly, inputs x are multiplied with the

R. Záluský et al. / Novel Architecture Of A Digital Neuron for FFNN Employing Special Multiplication934



Figure 4. Calculation of the neuron potential

corresponding weight coefficients w. Then, the products of multipli-
cations is subsequently up by use of multi-input adder. In the pro-
posed novel architecture of a digital neuron using multiplication by
AND gate, the multiplication of inputs with weights coefficients is
performed simultaneously within the duration of one time window.
Fig. 4 shows a schematic diagram for the calculation of the potential
of a neuron ξ (equation 5). Inputs xn are encoded from the begin-
ning of time window (Fig. 1). Weight coefficients wn and the neuron
threshold Thr are encrypted symmetrically around the center of the
time window, and are permanently stored in the circuit. Inputs xn

are fed with serially encoded data. Weight coefficients wn and the
neuron threshold Thr are converted by PISO (Parallel In Serial
Out) register to serial data. To calculate the partial products q AND
gates are used. XOR gates are employed to evaluate of signs qs of
the partial products of multiplications. CounterSum summes up
the partial products q (take value 0 or 1) within the duration of the
time window. With respect to sign of the partial product qs its value
is either added to or subtracted from the state of the counter. Block
CounterSum summes together all the partial products simultane-
ously and therefore, the multiplication of inputs with weights as well
as counting of the sum are carried out in one time window. The out-
put of the counter is in the complementary code, which is converted
to 5-bit direct code Q by the C to D circuit.

Nonlinear activation function is realized by a table. This solution
is most suitable for a small number of values because it takes less
chip area. The proposed architecture uses 4-bit numbers and one bit
to store the sign, so we can express 32 values from the interval <
−15/15 ; 15/15 >. In this case, the ROM memory size is 32x5
bits. Function values are calculated for the following parameters of
sigmoidal function: A = −15, B = 15 and α = 0.3.

Fig. 5 shows the schematic of a digital neuron using special mul-
tiplication by AND gate. Signals xn are inputs of neuron encoded
in time from beginning of time window. Each input x has the cor-
responding sign xs. Signal start is used to begin the computation
of output activity of the neuron. Circuit sum (Fig. 4) computes the
potential of the neuron. The calculation of activation function is real-
ized by circuit Sigmoid. Circuit ConvertX encodes the number in
direct code from the beginning of time window (Fig. 1), and PISO
register converts it to serial data. TW counter counts the length of

Figure 5. Schematic diagram of a digital neuron employing special
multiplication by AND gate with the encoded output

the time window. The neuron output activity is sent serially, and to
decode it one time window is needed. Therefore, we optimized the
output neurons so that the output activity is in the parallel direct code.

The neuron can be optimized for use in output layer. In the op-
timized output neurons, circuits for encrypting the output activities
have been excluded from the optimized neuron structure. Corre-
sponding signal waveforms during computation of the output activity
are shown in Fig. 6. During the first time window, the output activity
of the actual neuron is calculated. This output activity, in second time
window, feeds inputs of neurons in the next layer. For the optimized
neuron, the output activity signal is denoted as Qsig .

It is important to state, the multiplication by the AND gate, which
is used in the novel architecture of the digital neuron, has an effect of
natural rounding. Nevertheless, the undesired influence of rounding
is suppressed during the training process.

3.2 Novel architecture of the feed-forward neural
network

The feed-forward neural network consists of neurons organized into
multiple layers (Fig. 7). Computation of output activities of the neu-
ral network is sequential, layer by layer, while the output activity of
neurons in a given layer are calculated in parallel. The output ac-
tivities of the neuron in previous layer are fed serially to inputs of
neurons in next layer. End of calculation in the layer is indicated by a
high level of signal done. The high level of signal done triggers the
computation of the output activities of neurons in next layer. Entire
calculation of the output activities of the whole neural network takes
as many time windows as many layers the neural network has. In the
optimized neural network, the output layer is composed of the opti-
mized neurons. Neural network of the proposed architecture using a
special multiplication by AND gate needs dedicated circuits for en-

Figure 6. Signals of the digital neuron with the special multiplication
during computation of the output activity in time

R. Záluský et al. / Novel Architecture Of A Digital Neuron for FFNN Employing Special Multiplication 935



Figure 7. Schematic of novel architecture of feedforward neural network

coding the network inputs and decoding the output activities. Decod-
ing the network output activities takes one time window, and thus, the
total computation of the output activities takes l + 1 time windows,
where l is the number of layers forming the neural network. Output
activities in the optimized neural network are represented in the di-
rect code and therefore, no additional circuits for decoding them are
needed. This will make the computation of output activities in one
time window shorter.

4 Achieved results

All the architectures were described by VHDL language and synthe-
sized for three FPGA Xilinx Spartan 3 chips of different sizes, as
listed in Table 1. FPGA chip consists of configurable logic blocks
(CLB). Each CLB contains four slices, and each slice contains two
look-up tables and two flip-flops, multiplexers and logic gates. The
chip area is determined mainly by the number of slices needed to
implement the circuit. The number of bits for each input of a neuron
varies with the respective NN architecture. The proposed NN archi-
tecture employing the special multiplication uses 5-bit inputs, while
the architecture working with floating-point numbers uses 8-bit in-
puts, and the integer-based architecture contains neurons with 9-bit
inputs.

Table 1. List of FPGA chips

Type CLBs Slices
xc3s1000 1920 7680
xc3s1500 3328 13312
xc3s2000 5120 20480

We compared the chip area of the neuron circuits for increasing
number of inputs in the range from 5 to 50 with step of 5. The
obtained results for the proposed neural network architectures are
shown in Fig. 8. For the implementation to FPGA chip, both neu-
ron types of the novel architecture need approximately 7 times less
number of slices. Moreover, the digital neuron, which uses the op-
timized novel architecture consumes 10 slice less than that of the
non-optimized architecture. This is because the neuron optimization
is performed only on its output and does not affect the calculation of
the potential of a neuron.

Next, the comparison of chip area for feed-forward neural net-
works versus the number of hidden layers (with constant number of

Figure 8. Comparision of chip area for neuron versus the number of inputs

Figure 9. Dependance of FFNN chip area on the number of hidden layers

hidden neurons) has been carried out. The input layer consisted of
20 input neurons, each hidden layer was formed by 10 hidden neu-
rons, and output layer contained 6 output neurons. Number of hidden
layers was varied in the range from 1 to 10 with step of 1. Obtained
results are shown in Fig. 9. Dependency of chip area consumption on
the number of hidden layers of neural network is linear. This is due
to only the increasing number of neurons and connections between
neurons, without changing complexity of the neurons. The smallest
number of slice blocks needed to implement the neural network in
FPGA chip was achieved for both types of the novel architecture,
which needed on an average 5 times smaller slice number of blocks
than the other three architectures. In the smallest type of FPGA chip
Spartan xc3s1000 (dashed line), it can be implemented only a neural
network with novel architecture (non-optimized and optimized) of
complexity up to 9 hidden layers. To implement the novel architec-
ture of the neural network containing 10 hidden layers it is necessary
to choose a larger type of FPGA chip, e.g. Spartan xc3s1500 (dash
dot line). On the other hand, none of the other three regular NN ar-
chitectures can be implemented in the smallest FPGA chip Spartan
xc3s1000. Medium size FPGA chip Spartan xc3s1500 would be able
to implement a neural network, which contains only one hidden layer.
In the largest type of FPGA chip Spartan xc3s2000 (dash dot dot line)
it is possible to implement classical neural networks with up to three
hidden layers.

For further comparison of the chip area depending on the neural
network topology, we varied the number of neurons in hidden lay-

R. Záluský et al. / Novel Architecture Of A Digital Neuron for FFNN Employing Special Multiplication936



Figure 10. Chip area of FFNNs versus the number of neurons in hidden
layers

ers, while keeping the number of hidden layers constant. Each neural
network consisted of two hidden layers. The input layer consisted of
20 input neurons, both hidden layers contained hidden neurons in the
range from 5 to 50 with step 5, and the output layer was composed
of 6 output neurons. The chip area as a function of the number of
neurons in the hidden layers is shown in Fig. 10. The obtained de-
pendences are exponential. This is due to the increasing number of
neurons, connections between neurons, and also the enhanced com-
plexity of neurons for the increasing number of inputs (Fig. 8). The
proposed novel neural network architecture requires on an average of
5 to 6 times less slices to be implemented in an FPGA chip in com-
parison to the other three architectures. To the smallest FPGA chip
Spartan xc3s1000 (dashed line) can be implemented a neural network
of the novel architecture with two hidden layers and 25 hidden neu-
rons in each hidden layer. Medium size FPGA chip Spartan xc3s1500
(dash dot line) can implement a neural network of the novel architec-
ture containing two hidden layers with 35 hidden neurons. Finally,
into the FPGA type xc3s2000 (dash dot dot line), a neural network
of the architecture with two hidden layers and 45 hidden neurons in
each hidden layer can be implemented. The other three architectures
of neural networks can be implemented into the smallest FPGA chip
xc3s1000 only in the complexity containing two hidden layers with
5 hidden neurons in each hidden layer. To the largest type of FPGA
chip xc3s2000 can be implemented a neural network with two hidden
layers of 10 hidden neurons in each hidden layer.

Neural networks working with integers and using serial multipliers
take a larger number of slices because they use both combinational
and sequential circuits. Neurons working with floating-point num-
bers use Microfloat format, since it is the simplest FP format. Taking
this fact into account, the novel neural networks require less chip area
compared to architectures using integer or float numbers. This is due
to simpler neurons needed for the novel architecture. Other reason is
that the new neural network architecture includes 1-bit nets between
neurons, through which the signals are distributed serially, while the
other NN architectures using multi-bit signals (8 and 9-bits) work
with parallel data transfer.

In order to evaluate the proposed network architecture also in al-
ternative hardware implementation and be able to compare the chip
area to other works, the synthesis to a standard cell based ASIC has
been performed as well. Table 2 show the synthesis results of pre-
viously described network architectures. Synthesis has been carried
out for standard CMOS general purpose technology TSMC 90 nm.
Table contain information about the total number of used cells, the

overall area consumption and the time required for successful synthe-
sis. The obtained results also prove that the proposed NN architecture
exhibits significant improvement in silicon area consumption as well
as the synthesis time. The new architecture of neural network, which
consists of two hidden layers with 10 hidden neurons in both hidden
layers and 6 output neurons occupies approximately 0.15 mm2.

Table 2. Synthesis results for 90 nm CMOS technology

2x10
90 nm CMOS process

Cell count Area [mm2] Synth. time [min]
Serial integer 62 900 0.6476 170
Parallel integer 94 784 0.5861 170
Float 29 948 0.1804 60
new non-optimized 16 063 0.1508 15
new optimized 15 604 0.1469 15

Table 3. Comparison of computation time of neural networks with two
hidden layers

Architecture fmax [MHz] tcomb [ns] tcalc [ns]
Serial integer 79.051 101.74 405.34
Parallel integer - 124.9 124.9
Float - 821.54 821.54
new non-optimized 37.477 - 1609.8
new optimized 37.477 - 1200.7

Finally, the calculation time tcalc of output activities of the neural
networks was investigated. In this experiment, all neural networks
contain two hidden layers. The values of the maximum frequency
fmax of clock signal were obtained through synthesis of VHDL de-
scription of each architecture. For architectures working with com-
binational circuits, the delay of the combinational logic tcomb was
measured and evaluated from the synthesis. In Table 3, results for
the maximum frequency, the logic delay, and the calculation time of
output activities for each neural network are presented. The fastest
neural network is a network operating with integers using parallel
multiplier, which uses only combinational circuits. The neural net-
work operating with floating-point numbers exhibits about 6 times
longer calculation time. This is mainly due to the feedback circuitry
necessary for adjusting mantis and exponents. Finally, the novel NN
architecture proposed in this work can operate at the maximum fre-
quency of 37,477 MHz, which is about half the frequency achieved
for the neural network operating with integers using serial multipli-
ers. At this frequency, the length of time window is about 400 ns.
Thus the computation time of output activities for the non-optimized
and the optimized neural network takes 1610 ns and 1200 ns, respec-
tively.

The learning efficiency as well as the generalization process were
evaluated on solving the XOR problem. Firstly, the dependence of
the number of iterations in the training process, needed for various
NN topologies, was examined. Here, the number of hidden layers
was increased in the range from 1 to 3, while two and three hidden
neurons were used in each hidden layer. The learning coefficient was
λ = 0.01 for all networks. The maximum error varies for different
neural networks since they work with different range of values. For
the neural network working with floating-point numbers, the maxi-
mum error Emax = 0.1. For the novel NN architecture as well as the
neural network using integers, the maximum error Emax = 1. Ten
runs of the learning process were carried out and the average value

R. Záluský et al. / Novel Architecture Of A Digital Neuron for FFNN Employing Special Multiplication 937



Figure 11. 2 hidden neurons in each hidden layer

Figure 12. 3 hidden neurons in each hidden layer

was evaluated. Achieved results are shown in Fig. 11 and Fig. 12.
One can observe that the network topology (complexity) has no sig-
nificant effect on the learning speed for the neural network work-
ing with floating-point numbers. The novel NN architecture and the
architecture using integers achieve higher learning speed for an in-
creased number of hidden layers and hidden neurons. The novel ar-
chitecture exhibits the slowest learning in comparison to other archi-
tectures. Generalization ability versus the network topology is pre-
sented and discussed in the next section on the recognition of char-
acters of Dactyl alphabet.

5 CONCLUSION

A novel architecture of a digital neuron, which uses the special multi-
plication by basic AND gate is proposed, designed and implemented.
The aim was to achieve the smallest chip area in hardware imple-
mentation. Consequently, the new architecture of a digital neuron
was compared to neurons working with integers and floating-point
numbers. The novel architecture takes approximately about 2/3 less
chip area than the second simplest conventional network architec-
ture. In comparison to the most complex architecture, the proposed
novel neuron hardware is roughly 6 times smaller.

The achieved results prove that the proposed digital neuron and
also the new architecture of feed-forward NN offer significant reduc-
tion of chip area, if implemented in hardware. This is rather substan-
tial advantage from the application point of view, since many diverse

applications might profit from on-chip systems using artificial neural
networks.

ACKNOWLEDGEMENTS

This work was supported in part by Competence Center for SMART
Technologies for Electronics and Informatics Systems and Services
(ITMS 26240220072), funded by the Research&Development Oper-
ational Programme from the ERDF, by the Ministry of Education,
Science, Research and Sport of the Slovak Republic under grants
VEGA 1/0987/12 and VEGA 1/0823/13.

REFERENCES

[1] R. Zalusky E. Raschman and D. Durackova, ‘New digital architecture of
cnn for pattern recognition’, Journal of ELECTRICAL ENGINEERING,
61, NO 4, 222–228, (2010).

[2] W. Kahan, ‘Ieee standart 754 for binary floating-point arithmetic’, Elect.
Eng. and Computer Science, (1997).

[3] E. Raschman and D. Durackova, ‘Area chip consumption by a novel dig-
ital cnn architecture for pattern recognition’, Artificial Neural Networks
- ICANN 2009, 19th International Conference, 363–372, (2009).

[4] T. N. Prabakar S. Hariprasath, ‘Fpga implementation of multilayer feed
forward neural network architecture using vhdl’, Computing, Communi-
cation and Applications (ICCCA), 2012 International Conference, 1–6,
(2012).

[5] D. Mic A. Buchman S. Oniga, A. Tisan, ‘Optimizing fpga implemen-
tation of feed-forward neural networks’, Optimization of Electrical and
Electronic Equipment, 2008. OPTIM 2008. 11th International Confer-
ence, 31–36, (2008).

[6] P. Sincak and G. Andrejkova, Neural networks (The engineering
metodology) part 1, Elfa s.r.o., Kosice, 1996.

[7] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth Edi-
tion, Academic Press, Boston, 2009.

[8] I. Farkas A. Kral J. Pospichal V. Kvasnicka, L. Benuskova and P. Tino,
Introduction into the neural networks (In Slovak), IRIS, Bratislava, 1997.

[9] R. Yates, ‘Fixed-point arithmetic: An introduction’, Digital Sound Labs,
(2001).

R. Záluský et al. / Novel Architecture Of A Digital Neuron for FFNN Employing Special Multiplication938


