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Abstract. With personalisation becoming more prevalent, it can of-
ten be useful to be able to infer additional preferences from input user
preferences. Preference inference techniques assume a set of possible
user preference models, and derive inferences that hold in all models
satisfying the inputs; the more restrictive one makes the set of possi-
ble user preference models, the more inferences one gets. Sometimes
it can be useful to have an adventurous form of preference inference
when the input information is relatively weak, for example, in a con-
versational recommender system context, to give some justification
for showing some options before others. This paper considers an ad-
venturous inference based on assuming that the user preferences are
lexicographic, and also an inference based on an even more restric-
tive preference model. We show how preference inference can be
efficiently computed for these cases, based on a relatively general
language of preference inputs.

1 INTRODUCTION

User preferences are becoming increasingly important in intelligent
systems, as personalisation becomes more prevalent. It is only rarely
practical for a user to explicitly express all their preferences; it is
thus important to be able to infer additional preference between out-
comes from the user inputs. To do this one must make some kind of
assumptions about the user model, specifically, about the form their
preference relation takes. Approaches such as CP-nets and generali-
sations [3, 5, 4, 24, 1] make weak assumptions, that the user prefer-
ence relation is a total order or a total pre-order. This is cautious, but
has the disadvantage of leading to rather weak inferences (and also
has high computational complexity [16]). In many cases it can be ad-
vantageous to make stronger assumptions about the user preference
model, in order to be able to infer more preferences. For instance, in
the context of conversational recommender systems, one is looking
for reasons to prefer some options over others, in order to choose
which options to show the user next.

More explicitly, the idea behind preference inference is as follows:
we have a set of user preference inputs, and we assume a form of
model of the user preference relation, leading to a set F of all such
candidate preference relations. We then infer a preference α ≥ β,
of one outcome over another, if α � β holds for all preference
relations � in F that satisfy the inputs. The inputs can be atomic
preferences, i.e., preferences of one outcome (alternative) over an-
other; or they can be preference statements which imply (often ex-
ponentially many) atomic preferences, such as used in CP-nets and
more general preference languages [3, 17, 23, 24, 1]. Another possi-
ble input expresses the relative importance of different variables or
sets of variables [5, 4, 25]. Preference inference can be considered,
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for certain situations, as an alternative to preference learning e.g.,
[15, 9, 13, 6, 2] where one is instead typically trying to choose a best
model (within a particular family of models).

In Bridge and Ricci [7], for example, it is assumed that the pref-
erence relation on boolean variables is generated by a sum of unary
functions (as in Multi-Attribute Utility Theory [10]), which we call
here an Additive Utility model. User inputs then generate linear con-
straints on the unknown weights, and a linear programming solver is
used to deduce further implied preferences, assuming this model.

Another choice of preference model is made in [23], where the
preference relation is assumed to be a form of conditional lexico-
graphic order; it is shown that a polynomial algorithm can then be
used for preference input. This is applied in a conversational recom-
mender system context in [21, 20].

When the preference inputs are especially sparse, an even more
adventurous inference, arising from an even more restrictive model,
may well be desirable. It is natural to consider models based on lex-
icographic orders [11, 12, 14], which correspond to both Additive
Utility models and conditional lexicographic models.

The main focus of this paper is showing that preference inferences
can be made efficiently, based on the family of lexicographic models,
and with inputs being of a rather general form. The basic computa-
tional approach is similar to the preference inference for conditional
lexicographic models in [23]. We also consider an even more restric-
tive family of preference models, which we call the singleton lexi-
cographic, where a model is a total order on the domain of a single
variable. This leads to additional inferences over lexicographic in-
ference. We show that this is computationally relatively simple, and
how it relates to lexicographic preference inference, and that it can
be given a simple sound and complete proof theory

Section 2 considers lexicographic preference inference. Section 3
describes the singleton lex(icographic) inference. In Section 4 we
show how lexicographic preference inference can be computed in
low-order polynomial time, and Section 5 concludes.

Proofs are included in a longer version of the paper available on-
line [26].

2 LEXICOGRAPHIC INFERENCE

We describe in this section the preference language on which we
focus, and formally define lexicographic inference. We begin with
some basic definitions.

Throughout the paper we consider a fixed set V of n variables. For
each X ∈ V let D(X) be the set of possible values of X . For subset
of variables A ⊆ V let A =

∏
X∈A D(X) be the set of possible

assignments to set of variables A. For X ∈ V , we abbreviate {X} to
X; it is in one-to-one correspondence with D(X). An outcome is an
element of V , i.e., an assignment to all the variables. If a ∈ A is an
assignment to A, and b ∈ B, where A ∩ B = ∅, then we may write
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ab as the assignment to A ∪ B which combines a and b. For partial
tuples a ∈ A and u ∈ U , we may say a extends u, if A ⊇ U and
a(U) = u, i.e., a projected to U gives u.

2.1 Preference Formulae and their projections to Y

In this paper we will consider preference statements ϕ of the form
p ≥ q ‖ T , where P , Q and T are subsets of V , with (P∪Q)∩T = ∅,
and p ∈ P is an assignment to P , and q ∈ Q is an assignment to Q.
Informally, the statement p ≥ q ‖ T represents that p is preferred to
q if T is held constant, i.e., any outcome α extending p is preferred
to any outcome β that extends q and agrees with α on variables T .
Formally, the semantics of this statement is given by the relation ϕ∗

which is defined to be the set of pairs (α, β) of outcomes such that α
extends p, and β extends q, and α and β agree on T : α(T ) = β(T ).

Let L be the set of all preference statements ϕ of the form p ≥ q
‖ T , as defined above. As shown in [23], this is a relatively expressive
preference language. For outcomes α and β, a preference of α over β
can be represented as α ≥ β ‖ ∅, which we abbreviate to just α ≥ β.
Preferences between partial tuples can also be represented. Ceteris
Paribus statements have T = V − (P ∪Q), allowing, for example,
the representation of feature vector rules [19]. The language can also
express stronger statements of the form defined in [24], which gen-
eralises CP-nets and TCP-nets [3, 5]. (However, the representation
of conditional preferences is not important when considering lexico-
graphic inference: see Proposition 2 below).

For Γ ⊆ L, we define Γ∗ to be equal to
⋃

ϕ∈Γ ϕ∗. This is the set
of preferences between outcomes directly implied by Γ.

Projections to Y

The computational techniques below in Sections 3.1 and 4.3 make
use of projections of preference statements to a single variable.

Let R ⊆ V × V , let Y ∈ V be a variable, and let A ⊆ V − {Y }
be a set of variables not containing Y . Define R↓Y , the projection
of R to Y , to be {(α(Y ), β(Y )) : (α, β) ∈ R}. Also, define, R↓Y

A ,
the A-restricted projection to Y , to be the set of pairs (α(Y ), β(Y ))
such that (α, β) ∈ R and α(A) = β(A). R↓Y

A is the projection to Y
of pairs that agree on A. Thus, R↓Y = R↓Y

∅ .
For comparative preference statement ϕ and set of comparative

preference statements Γ we abbreviate (ϕ∗)↓YA to ϕ↓Y
A and abbrevi-

ate (Γ∗)↓YA to Γ↓Y
A . We have Γ↓Y

A =
⋃

ϕ∈Γ ϕ↓Y
A .

Together with the following result, this implies that Γ↓Y
A can be

computed efficiently.

Proposition 1 Consider any element ϕ = p ≥ q ‖ T of L. Let A
be a set of variables and let Y be a variable not in A. If p and q
are incompatible on A (i.e., p(P ∩ Q ∩ A) 
= q(P ∩ Q ∩ A)) then
ϕ↓Y

A is empty. Otherwise, ϕ↓Y
A consists of all pairs (y, y′) ∈ Y × Y

such that (i) y = y′ if Y ∈ T ; (ii) y = p(Y ) if Y ∈ P ; and (iii)
y′ = q(Y ) if Y ∈ Q. (Thus if p(P ∩Q ∩ A) = q(P ∩Q ∩ A) and
none of conditions (i), (ii) and (iii) hold, then ϕ↓Y

A = Y × Y .)

2.2 Lexicographic models and inference

Define Glex to be the set of lexicographic models (over the set of
variables V ), where a lexicographic model, π (over V ), is defined to
be a sequence (Y1,≥Y1), . . . , (Yk,≥Yk ), where Yi (i = 1, . . . , k)
are different variables in V , and each ≥Yi is a total order on Yi. The
associated relation �π ⊆ V × V is defined by, for outcomes α and
β, α �π β if and only if either (i) for all i = 1, . . . , k, α(Yi) =

β(Yi); or (ii) there exists i ∈ {1, . . . , k} such that for all j < i,
α(Yj) = β(Yj) and α(Yi) >Yi β(Yi) (i.e., α(Yi) ≥Yi β(Yi) and
α(Yi) 
= β(Yi)). Thus �π is a total pre-order, which is a total order
if k = n = |V |.

Lexicographic inference

For R ⊆ V × V , and lexicographic model π ∈ Glex, we define
π |= R ⇐⇒ �π ⊇ R, i.e., if α �π β for all (α, β) ∈ R. For
preference statement ϕ ∈ L, we define π |= ϕ ⇐⇒ π |= ϕ∗

i.e., for (α, β) ∈ ϕ∗, α �π β. For Γ ⊆ L, define π |= Γ ⇐⇒
π |= Γ∗, which is if and only if for all ϕ ∈ Γ, π |= ϕ. This leads to
the definition of inference relation |=lex: for Γ ⊆ L and α, β ∈ V ,
Γ |=lex α ≥ β ⇐⇒ α �π β holds for all π ∈ Glex such that
π |= Γ.

We define �lex
Γ to be the relation on outcomes thus induced by Γ,

so that α �lex
Γ β ⇐⇒ Γ |=lex α ≥ β. The relation �lex

Γ contains
relation Γ∗ and is a pre-order, since it is the intersection of a set of
(total) pre-orders, i.e., {�π : π |= Γ}.

Note that, although the language L allows the expression of con-
ditional preferences, the conditional part is irrelevant for |=lex infer-
ence: in particular, we can write a statement ϕ ∈ L in a unique way
in the form ur ≥ us ‖ T , where u ∈ U , r ∈ R, s ∈ S, and U ,
T and R ∪ S are (possibly empty) mutually disjoint subsets of V ,
and for all X ∈ R ∩ S, r(X) 
= s(X). Then, for any lexicographic
model π ∈ Glex, π |= ϕ if and only if π |= ϕ̄, where the associated
unconditional preference statement ϕ̄ ∈ L is defined to be r ≥ s
‖ T ∪ U . For Γ ⊆ L, define Γ̄ to be {ϕ̄ : ϕ ∈ Γ}. This implies the
following.

Proposition 2 For any Γ ⊆ L, and outcomes α, β ∈ V ,
Γ |=lex α ≥ β ⇐⇒ Γ̄ |=lex α ≥ β.

Relationship with cp-tree-based inference: In [23], a preference
inference |=Y is defined where the models are “Y-cp-trees”, which
are a kind of generalised lexicographic order (similar to a search tree
for solving a CSP), where both value and variable orderings can de-
pend on the values of more important variables. The inference is pa-
rameterised by a set Y of subsets of V , but of most interest here is the
simplest case when Y is the set of singleton subsets of V . It is easy
to see that lexicographic models correspond with particular kinds of
Y-cp-trees in which the variable ordering, along with their associated
value orderings, are identical in each branch of the cp-tree. Thus, for
π ∈ Glex there exists a Y-cp-tree σ with �σ =�π . This implies that,
for any Γ ⊆ L, and α, β ∈ V , if Γ |=Y α ≥ β then Γ |=lex α ≥ β.

Proposition 2 suggests an approximation for lexicographic infer-
ence: define Γ |=lex

∗ α ≥ β ⇐⇒ Γ̄ |=Y α ≥ β. A special
case of this is used as the Lex-Basic inference method in [20]. If
Γ̄ |=Y α ≥ β then Γ̄ |=lex α ≥ β, and thus, using Proposition 2, if
Γ |=lex

∗ α ≥ β then Γ |=lex α ≥ β.

Inference based on additive utility models: A common assump-
tion in multi-criteria reasoning, in particular in Multi-Attribute Util-
ity Theory [10], is that an agent’s utility function can be decom-
posed as a sum of unary functions. Write the set of variables V
as {X1, . . . , Xn}. Define an Additive Utility model (over V ), ab-
breviated to AU-model, to be a vector of (unary) functions F =
(f1, . . . , fn), where, for i = 1, . . . , n, fi is a real-valued function
on Xi. Let GAU be the set of all AU models over V . For outcome
α, define F (α) to be

∑n
i=1 fi(α(Xi)). We define �F on V × V by

α �F β ⇐⇒ F (α) ≥ F (β). The corresponding relation |=AU is
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given by Γ |=AU α ≥ β if and only if α �F β for all F ∈ GAU such
that F |= Γ, where the latter means α �F β for all (α, β) ∈ Γ∗.
This kind of inference is used e.g., in [7, 21, 18]. As is well known,
since V is finite, a lexicographic ordering over V can be generated
using an AU model, i.e., for π ∈ Glex there exists F ∈ GAU with
�F =�π . Thus, if Γ |=AU α ≥ β then Γ |=lex α ≥ β.

2.3 Example

Consider a system helping a user find a hotel in a particular city. Let
us assume, for simplicity, only three attributes of interest, Quality,
which takes values budget, medium and luxury; Location, which takes
values city (representing that the hotel is in the city centre) and ¬city,
and Pool, with values pool and ¬pool. The user indicates that she
prefers the Morgan Hotel over the Three Bells hotel, where the for-
mer is a luxury hotel in the city centre but without a swimming pool,
and the latter is a medium quality hotel outside the centre with a
pool. The system induces a preference ϕ1 of (luxury, city,¬pool) over
(medium,¬city, pool). The system also has a general preference rule
ϕ2 representing the assumption that having a pool is at least as good
as not having one ceteris paribus (all else being equal), so that ϕ2

is the preference statement pool ≥ ¬pool ‖ {Quality, Location}.
From ϕ2 we induce a preference of (q, l, pool) over (q, l,¬pool)
for each value q of Quality, and each value l of Location. Assum-
ing transitivity of preferences, we can infer from ϕ1 and ϕ2 that
(luxury, city,¬pool) ≥ (medium,¬city,¬pool).

The user also indicates a preference ϕ3 for (medium, city, pool)
over (luxury,¬city, pool). If we assume that the user’s underly-
ing preference model is a lexicographic order then we can infer
from inputs {ϕ1, ϕ2, ϕ3}, that (for example) (medium, city,¬pool)
is preferred to (luxury,¬city, pool), and so we might show op-
tion (medium, city,¬pool) to the user before we show them
(luxury,¬city, pool). The reason for the inference is that ϕ1 and ϕ3

imply that Quality is not the most important variable, and ϕ1 and ϕ2

imply that Pool cannot be the most important variable, so Location
is the only possible most important variable. ϕ1 then implies that city
is preferred to ¬city. Thus, any lexicographic model of {ϕ1, ϕ2, ϕ3}
has (medium, city,¬pool) preferred to (luxury,¬city, pool).

Note that this inference is not made with the Additive Utility ap-
proach. Consider, for example, the AU model F = (f1, f2, f3) given
by: f1(luxury) = 2, f2(city) = 3 and f3(pool) = 4, with the
other value(s) of each fi being all zero. Then F satisfies ϕ1, ϕ2 and
ϕ3. But F (medium, city,¬pool) = 3 < F (luxury,¬city, pool) =
6. This implies that {ϕ1, ϕ2, ϕ3} 
|=AU (medium, city,¬pool) ≥
(luxury,¬city, pool).

An example of an inference that is made from {ϕ1, ϕ2, ϕ3} with
|=lex but not with |=Y from [23] or with |=lex

∗ (see Section 2.2 above)
is (budget, city, pool) ≥ (luxury,¬city, pool), illustrating that |=lex

∗ is
not generally equal to |=lex.

Suppose we have an additional user preference ϕ4, equalling
(luxury, city,¬pool) ≥ (medium, city, pool). Any lexicographic
model π satisfying {ϕ1, ϕ2, ϕ3, ϕ4} will have Quality as the sec-
ond most important variable after Location. It might be assumed that
the values of Quality are single-peaked with respect to the order-
ing budget, medium, luxury, i.e., medium is not the worst value of
Quality. If we add this extra assumption, then we can now deduce,
for example, (medium,¬city, pool) ≥ (budget,¬city, pool).

3 SINGLETON LEX INFERENCE

In this section we consider an even simpler kind of user preference
model, where outcomes are compared just on their values on a single
variable, using some total order on those values. This leads to an
even more adventurous form of preference inference, but which has
the same inferences α ≥ β when α and β differ on every variable.

A singleton lex model (over set of variables V ) is defined to be a
pair (Y,�Y ), where Y ∈ V , and �Y is a total order on Y . Let GSL

be the set of all singleton lex models (over V ). For τ = (Y,≥Y ),
define the relation �τ on V by: α �τ β ⇐⇒ α(Y ) ≥Y β(Y ).
Thus relation �τ compares two outcomes by considering only their
values on variable Y .

We define, for R ⊆ V × V , τ |= R ⇐⇒ �τ ⊇ R, i.e., α �τ β
for all (α, β) ∈ R. For set of preference statements, Γ ⊆ L, we
define τ |= Γ ⇐⇒ τ |= Γ∗. We define the inference relation |=SL

from this in the usual way. Γ |=SL α ≥ β if and only if α �τ β
holds for all τ ∈ GSL such that τ |= Γ. The induced relation on
outcomes, �SL

Γ , is given by α �SL
Γ β ⇐⇒ Γ |=SL α ≥ β. Relation

�SL
Γ is a pre-order containing Γ∗.

3.1 Computing singleton lex inference

The result below shows that there is a simple characterisation of this
preference inference, leading to an efficient algorithm.

Proposition 3 Consider any Γ ⊆ L and any α, β ∈ V . Then Γ |=SL

α ≥ β holds if and only if for all Y ∈ V either Γ↓Y has a cycle2 or
α(Y ) = β(Y ) or (α(Y ), β(Y )) is in the transitive closure of Γ↓Y .

Proposition 3 shows that the relation �SL
Γ is similar to a Pareto

ordering, since there is an independent condition that is tested for
each variable: α �SL

Γ β ⇐⇒ for each Y ∈ V , α(Y ) ≥Y
Γ β(Y ),

where ≥Y
Γ is equal to the reflexive and transitive closure of Γ↓Y if

the latter is acyclic, and otherwise, ≥Y = Y × Y .

Complexity of singleton lex inference: Based on Proposition 3,
determining if Γ |=SL α ≥ β, for a given Γ and (α, β), can be per-
formed in O(n|Γ|d̄), where d̄ = 1

n

∑
Y ∈V |Y | is the mean domain

size.

Sound and complete proof theory

Another characterisation of |=SL is given by the proof theory be-
low. Although not necessarily useful computationally, it gives some
intuition about the nature of the inference. It can be shown that
Γ |=SL α ≥ β if and only if α ≥ β can be deduced using the
Reflexivity axiom, and Transitivity, Crossing and Irrelevant Variable
inference rules (as defined below), from Γ∗ (i.e., with axioms α ≥ β
for any (α, β) ∈ Γ∗). In the rules below, α, β, γ and δ are outcomes
and X is a variable. For x ∈ X , α[X := x] is defined to be the
outcome α′ with α′(X) = x and α′(Y ) = α(Y ) for all Y 
= X .

Reflexivity: α ≥ α for all α ∈ V .
Transitivity: From α ≥ β and β ≥ γ deduce α ≥ γ.
Crossing: From α ≥ β and γ ≥ δ

deduce α[X := γ(X)] ≥ β[X := δ(X)].

2 Relation � on A is said to have a cycle if there exists k > 2, and
a1, . . . , ak ∈ A with ak = a1 and for all i = 1, . . . , k − 1, ai � ai+1
and ai �= ai+1. If � does not have a cycle it is said to be acyclic.
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Irrelevant Variable: From α ≥ β, γ ≥ δ and δ ≥ γ such that
γ(X) 
= δ(X) deduce α[X := x] ≥ β[X := x′] for any x, x′ ∈
X .

The output of the Crossing inference rule is a kind of cross of
the inputs. For variable X satisfying the conditions of the Irrelevant
Variable inference, the values of X are irrelevant, i.e., changing them
produces an equivalent pair of outcomes.

Theorem 1 Γ |=SL α ≥ β if and only if α ≥ β can be deduced
from Γ∗ using the Reflexivity axiom, and the Transitivity, Crossing
and Irrelevant Variable inference rules.

3.2 Relationship between lex and SL inference

It is clear that a singleton lex model is a special case of a lexico-
graphic model, which immediately implies that the |=SL inference
is at least as strong as the |=lex inference: if Γ |=lex α ≥ β then
Γ |=SL α ≥ β. Also, if outcomes α and β differ on every variable
then only the first (Y,≥Y ) pair in any lexicographic model is rele-
vant; this implies that, for such α and β, we have Γ |=lex α ≥ β
⇐⇒ Γ |=SL α ≥ β. This means that Proposition 3 can be used to
determine if Γ |=lex α ≥ β for such pairs (α, β). For more general
pairs, the problem is harder, and a more sophisticated approach is
needed, as shown in Section 4.

To see that |=SL can enable strictly more inferences than |=lex:
we have e.g., that {ϕ1} |=SL α ≥ β but {ϕ1} 
|=lex α ≥ β,
where ϕ1 is (luxury, city,¬pool) ≥ (medium,¬city, pool), and α =
(luxury, city,¬pool) and β = (medium, city, pool).

Consistency w.r.t. Glex and GSL: For Γ ⊆ Y we say that set of
preference statements Γ is consistent with respect to Glex if there
exists some model π ∈ Glex satisfying Γ, i.e., such that π |= Γ.
Similarly, Γ is consistent with respect to GSL if there exists τ ∈ GSL

such that τ |= Γ. It follows that Γ is not consistent with respect to
GSL if and only if |=SL = V × V , which, using Proposition 3, is if
and only if Γ↓Y has a cycle for all Y ∈ V .

Now, suppose that π |= Γ for some lexicographic model π, which
we write as (Y1,≥Y1), . . . , (Yk,≥Yk ). It is easy to see that τ |= Γ,
where τ = (Y1,≥Y1). Conversely, if τ = (Y1,≥Y1) ∈ GSL is such
that τ |= Γ then the corresponding element (Y1,≥Y1) in Glex also
satisfies Γ. This shows that Γ is consistent with respect to Glex if and
only if Γ is consistent with respect to GSL, if and only if there exists
some Y ∈ V with Γ↓Y acyclic.

A slightly more general model: One can get a slight variation on
|=SL by allowing models (Y,≥) with ≥ being total pre-orders (i.e.,
transitive and complete relations, also known as weak orders). Call
this relation |=SLW. The characterisation is then slightly simpler than
Proposition 3: Γ |=SLW α ≥ β holds if and only if for all Y ∈ V
either α(Y ) = β(Y ) or (α(Y ), β(Y )) is in the transitive closure
of Γ↓Y . The Reflexivity axiom, and the Transitivity and Crossing
inference rules form a sound and complete proof theory for |=SLW.

4 COMPUTING LEXICOGRAPHIC
PREFERENCE INFERENCE

In this section we show how to compute, in polynomial time, lexico-
graphic preference inference, i.e., determining, whether a given pair
α ≥ β is entailed by a set of comparative preference statements Γ.
By definition, Γ |=lex α ≥ β holds if and only if α �π β holds for

every lex model π satisfying Γ. The set Γ therefore acts as a restric-
tion on possible lexicographic models. Lemma 1 below shows that
to generate a lexicographic model (Y1,≥Y1), . . . , (Yk,≥Yk ) satis-
fying Γ we need, for each i to satisfy a constraint on the choice
of pair Yi and ≥Yi which depends on the earlier variables Ai, i.e.,
that ≥Yi ⊇ Γ↓Yi

Ai
. This leads naturally to an abstraction based on

what we call a Next Variable Predicate (NVP), which restricts the
choice of pair (Y,≥Y ) given previously chosen variables A, and
hence restricts the set of lexicographic models π. An NVP P then
entails α ≥ β if α �π β holds for every π satisfying P . We show
that there is a simple algorithm for determining this, when the NVP
satisfies a monotonicity property. We show that π satisfying Γ can
be expressed as a monotonic NVP, thus allowing efficient testing of
Γ |=lex α ≥ β. Other natural inputs can also be expressed as mono-
tonic NVPs, in particular, restrictions on variable and value order-
ings. This enables efficient inference if we have a mixture of inputs,
such as a set of comparative preference statements, along with re-
strictions on variable and local value orderings.

Lemma 1 Let π equalling (Y1,≥1), . . . , (Yk,≥k) be a lexico-
graphic model. For i = 1, . . . , k, define Ai = {Y1, . . . , Yi−1}. Let
α and β be two outcomes, and let Γ ⊆ L be a set of preference
statements. Then

(i) α �π β if and only if for all i = 1, . . . , k, [α(Ai) = β(Ai) ⇒
α(Yi) ≥i β(Yi)].

(ii) π |= Γ if and only if for all i = 1, . . . , k, ≥i ⊇ Γ↓Yi
Ai

.

4.1 Next Variable Predicates (NVPs)

We formalise the notion of NVPs, and we show that a wide range of
natural restrictions can be expressed in terms of monotonic NVPs.

A Next-Variable Predicate (abbreviated to NVP) P is a relation
on triples of the form (A, Y,≥Y ), where A ⊆ V , Y ∈ V − A and
≥Y is a total order on Y . Let π be a lexicographic model (Y1,≥Y1

), . . . , (Yk,≥Yk ). Then, π is said to satisfy NVP P (also written as
π |= P) if for all i = 1, . . . , k, P(Ai, Yi,≥Yi) holds, where Ai =
{Y1, . . . , Yi−1}. For NVP P , we define P |=lex α ≥ β if π |= α ≥
β for all lexicographic models π satisfying P .

Monotonic NVP: NVP P is said to be monotonic if for all A,B
such that A ⊆ B ⊆ V , for all Y ∈ V − B and for all total orders
≥Y on Y , P(A, Y,≥Y ) ⇒ P(B, Y,≥Y ).

Boolean operations on NVPs can be defined in the obvious way.
In particular, for NVPs P1 and P2, triple (A, Y,≥Y ) is defined to
satisfy P1 ∧ P2 if and only if (A, Y,≥Y ) satisfies both P1 and P2.
Also, triple (A, Y,≥Y ) is defined to satisfy P1 ∨ P2 if and only if
(A, Y,≥Y ) satisfies either P1 or P2.

Proposition 4 If P1 and P2 are monotonic NVPs then P1 ∧P2 and
P1 ∨ P2 are both monotonic NVPs.

This key result (which follows immediately from the definitions)
means that any NVP that is built, using conjunctions and disjunctions
from monotonic NVPs, is also monotonic.

4.2 NVPs for preference statements, variable and
value orderings

We show how to generate a NVP corresponding to a set Γ of com-
parative preference statements, and also NVPs corresponding to re-
strictions on variable and value orderings.
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Expressing basic variable ordering restrictions: Let X and X ′

be different variables in V , and let π be the lexicographic model
(Y1,≥Y1), . . . , (Yk,≥Yk ). We say that π satisfies X � X ′ if the
following holds: if X ′ = Yi for some i = 1, . . . , k then there exists
j < i with Yj = X . Thus π satisfies X �X ′ if X appears earlier in
π than X ′ when X ′ appears in π.

Expressing basic value ordering restrictions: Let x and x′ be two
values of variable X (∈ V ). We say that π satisfies x ≥ x′ if the
following holds: for all i = 1, . . . , k, if Yi = X then x ≥Yi x

′.

Definition 1 Consider an arbitrary triple (A, Y,≥Y ), where A ⊆
V , Y ∈ V − A and ≥Y is a total order on Y . For Γ ⊆ L, different
variables X,X ′ ∈ V and x, x′ ∈ X , we define the NVPs P|=Γ,
PX�X′ and Px≥x′ as follows.

• P|=Γ(A, Y,≥Y ) if and only if ≥Y ⊇ Γ↓Y
A .

• PX�X′(A, Y,≥Y ) if and only if either A � X or Y 
= X ′.
• Px≥x′(A, Y,≥Y ) if and only if either Y 
= X or x ≥Y x′.

The result below shows that the NVPs defined in Definition 1 ex-
press their intended meaning.

Proposition 5 Let π be an arbitrary lexicographic model. For Γ ⊆
L, different variables X,X ′ ∈ V and x, x′ ∈ X , NVPs P|=Γ,
PX�X′ and Px≥x′ are all monotonic, and

• π |= P|=Γ ⇐⇒ π |= Γ;
• π |= PX�X′ ⇐⇒ π |= X �X ′; and
• π |= Px≥x′ ⇐⇒ π |= x ≥ x′.

Arbitrary restrictions on value orderings can be represented using
disjunctions and conjunctions of NVPs of the form Px≥x′ , and sim-
ilarly for restrictions of variable orderings based on PX�X′ . Thus if
we have as inputs a set of preference statements Γ ⊆ L, and restric-
tions on value and variable orderings, these inputs can be represented
by a monotonic NVP, because of Propositions 5 and 4.

4.3 Algorithm for determining lexicographic
entailment from Monotonic NVP

A natural idea for an algorithm for constructing a lexicographic
model satisfying Γ but not α ≥ β (thus showing that Γ 
|=lex α ≥ β)
would involve backtracking search over different variable orderings.
However, such an algorithm would presumably be exponential in the
worst case. In fact, the monotonicity property of the NVP allows
a polynomial backtrack-free algorithm. The algorithm is similar to
those for preference entailment based on conditional lexicographic
orders described in [22] and [23], and the idea behind the proof is
also similar, although with some different technical issues.

The idea behind the algorithm is as follows. We’re trying to con-
struct a lexicographic model π that satisfies P but not α ≥ β, so
that β �π α (i.e., α 
�π β). We build up π incrementally, choos-
ing (Y1,≥Y1) first and then (Y2,≥Y2), and so on. Suppose that we
have picked already Y1, . . . , Yj−1, where α(Yi) = β(Yi) for each
i ∈ {1, . . . , j − 1}, and let Aj = {Y1, . . . , Yj−1}. At each stage
we see if there is another variable Y and ordering ≥Y that we can
choose with α(Y ) 
≥Y β(Y ) and such that P(Aj , Y,≥Y ) holds. If
so, then we have constructed a lexicographic model that satisfies P
but not α ≥ β, proving that P 
|= α ≥ β. If this is not possible, we
choose, if possible, any Y and ≥Y such that P(Aj , Y,≥Y ) holds
and α(Y ) = β(Y ), and let Yj = Y and ≥j equal ≥Y .

procedure Does P lexicographically entail α ≥ β?
if α = β then return true and stop;
for j := 1, . . . , n

let Aj equal Aj = {Y1, . . . , Yj−1} (in particular, A1 = ∅);
if there exists Y ∈ V −Aj and � such that P(Aj , Y,�) holds

and α(Y ) 
� β(Y )
then return false and stop;

if there exists Y ∈ V −Aj and � such that P(Aj , Y,�) holds
and α(Y ) = β(Y )
then let Yj = Y and �j = � (for any such pair Y and �)
else return true and stop;

next j;
return true.

4.3.1 Correctness of algorithm

The theorem states the correctness of the algorithm.

Theorem 2 Let P be a monotonic Next-Variable Predicate, and let
α, β ∈ V be outcomes. The above procedure for lexicographic infer-
ence is correct, i.e., it returns true if P |=lex α ≥ β and it returns
false otherwise.

Decisive Sequence: A Lexicographic model (Y1,≥1), . . . , (Yk,≥k)
is said to be a decisive sequence with respect to P and α ≥ β if
α(Yk) 
≥k β(Yk), and for j = 1, . . . , k−1, α(Yj) = β(Yj), and, for
j = 1, . . . , k, P(Aj , Yj ,≥j) holds, where Aj = {Y1, . . . , Yj−1}.
Thus, if π is a decisive sequence with respect to P and α ≥ β, then
π satisfies P but not α ≥ β.

The next lemma follows easily from the definition of lexicographic
inference, and the following lemma sums up some easy observations
about the algorithm.

Lemma 2 P 
|=lex α ≥ β if and only if there exists a decisive se-
quence with respect to P and α ≥ β.

Lemma 3 Let Y1, . . . , Yk be the sequence of sets generated by the
algorithm, and let ≥1, . . . ,≥k be the sequence of orderings.

(i) The algorithm returns true if and only if it does not return false.
(ii) For j = 1 . . . , k − 1, α(Yj) = β(Yj).

(iii) If the algorithm returns false then (Y1,≥1), . . . , (Yk,≥k) is a de-
cisive sequence with respect to P and α ≥ β.

4.3.2 Proof of Theorem 2

By Lemma 3(i), the algorithm returns true if and only if it does not
return false. Thus, to prove the result, it is sufficient to show that the
algorithm returns false if and only if P 
|=lex α ≥ β.

First let us assume that the algorithm returns false. Then the se-
quence (Y1,≥1), . . . , (Yk,≥k) generated by the algorithm is a de-
cisive sequence, by Lemma 3(iii), and thus P 
|=lex α ≥ β, by
Lemma 2.

Conversely, let us assume that P 
|=lex α ≥ β, and so there ex-
ists a decisive sequence, (X1,≥′

1), . . . , (Xl,≥′
l), by Lemma 2. Thus

α(Xl) 
= β(Xl). To prove a contradiction, assume that the algo-
rithm does not return false (and thus returns true by Lemma 3(i)).
Let Y1, . . . , Yk be the sequence of sets generated by the algorithm.

First consider the case where every Xi is in {Y1, . . . , Yk}, and
consider j such that Yj = Xl. Thus α(Yj) 
= β(Yj) which implies
that j = k, by Lemma 3(ii). Let A′

l = {X1, . . . , Xl−1}. By def-
inition of a decisive sequence, P(A′

l, Xl,≥′
l) holds and α(Xl) 
≥′

l
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β(Xl). Now, Yk = Xl /∈ A′
l, so A′

l ⊆ {Y1, . . . , Yk−1} = Ak.
Monotonicity of NVP P implies that P(Ak, Xl,≥′

l) holds, which
means that the algorithm would return false, which contradicts the
assumption.

Now, let us consider the other case, where there exists some
Xi which is not in {Y1, . . . , Yk}, and consider a minimal such
i. Let A′

i = {X1, . . . , Xi−1}. By definition of a decisive se-
quence, P(A′

i, Xi,≥′
i) holds. We have A′

i ⊆ {Y1, . . . , Yk}, and so
monotonicity of P implies that P(Ak+1, Xi,≥′

i) holds, where we
define Ak+1 = {Y1, . . . , Yk}. Also, α(Xi) = β(Xi) (if i < l) or
α(Xi) 
≥′

i β(Xi) (if i = l), by definition of a decisive sequence.
Now, Xi and ≥′

i satisfy the conditions that enable the algorithm to
choose another variable Y (= Xi), which contradicts Yk being the
last variable generated by the algorithm. �

4.4 Application for Γ |=lex α ≥ β

To test if Γ |=lex α ≥ β we use P|=Γ as P in the algorithm. The algo-
rithm can then be somewhat simplified: the conditions of the second
and third if statements can be replaced, respectively, by the following
two statements:

if ∃ Yj ∈ V −Aj such that Γ↓Yj

Aj
∪
{(

β(Yj), α(Yj)
)}

is acyclic

if ∃ Y ∈ V −Aj such that α(Y ) = β(Y ) and Γ
↓Yj

Aj
is acyclic

Complexity of determining if Γ |=lex α ≥ β: A careful imple-
mentation of the algorithm allows a complexity of O(n2|Γ|d̄), with
d̄ being the mean domain size.

5 CONCLUSIONS AND DISCUSSION

We have shown how lexicographic preference inference (as well as
singleton lex inference) can be computed with a low-order polyno-
mial algorithm. Propositions 4 and 5 and Theorem 2 mean that the
algorithm can be applied to compute lexicographic inference based
on a wide (and mixed) range of inputs; this can include restrictions
on the value and variable orderings, as well as an input set of pref-
erences statements with a relatively general language. For example,
the inputs could include assumptions that certain domains are single-
peaked [8], and it could also include restrictions on the variable or-
dering such as that the most important variable is either X1, X3 or
X6.

Lexicographic preference inference may be appropriate when the
inputs are relatively weak. There are also variations of this fam-
ily of preference relations that might well be considered, such as
lexicographic models with the local orderings ≥Y being total pre-
orders rather than total orders, or where Y can be a small set of vari-
ables (analogously to the conditional lexicographic models in [23]).
It would be interesting to see if the approach in this paper could be
adapted, and also if the inference technique in [23] could be adapted
to still more general kinds of input, including restrictions on variable
and value orderings.
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