
Qualitative Simulation with Answer Set Programming

Timothy Wiley1, Claude Sammut1 and Ivan Bratko2

Abstract. Qualitative Simulation (QSIM) reasons about the be-
haviour of dynamic physical systems as they evolve over time. The
system is represented by a coarse qualitative model rather than pre-
cise numerical models. However, for large complex domains, such as
robotics for Urban Search and Rescue, existing QSIM implementa-
tions are inefficient. ASPQSIM is a novel formulation of the QSIM
algorithm in Answer Set Programming that takes advantage of the
similarities between qualitative simulation and constraint satisfaction
problems. ASPQSIM is compared against an existing QSIM imple-
mentation on a variety of domains that demonstrate ASPQSIM pro-
vides a significant improvement in efficiency especially on complex
domains, and producing simulations in domains that are not solvable
by the procedural implementation.

1 Introduction

Qualitative Reasoning is a field of research that models the behaviour
of physical systems in continuous state spaces. Variables of a system
and relationships between them are coarsely represented by qualita-
tive descriptions, rather than by precise quantitative values or numer-
ical models. For example, consider the iRobot Negotiator (Figure 1),
a track-based robotic platform used for Urban Search and Rescue. In
a qualitative model of the Negotiator, if the robot’s velocity is posi-
tive, the x-coordinate of the robot’s position increases. However the
precise rate at which the x-coordinate increases is unknown. Fur-
ther, in a qualitative solution to solving a given task, the robot might
have to drive forward, then turn right, and finally continue driving
forward. Again, the precise quantitative turning angle or length of
time to perform each step is unknown. Qualitative reasoning algo-
rithms only deduce qualitative relationships between the variables of
a system, or predict the qualitative evolution in the state of a dynamic
system [9, 12]. These techniques have been used for a broad range
applications including Spatial Reasoning [8], developing controllers
for mechanical machines such as a shipping-create crane [6], or live
monitoring tools for controlling home appliances [10].

Qualitative Simulation (QSIM) [17] is a technique that applies
qualitative reasoning to dynamic systems and predicts how the sys-
tems change over time, by simulating the sequences of states that the
system will transition through as time progresses. During simulation,
the system may be influenced by external forces which affect further
changes in the state of the system. The domain of a system is de-
fined by qualitative variables and the system’s dynamics are defined
by a qualitative model. In the Negotiator system, for example, vari-
ables may include the robot’s velocity and x-coordinate, while the

1 School of Computer Science and Engineering, The University of
New South Wales, Sydney, NSW 2052, Australia email: {timothyw,
claude}@cse.unsw.edu.au

2 Faculty of Computer and Information Science, University of Ljubljana,
Trzaska 25, 1000 Ljubljana, Slovenia email: bratko@fri.uni-lj.si

Figure 1. iRobot Negotiator platform for Urban Search and Rescue. The
robot is shown climbing a step.

model specifies that the velocity is the derivative of the x-coordinate.
QSIM shares many features of Constraint Satisfaction Problems. Po-
tential states that the system may take are generated by transition
rules. The qualitative model places constraints on the values of the
system’s variables to test if a generated state is valid. Therefore, a
valid simulation of the system is a sequence of states that conform to
the transition rules and constraints of the qualitative model.

Answer Set Programming (ASP) [13] is a logic reasoning tool
suited to solving constraint satisfaction problems. Programs are spec-
ified in ASP using first-order logical formulations, from which an
ASP solver generates potential solutions. The potential solutions are
verified against integrity constraints that specify invalid logical facts
that may not appear in a solution. Solutions are found by first ground-
ing the formulation into a collection of facts where all variables from
the original formulation are enumerated by atomic values. A solver
then finds solutions satisfying the grounded problem. Designing an
efficient ASP program requires balancing the workload of both the
grounder and the solver.

This paper details ASPQSIM, a novel formulation of QSIM in ASP
which has improved run-time performance over an existing QSIM
implementation. The efficiency of ASPQSIM is compared on com-
mon domains in the qualitative reasoning literature, and on the Ne-
gotiator robotic domain.

1.1 Motivation

In previous work [25] we incorporated and extended Qualitative Sim-
ulation into a planner for a robot. The robotic system is described
by a qualitative variables and a model, which is given to the planner
that defines actions in relation to special qualitative control variables.
Qualitative simulation is used to produce a sequence of states that
lead from an initial state to a desired goal state, from which the plan-
ner calculates the actions necessary to solve the given task. However,
each action in the plan is parameterised. The precise quantitative val-

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-915

915



ues needed to physically execute the plan on the robotic system are
discovered by a trial-and-error learner. This architecture (Figure 2)
was applied to the iRobot Negotiator platform (Figure 1) used for
Urban Search and Rescue. Specifically, the task of climbing onto a
step (Figure 3) was chosen, as this is a common research problem in
the field [16]. The Negotiator contains a set of main tracks to drive
the robot and sub-tracks, or flippers, that can re-configure the geom-
etry of the robot to climb over obstacles. The planner must choose
the best sequence of actions to overcome terrain obstacles without
becoming stuck. The step climbing task is solved using one of two
approaches (Figure 3), either driving forward over the step, or if the
step is too high, turning the robot around and driving backwards over
the step. Qualitative planning provides a domain independent method
to learning robotic behaviours that does not require extensive domain
knowledge that is typically needed to build numerical computer sim-
ulations [24], or required for domain specific reasoning during plan-
ning [23]. However, for real-world problems, such as the Negotiator
climbing a step, the planner’s search space becomes very large.

Traditional implementations of QSIM cause the qualitative plan-
ner to hit server time and space complexity problems [25]. Improv-
ing the efficiency of QSIM by encoding the algorithm in ASP is the
purpose of this work. As within the planner QSIM is only used to
produce sequences of states, ASPQSIM is compared with existing
QSIM implementations for this purpose. That is, experiments com-
pare the efficiency of each algorithm to find a simulation from an
initial state to a goal state.

1.2 Related Work

ASPQSIM uses the constraint satisfaction nature of QSIM for build-
ing the ASP formulation. ASP has also been previously applied to
constraint satisfaction problems, typically using a generate-and-test
methodology [2]. In this technique, ASP cardinality rules gener-
ate potential solutions to the constraint problem, and integrity con-
straints test (or validate) a potential solution by representing infor-
mation about a valid solution that must not be true. The generate-
and-test technique is used in ASPQSIM.

Applying tools designed for solving Constraint Satisfaction or
Logic Programs (CSPs/CLPs) to QSIM has been previously inves-
tigated. The ECLiPSe CSP solver was combined with a parallel
processing architecture [21] but the resulting system did not per-
form substantially better than existing procedural implementations.
An implementation of QSIM that used the Prolog CLP(FD) library
was found to be more efficient than standard procedural implemen-
tations [3]. However, this required customised numerical represen-
tations of the value of variables, and was only applied to a cascad-
ing water tank domain. Applying this numerical technique to other
domains has not been experimentally investigated. Temporal logic
was combined with the ECLiPSe CSP solver and applied to spa-
tial reasoning domains [1], however no evaluation of the efficiency
of the implementation was performed. In contrast to these system,
ASPQSIM provides an efficient solver without having to convert the
qualitative representation to a custom numerical encoding.

Planning is another frequently studied application of ASP. Nu-
merous Action Languages within ASP have been proposed [15, 19].
These languages provide generic methods of representing planning
problems. However, planning with qualitative simulation does not re-
quire explicit consideration of actions during simulation. Therefore,
action languages are not required for ASPQSIM.

Qualitative 
Model

Qualitative 
Planner with 

QSIM

Refine 
Parameters

Parameterised &
Constrained

Action Sequence

Figure 2. Three stage architecture for learning robotic behaviours using a
qualitative planner based on the QSIM algorithm, and a quantitative

trial-and-error learner.

2 The QSIM Algorithm

We first describe the QSIM algorithm and then explain its ASP for-
mulation in Section 3. In qualitative simulation, each possible value
of a variable, v, of the system being modelled, is described with re-
spect to landmark values, Li of v, within the domain of the variable:

v := [−∞, L0, L1, L2, . . . ,∞]

Landmarks are distinguished symbolic values within the domain
of v. However, their exact quantitative values are unknown, and the
variable’s domain may optionally contain landmarks for negative and
positive infinity. The qualitative value of a variable is defined by a
magnitude (which is either a landmark or the interval between two
landmarks) and a direction of change (steady, increasing or decreas-
ing) that indicates how the variable’s magnitude changes over time.
For example, v may hold the values:

v = L0..L1/dec v = L1/std v = L1..L2/inc

A qualitative state of the system is the combination of a value for
each variable in the system. Time is also explicitly represented in
QSIM as the algorithm calculates the change in a system over time.
Time is describe relative to discrete landmarks,

T := [t0, t1, t2, . . . , tn]

but unlike qualitative variables, time always increases and is finitely
bound by the maximal landmark tn. Each qualitative state either oc-
curs at a time point ti or during a time interval ti..ti+1, and during
simulation, time alternates between points and intervals. Time points
and intervals are referred to as time steps. Similar to variables, the or-
dering of time landmarks is known but the quantitative value of each
time landmark is unknown.

A qualitative model defines valid qualitative states of the system.
A model is described using qualitative constraints in the form of
Qualitative Differential Equations (QDEs) which place restrictions
on the magnitude and the direction of change of variables. For exam-
ple, the monotonicity constraint M+(x, y) requires that the directions
of change for x and y are always equal. If the value of x is increas-
ing, y must also be increasing, and likewise for decreasing x and y.
Table 1 lists common types of qualitative constraints. Potential quali-
tative states are validated against the model to determine whether the
system may evolve into the given state.

We previously extended the definition of the qualitative model by
introducing qualitative rules [25] of the form:

Name : {Preconditions} → Constraint

A qualitative state is only validated against the constraint of a
given rule if the preconditions for the rule are met. Qualitative rules

T. Wiley et al. / Qualitative Simulation with Answer Set Programming916



Base Flippers

θb

posx/y

θfθf

Approach 1

xstep

ystep

posfx/fyposbx/by

− v +− v +

− hd +

Approach 2

Figure 3. Representation of Negotiator and the step climbing task with the two broad approaches to climbing the step, driving forward (Approach 1) and
reversing (Approach 2).

Table 1. Common types of qualitative constraints.

QDE Description
M+(x, y) Monotonicity between x and y
M−(x, y) Inverse monotonicity between x and y
sum(x, y, z) z = x+ y
deriv(x, y) y is the time derivative of x
const(x, k) x = k/std

allow the model to change over time as the dynamic system changes,
rather than each constraint applying globally in all states.

Algorithm 1 lists the main parts of the QSIM algorithm using
Bratko’s Prolog implementation [5], which has been extended to
use qualitative rules. Given a state si occurring at time step Ti,
the state transition predicate defines the valid form of the
successor state si+1 which the system may evolve into at the next
time step. There may be multiple potential successor states. To cal-
culate the successor state, the next time step is determined by the
time transition predicate where p(i) represents a time point
and i(i, i + 1) an interval. The qualitative values of the variables
[v1, . . . , vn]i of state si are extracted, and a potential successor state
is generated using the QSIM transition table [17] that defines all pos-
sible values for each variable in si+1. Finally, the potential state is
validated against the model, by applying each rule of the model in
sequence. The test precond predicate asserts that the precondi-
tions of the rule are met. However specific implementations of the
predicate are not relevant and are not provided. The validate qde
predicate delegates the validation of each rule to the appropriate
predicate for the QDE. For example, the mplus predicate imple-
ments the M+(x, y) QDE. Predicates for other QDEs are found in
Bratko’s original QSIM implementation [5].

A system may be simulated over multiple time steps through re-
peated applications of state transition. This produces a di-
rected graph of connected states that a system could evolve through.
Therefore, it is possible to find a sequence of states between a specific
initial state s0 and specific goal state sg , using a cost-based search.

2.1 Cost-based Search

Cost-based heuristic search algorithms typically require a combina-
tion of the cost for each state transition si → si+1, and an estimate
of the distance to the goal state. We have previously proposed def-
initions of these costs in [25]. For simplicity, the cost of each state
transition is defined as a constant value of one. The heuristics for
estimating the distance to the goal state use the Qualitative Magni-
tude Distance (QMD). The QMD is the length of the shortest state
sequence that is required for a single variable to transition between
two of its values (the value of the variable in a given state, and its
value in the goal state). The MaxQMD heuristic takes the maximum

Algorithm 1: State transition rules and the validation of the
M+(x, y) QDE in ”pseudo Prolog”, reflecting the Bratko Prolog
QSIM implementation.

% Definition of a single valid transition si → si+1

% M is the qualitative model
% The state si is a list of the value of the variables [v1, . . . , vn]i
state transition(si, Ti,M, si+1, Ti+1) :-

time transition(Ti, Ti+1),
maplist(var transition(Ti), si, si+1),
validate model(M, si+1).

% Time transition between points and intervals
time transition(p(i), i(i, i+ 1)).
time transition(i(i, i+ 1), p(i+ 1)).

% State transition rules (examples)
var transition(p(i), L1/std, L1/std).
var transition(p(i), L1/std, L1..L2/inc).
var transition(p(i), L1/std, L0..L1/dec).
var transition(i(i, i+ 1), L1/std, L1/std).

% Validate a state against all rules in the model
% Model M is a list of rules rule(P,Q)
validate model(M, si) :- maplist(validate rule(si),M).

% Validate the state against a single rule
% If preconditions P are true, then constraint Q must hold
validate rule(si, rule(P,Q)) :- ¬test precond(P, si).
validate rule(si, rule(P,Q)) :-

test precond(P, si),
validate qde(Q, si).

% Validation for M+(x, y) constraint
% The list [corr] contains corresponding values.
% relative qmag gives the sign <, > or ==
% that relates magx with x or magy with y
mplus(x : magx/dirx, y : magy/diry, [corr]) :-

dirx == diry,
maplist(mplus correspond(magx,magy), [corr])

mplus correspond(magx,magy, (cx, cy)) :-
relative qmag(magx, cx, signx)
relative qmag(magy, cy, signy)
signx == signy

QMD over all variables of the system while the TotalQMD heuristic
sums the QMDs. As shown in our experiments with ASPQSIM (Sec-
tion 4) and our previous work [25, 26], the choice of heuristic greatly
impacts the performance of QSIM.

T. Wiley et al. / Qualitative Simulation with Answer Set Programming 917



3 ASPQSIM

ASPQSIM, our formulation of Qualitative Simulation in ASP, is de-
scribed using the ASP-Core-2 syntax.

Each qualitative variable of the system is specified by facts of the
form:

qvar(x).

The legal values of variable are defined by facts of the form:

qmag (x, land (L0)) . qmag (x, interval (L0, L1)) .

which state that x is either at the landmark L0 or is in the interval
L0..L1. Qualitative directions of change are listed in the facts:

qdir(std). qdir(inc). qdir(dec).

Time landmarks are explicitly represented as:

timevalue (0..tn) .

Each time step (for point p(..) and interval i(..)) is represented as:

time (p (T )) :- timevalue (T ) .

time (i (T, T + 1)) :- timevalue (T ) , timevalue (T + 1) .

A qualitative state is a collection of facts of the form:

holds(T ime, V ar,Mag,Dir).

which represent that in time step T ime, variable V ar has the value
V ar = Mag/Dir. The complete state at a given time step requires
one and only one holds fact for each variable.

Using the above facts the main elements of ASPQSIM are detailed
in Algorithm 2. The state transition rules are given as cardinality
rules. These generate potential holds facts and use the cardinality to
enforce that one and only one fact for each variable at each time step
is generated. The predicates time, qmag and qdir lookup facts
and ensure correct instantiations of the arguments of holds. The
transition rules not listed can be represented in a similar manner.

The qualitative model is represented using integrity constraints to
test whether a generated set of holds facts are valid. Each qualita-
tive rule in the model is defined by a fact

rule(Id, PreConds, Constraint).

containing an unique identifier, the number of preconditions and
qualitative constraint for the rule. Each precondition for a rule is
specified by the fact

precondElem(T ime, Id, i).

which denotes that at time step T ime, the i’th precondition for the
rule corresponding to the identifier Id is met. If all of the precondi-
tions for a rule are met at a given time step, the qualitative constraint
for the rule is activated for that time step by the fact

qde(T ime, Id,Qde).

where Qde is the qualitative constraint for the rule.
As an example, the M+(x, y) constraint is enforced by two in-

tegrity constraints. The first integrity constraint ensures the directions
of change for the two variables are equal. The second constraint en-
sures the values of variables are correct relative to known correspond-
ing values. Similar to Algorithm 1, correspond lists the corre-
sponding values for the M+ constraint, and relative qmag is the

Algorithm 2: State transition rules, integrity constraints for the
M+(x, y) QDE, and specification of the initial and goal states in
ASPQSIM.

% State Transition Rules (example)
1 { holds(i(T, T1), V, land(L1), std);

holds(i(T, T1), V, interval(L1, L2), inc) :
qmag(V, interval(L1, L2));

holds(i(T, T1), V, interval(L0, L1), dec) :
qmag(V, interval(L0, L1)) } 1

:- time(i(T,T1)), holds(p(T), V, land(L1), std).

% A QDE holds at time T if all preconditions hold at T
qde(T, Name, QDE) :- preconds(T, Name), rule(Name, , QDE).

% preconds holds at T if every element holds at T
preconds(T, Name) :- rule(Name, Count, ), time(T),

Count { precondElem(T, Name, N) : N = 1..Count } Count.

% Example precondElem
precondElem(T, example, 1) :- time(T), holds(T, x, L0, std)

% M+(x,y) integrity constraints
:- qde(T, , mplus(V1, V2)),

holds(T, V1, , Dir1), holds(T, V2, , Dir2),
Dir1 != Dir2.

:- qde(T, Name, mplus(V1, V2)),
holds(T, V1, Mag1, Dir1), holds(T, V2, Mag2, Dir2),
Dir1 == Dir2,
correspond(Name, Corr1, Corr2),
relative qmag(Mag1, Corr1, Sign1),
relative qmag(Mag2, Corr2, Sign2),
Sign1 != Sign2.

% Constrain initial state
holds(p(0), V, Mag, Dir) :- initial(V, Mag, Dir).
1 { holds(p(0), V, Mag, Dir) :

qmag(V, Mag), qdir(Dir) } 1 :- qvar(V).

% Constrain goal state
:- goal(V, Mag, Dir), time(p(tn)), not holds(p(tn), V, Mag, Dir).

relation <, > or == between two qualitative values. Additionally,
the unique identifier for the rule ensures the correct corresponding
values are used.

To find a sequence of states between an initial state si and goal
state sg , two sets of facts define si and sg . The initial state and goal
state are represented by a set of the two kinds of facts:

initial(V ar,Mag,Dir). goal(V ar,Mag,Dir).

The initial facts constrain the value of the holds facts for
each variable at the first time step p(0). However, not every variable
of the system may be specified in the initial state. Therefore, a cardi-
nality rule ensures that there exists one holds fact for each variable
at p(0). The goal state is enforced by an integrity constraint for each
goal fact, such that each holds must conform to the goal at the
terminal time step p(tn).

3.1 Incremental Solving by Iterating over Time

ASP programs cannot have unbounded values. Therefore in
ASPQSIM, the number of time steps for a simulation, that is the
precise value of the maximal time landmark tn, must be manually
specified before solving begins. Furthermore, ASPQSIM will always
find a state sequence that takes all available time steps. However, it

T. Wiley et al. / Qualitative Simulation with Answer Set Programming918



Table 2. Complexity of the domain used in comparing performance.

Domain Variables Rules Potential States
Bouncing Ball 3 3 180
Bathtub 6 5 1728
5-Tanks 16 25 5.2× 1012

10-Tanks 31 50 3.0× 1024

Negotiator 18 105 7.5× 1014

is desirable to find the shortest sequence of states, and in practice the
length of the shortest sequence is unknown. This problem is resolved
by using incremental ASP solving as implemented iClingo4 [14].
During incremental solving, the representation starts with only one
time landmark, and the number of landmarks is increased iteratively
until a state sequence is found. This also gives the shortest sequence
of states that is required to reach the goal.

The incremental version of ASPQSIM, called Inc-ASPQSIM,
modifies Algorithm 2 to instruct the ASP Solver how to update the
grounded facts for each iteration. The value of the maximal time
landmark tn is incremented by one at the start of each iteration. All
facts that do not contain an argument for time, and hence do not
change, are grounded once before solving begins. For the remaining
statements, additional grounded facts are added on each iteration.
Grounded facts are not reprocessed and only new facts are grounded
that correspond to the time step for the current iteration. Finally,
grounded facts for the goal integrity constraint are removed from the
solver’s database and reasserted on each iteration. Old goal integrity
constraints must be removed, otherwise the constraints would require
that the goal is reached at every time step.

4 Performance

Experiments were conducted to compare the efficiency of ASPQSIM
to Bratko’s Prolog QSIM implementation that has been extended to
use qualitative rules. The experiments also compared the efficiency
of ASPQSIM to the incremental version Inc-ASPQSIM. The experi-
ments were conducted on Negotiator step climbing task, and com-
monly studied domains of varying complexities within the quali-
tative reasoning literature [18]. The Bouncing Ball, Bath and N-
Tanks (N cascading water tanks which sequentially fill each other)
domains were chosen. The common domains were used in the exper-
iments to ensure that ASPQSIM runs just as efficiently within these
domains. The experiments were conducted on a 64-bit MacBook
Pro 8,1 (2GHz Intel Core i7), that used SWI-Prolog (v. 6.6.1) for
the Prolog QSIM, and Clingo (v. 4.2.2) for the ASP Solver.

Table 2 lists the complexities of each domain in terms of the num-
ber of variables and rules in the domain, and the upper bound on
the number of potential states in the search space. The Bouncing
Ball, Bathtub and 5-Tanks are simple domains with few variable and
rules. The 10-Tanks and Negotiator domains are significantly more
complex, where the 10-Tanks domain has a large number of vari-
ables, and the Negotiator domain has a large number of rules with
complex preconditions. For each domain a set of experiments is con-
ducted where each QSIM implementation must find a sequence of
states that solves a given task in that domain. For the bouncing ball,
the task was to simulate the trajectory of the ball over one bounce,
for the bathtub the task is to fill the bath, and for the N-Tanks the task
is fill all N tanks. In the Negotiator domain multiple different tasks
were used. The step climbing task may be accomplished using two
approaches (Figure 3). However, as noted in Future Work (Section 5),
with only qualitative information the planner cannot deduce which
approach is appropriate as this depends on the quantitative height of

Table 3. Profile of the time spent in each phase of ASP for ASPQSIM. The
percentage of the total time required for grounding is calculated.

Negotiator Domain Grounder Solver Time Grounding
(sec) (sec) (percentage)

Approach 1 (2 vars) 4.92 0.06 98.8%
Approach 1 (5 vars) 4.94 0.07 98.6%
Approach 2 (2 vars) 15.84 3.65 81.3%
Approach 2 (5 vars) 15.03 3.17 82.6%

the step. Thus, the qualitative model was modified such that only one
approach could be discovered for the relevant experiments.

Previously in [25] we found that the efficiency of the Prolog QSIM
greatly depended on the choice of heuristic for the cost-based search.
Therefore, the experiments compared ASPQSIM to the performance
of Prolog QSIM with both the MaxQMD and TotalQMD heuristic.
We also noted in [25] that the goal for a task may not include all vari-
ables of the system, as depending on the domain, it may not be pos-
sible to determine in advance an appropriate value in the goal state
for every variable. For the Negotiator step climbing task, typically
only the final velocity and x-coordinate are known in the goal state.
The values of up to 3 other variables may additionally be known,
which describe the bounding-box of the robot in the goal state. Fur-
thermore, we noted in [25] that the number of variables specified in
the goal greatly impacted the efficiency of the Prolog QSIM’s. Thus,
the experiments also analysed the impact of the number of variables
in the goal state for the Negotiator domain.

Table 4 summarises the results of the experiments. The simple
domains are efficiently solved by all QSIM implementations. This
demonstrates that ASPQSIM is viable for simple domains. How-
ever, on the significantly more complex 10-Tanks and Negotiator do-
mains, ASPQSIM significantly out-performs the Prolog QSIM. In
some cases, ASPQSIM is able to find a solution where the Prolog
QSIM failed to find a solution in a reasonable period of time (greater
than 3 hours) or Prolog ran out of memory.

ASPQSIM significantly out-performs the Prolog QSIM because
of the constraint satisfaction nature of QSIM. Table 3 shows the
breakdown of the time spent in each phase of the ASP solver. The
transition rules and qualitative model highly constrain possible solu-
tions, which the ASP solver takes advantage of whereas, the Prolog
QSIM cannot. Hence ASPQSIM finds solutions faster. The majority
of the ASP execution time is due to the grounding, but the grounder
is still able to execute quickly despite having to generate integrity
constraints for the qualitative model at each time step.

The experiments also show that Inc-ASPQSIM is, at worse, only
marginally slower than ASPQSIM on non-trivial domains. This is
largely because over 80% of the work of the ASP solver is in the
grounder (Table 3). Both ASP versions require the same amount of
work for grounding. The results show that there is little overhead
from the solver failing to find solutions while incrementing tn.

5 Future Work - Quantitative Constraints

Qualitative Simulation has a number of known deficiencies that stem
from both the non-determinism in the state transition rules and the
use of purely qualitative landmarks [22]. On the Negotiator we have
found that using QSIM with only qualitative landmarks may pro-
duce a sequence of states that cannot be physically executed on the
robot [25]. For example, the planner will think it possible to climb
a step that is one kilometre high! This problem was resolved in [26]
by introducing quantitative values for some landmarks and propagat-
ing quantitative constraints in the manner of [4] during simulation

T. Wiley et al. / Qualitative Simulation with Answer Set Programming 919



Table 4. Comparison of the execution time (in seconds) of the modified Bratko Prolog QSIM (using both heuristics) and ASPQSIM. The percentage speed
increase for the ASPQSIM compared to the Prolog QSIM, and the percentage difference in speed between ASPQSIM and Inc-ASPQSIM is given. For some

domains, Prolog QSIM does not find a solution as it took too long (∗) or ran out of memory (†).

Domain Prolog QSIM ASPQSIM Inc-ASPQSIM ASPQSIM increase Slowdown of
MaxQMD TotalQMD MaxQMD TotalQMD Inc-ASPQSIM

Bouncing Ball 0.28 0.28 0.07 0.07 431% 404% 6.2%
Bathtub 0.29 0.28 0.04 0.07 725% 400% 75%
5-Tanks 3.25 3.44 0.18 0.26 1,858% 1,317% 49.1%
10-Tanks * * 0.78 0.82 - - 5.8%
Negotiator Approach 1 (2 vars) 42.54 188.63 4.98 4.42 853% 4,269% -11.3%
Negotiator Approach 1 (5 vars) 634.51 103.41 5.01 5.27 12,672% 1,962% 5.2%
Negotiator Approach 2 (2 vars) † † 19.49 20.39 - - 4.7%
Negotiator Approach 2 (5 vars) † † 18.20 18.82 - - 3.4%

in order to rule out physically invalid states. The Prolog QSIM im-
plementation used the CLP(FD) library [7] to easily implement the
constraints. However, the use of quantitative constraints had signifi-
cant impacts on the performance of QSIM.

To ensure the correctness of simulations, quantitative constraints
should be added to ASPQSIM. However, it has been shown that
for numerical reasoning problems ASP performs significantly worse
compared to CLP(FD) due to an explosion in the work of the
grounder [11]. Efficiently implementing quantitative constraints in
ASPQSIM using hybrid-reasoning [20] is currently being inves-
tigated, but preliminary results show poor performance. Hybrid-
reasoning in ASP shifts the quantitative constraints out of the
grounder and into the solver.

6 Conclusion

ASPQSIM relies on the solving power of Answer Set Programming,
to simulate the evolution in the state of a dynamic system over time.
ASPQSIM was experimentally compared with a Prolog implementa-
tion of QSIM. It should be noted that Prolog QSIM is an extension of
a Prolog program in [5] which was aimed at clarity and conciseness,
with limited considerations of efficiency. Nevertheless, the experi-
mental results indicate that ASP is probably a better framework for
implementing QSIM, in which efficiency is easier to achieve. Ad-
ditionally, using incremental ASP solving (Inc-ASPQSIM) avoids
manually specifying the length of the simulation and does not in-
troduce large overheads to performance.

Acknowledgements

We thank Dr. Torsten Schaub (University of Potsdam, Germany) and
Dr. Michael Thielscher (University of New South Wales, Australia)
for their assistance in developing an efficient encoding of QSIM in
the ASP language and working with the Clingo solver.

REFERENCES

[1] K. R. Apt and S. Brand, ‘Infinite Qualitative Simulations by Means of
Constraint Programming’, volume 4204 of Lecture Notes in Computer
Science, 29–43, Springer Berlin Heidelberg, (2006).

[2] M. Balduccini, ‘Representing constraint satisfaction problems in an-
swer set programming’, in Workshop on Answer Set Programming, in
Logic Programming, 25th International Conference on, (2009).

[3] A. Bandelj, I. Bratko, and D. Šuc, ‘Qualitative Simulation with CLP’, in
Qualitative Reasoning (QR), 16th International Workshop on, (2002).

[4] D. Berleant and B. J. Kuipers, ‘Qualitative and Quantitative Simulation:
Bridging the Gap’, Artificial Intelligence, 95(2), 215–255, (1997).

[5] I. Bratko, Prolog Programming for Artificial Intelligence, Addison-
Wesley, 2011.

[6] I. Bratko and D. Šuc, ‘Learning Qualitative Models’, AI Magazine,
24(4), 107–119, (2003).

[7] P. Codognet and D. Diaz, ‘Compiling constraints in clp(FD)’, The Jour-
nal of Logic Programming, 27(3), 185–226, (1996).

[8] A. G. Cohn and S. M. Hazarika, ‘Qualitative spatial representation
and reasoning: An overview’, Fundamenta Informaticae, 46(1-2), 1–
29, (2001).

[9] J. De Kleer and J. S. Brown, ‘A qualitative physics based on conflu-
ences’, Artificial Intelligence, 24(1-3), 7–83, (1984).

[10] G. F. DeJong, ‘Learning to Plan in Continuous Domains’, Artificial In-
telligence, 65(1), 71–141, (1994).

[11] A. Dovier, A. Formisano, and E. Pontelli, ‘A Comparison of CLP(FD)
and ASP Solutions to NP-Complete Problems’, volume 3668 of Lecture
Notes in Compter Science, 67–82, Springer Berlin Heidelberg, (2005).

[12] K. D. Forbus, ‘Qualitative Process Theory’, Artificial Intelligence,
24(1-3), 85–168, (1984).

[13] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, Morgan & Claypool Publishers, 2013.

[14] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider, ‘Potassco: The Potsdam Answer Set Solving Collection’,
AI Communications, 24(2), 107–124, (2011).

[15] M. Gelfond and V. Lifschitz, ‘Action Languages’, Electronic Transac-
tions on AI, 3(6), 193–210, (1998).

[16] A. Jacoff, E. Messina, B. A. Weiss, S. Tadokoro, and Y. Nakagawa,
‘Test arenas and performance metrics for urban search and rescue
robots’, in Intelligent Robots and Systems (IROS), IEEE/RSJ Interna-
tional Conference on, pp. 3396–3403, (2003).

[17] B. J. Kuipers, ‘Qualitative Simulation’, Artificial Intelligence, 29(3),
289–338, (1986).

[18] B. J. Kuipers, Qualitative Reasoning: Modeling and Simulation with
Incomplete Knowledge, MIT Press, 1994.

[19] J. Lee, V. Lifschitz, and F. Yang, ‘Action language BC: preliminary
report’, in Artificial Intelligence (IJCAI), 23rd International Joint Con-
ference on, pp. 983–989, (2013).

[20] M. Ostrowski and T. Schaub, ‘ASP modulo CSP: The clingcon system’,
Theory and Practice of Logic Programming, 12(4-5), 485–503, (2012).

[21] M. Platzner, B. Rinner, and R. Weiss, ‘Parallel qualitative simulation’,
Simulation Practice and Theory, 5(7-8), 623–638, (1997).

[22] C. J. Price, L. Trave-Massuyes, R. Milne, L. Ironi, et al., ‘Qualitative
futures’, Knowledge Engineering Review, 21(4), 317–334, (2006).

[23] C. K. Tseng, I. H. Li, Y. H. Chien, M. C. Chen, and W. Y. Wang, ‘Au-
tonomous Stair Detection and Climbing Systems for a Tracked Robot’,
in System Science and Engineering (ICSSE), IEEE International Con-
ference on, pp. 201–204, (2013).

[24] I. Vincent and Q. Sun, ‘A combined reactive and reinforcement learn-
ing controller for an autonomous tracked vehicle’, Robotics and Au-
tonomous Systems, 60(4), 599–608, (2012).

[25] T. Wiley, C. Sammut, and I. Bratko, ‘Planning with Qualitative Models
for Robotic Domains’, in Advances in Cognitive Systems (Poster Col-
lection), Second Annual Conference on, pp. 251–266, (2013).

[26] T. Wiley, C. Sammut, and I. Bratko, ‘Qualitative Planning with Quanti-
tative Constraints for Online Learning of Robotic Behaviours’, in Artifi-
cial Intelligence (AAAI), 28th AAAI Conference on (to appear), (2014).

T. Wiley et al. / Qualitative Simulation with Answer Set Programming920


