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Quantifying the Completeness of Goals
in BDI Agent Systems

John Thangarajah! and James Harland? and David N. Morley? and Neil Yorke-Smith*

Abstract. Given the current set of intentions an autonomous agent
may have, intention selection is the agent’s decision which inten-
tion it should focus on next. Often, in the presence of conflicts, the
agent has to choose between multiple intentions. One factor that may
play a role in this deliberation is the level of completeness of the
intentions. To that end, this paper provides pragmatic but principled
mechanisms for quantifying the level of completeness of goals in a
BDI-style agent. Our approach leverages previous work on resource
and effects summarization but we go beyond by accommodating both
dynamic resource summaries and goal effects, while also allowing a
non-binary quantification of goal completeness. We demonstrate the
computational approach on an autonomous robot case study.

1 Introduction

In agent systems in the Belief-Desire-Intention (BDI) tradition, the
most common conceptualization of goal accomplishment is discrete:
a goal is either complete (usually, a plan for it has succeeded), or it is
incomplete (whether execution of a plan or plans for it has begun or
not) [4, 23]. For the deliberation that an intelligent agent undertakes
about its goals — such as the decision about which intention to focus
on next — the agent is thus limited to a coarse binary approximation of
goal completeness. If the agent were able to compute a finer-grained
approximation of the level of completeness of its goals, it could make
more nuanced and potentially more suitable decisions. For example,
when resolving goal conflicts [20], the agent may choose to continue
with the goal that is more complete than the other.

While the notion of partially-complete goals has been defined in
the literature [26, 23], reasoning frameworks to date have largely left
unanswered how to compute the level of completeness of a goal in a
realistic and principled manner.

Our focus in this work is to provide a principled and general ap-

proach that can be used computationally to quantify a measure of

completeness for a given goal. It is not our aim here to specify how
an agent subsequently uses this information, i.e., its (intention) de-
liberation mechanisms.

There are a number of factors that may contribute towards assess-
ing the completeness of a goal: resources, deadlines, number of ac-
tions/plans complete, time elapsed, effects realized, etc. In this paper,
we propose the use of two factors to determine a quantifiable mea-
sure of completeness of a goal: resource consumption and the effects
of achieving the goal.
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First, we use resource consumption to provide a measure of the
level of effort the agent has dedicated towards satisfying the goal.
There has been previous work on representing resource requirements
and continuously refining them as the agent executes its goals [22,
14]. We build on this existing work to provide a quantifiable measure
of completeness with respect to effort.

Second, the effects of a goal capture its desired outcome, generally
in terms of conditions that should be true when the goal execution is
complete [16, 20]. For example, the effect of a goal of a Mars rover
robot to scan an area for targets of interest is that the area is scanned.
We use the effects of the goal to provide a measure of the level of
goal accomplishment, since the purpose of the goal is indeed to bring
about its intended effects. As with resources, we build on and ex-
tend existing work on representing and reasoning about the effects
of goals and plans [21]. In that prior work, effects are represented
as boolean predicates, such as area-scanned in the rover example.
However, there may be instances where the conditions may be satis-
fied to a certain degree, such as the area is 80% scanned. We extend
the prior work to allow for this representation.

Besides these two factors representing effort and accomplishment,
we mention two other factors that might seem amenable to be used as
a measure of completeness: the number of actions performed by the
agent and the time taken. To reason with the number of actions would
require the assumptions that all actions are explicitly represented and
that the distribution of effort to perform each goal is known. Our
experience finds this to be not the case with most practical agent
systems developed in languages such as JACK [24], SPARK [13],
GORITE [15], etc., where actions are arbitrary code and, crucially,
are not explicitly represented. Time, on the other hand, can be mea-
sured with respect to the pace of goal execution. However, to reason
about the time required to execute a particular goal, an explicit rep-
resentation of the time taken to execute each action or an entire plan
is needed. If this is the case, then it is possible to consider time as
a type of resource and use the same computational mechanisms we
describe for resources, as we will illustrate. To ensure tractable com-
putation, however, we do not consider dedicated temporal reasoning
or projections (compare [23]).

The contribution of this paper, then, is a principled mechanism for
computing completeness of top-level goals of a BDI-style agent in
order to inform the agent’s deliberation. To our knowledge, this work
is the first to study such computation with an emphasis on tractable,
pragmatic reasoning.’

Sect. 2 situates our work in the literature. Sect. 3 describes an au-
tonomous robot case study. Sect. 4 presents our computational ap-
proach and its implementation. Sect. 5 suggests future directions.

5 An abstract sketch of the ideas presented in this paper, without details of
the mechanisms, appeared as an extended abstract at AAMAS’14 [18].
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2 Background

While goals in agent programming languages are not customarily
defined to allow for partial completeness, Holton, from a philosoph-
ical stance, argues for the existence of “partial intentions”, a concept
spanning both desires and goals [8]. Haddawy and Hanks made an
early study [6], in which a function from propositions to a real num-
ber represents the degree of satisfaction of a goal.

Goals have commonly been associated with a utility, priority, or
preference in the literature of agents (e.g., [9, 7, 11]) and of Al plan-
ning (e.g., [2]). The purpose is usually for a form of intention selec-
tion: which goals to prioritize/pursue, or which plan/action to select.

Thangarajah et al. [19] explore multiple criteria that an agent may
include in its goal deliberation, including utility, preference, dead-
line, resource considerations, goal interactions, effort to date, and
likelihood of success. Although they describe a dynamic constraint-
based reasoning mechanism, these authors also do not explicitly con-
sider reasoning with partially-complete goals.

Based on their earlier work [22, 21], Thangarajah and Padgham
[20] study goal interactions, both positive (synergy) and negative
(conflicts). Their work considers action effects as simple boolean
predicates. They define the Goal-Plan Tree (GPT) structure of alter-
nating layers of goal and plan nodes, and use this structure to inform
deliberation such as goal adoption and plan selection. The reasoning
centres around the use of resource and effect summaries annotated
on GPT nodes and dynamically updated as execution proceeds.

Morley et al. [14] further develop reasoning in a BDI-style agent
over GPT structures. They provide an algorithm for an agent to dy-
namically update resource estimates on GPTs —i.e., as a goal is exe-
cuted — accommodating resource bound information, parameterized
goals, and rich plan constructs. Again unlike our work, they do not
explicitly consider reasoning with measures of goal completeness.

Zhou and Chen adopt instead a logical approach, defining a se-
mantics for partial implication of desirable propositions [25]. Zhou
et al. [26] investigate partial goal satisfaction on the basis of this
logical semantics, viewing a goal as completed when a (possibly dis-
junctive) proposition is achieved according to the logic. They focus
on application of different notions of partial implication to goal mod-
ification in the context of belief change.

van Riemsdijk and Yorke-Smith formalize the concept of a
partially-complete goal for a BDI-like agent [23]. They capture par-
tial satisfaction of a goal using a progress metric, and a minimum
value that the goal must attain for the agent to consider it completely
satisfied. They describe agent reasoning using such a representation,
but do not provide any detailed computational mechanisms.

As van Riemsdijk and Yorke-Smith point out, there is a body of
work on reasoning with partial plans, for instance in plan formation
or negotiation (e.g., [12, 5, 10]), as well as in the Al planning litera-
ture (e.g., [17]). For example, in the area of multi-agent planning and
negotiation, Kamar et al. investigate helpful assistance of teammates
in pursuit of a plan that could be partially complete [10].

In the context of Hierarchical Task Network (HTN) planning,
Clement et al. [1], based on their earlier work, summarize propo-
sitional and metric resource conditions and effects (of which [20]
can be seen as a special case) of a partial temporal HTN plan, and,
like [21], use these to determine potential and definite interactions
between abstract tasks. Their work admits resource bound informa-
tion and emphasizes facilitating the HTN planning process. Although
accommodating interleaved local planning, multiagent coordination,
and concurrent execution, their work is not in the context of BDI-
style agents and does not target measures of goal completeness.

3 Scenario

We illustrate our approach on a Mars rover scenario. An autonomous
rover has these resources: spectroscope utilizations, internal memory
capacity (for images), and time. The spectroscope involves drilling a
small sample from a target (e.g., a rock), and the rover’s drill bit has
a limited lifetime; hence the spectroscope is a consumable, discrete
resource. Memory is a replaceable, discrete resource; and time (sec-
onds) is a renewable but perishable continuous resource. The rover’s
top-level goal is ExploreRegion(red1), where redl is a designated
region. The rover believes that region redl has a rock of interest,
rockl, which it is currently near, and an area of interest, canyon,
within region red1 but some distance away from rock1, which it has
been instructed to survey.

The GPT is shown in Fig. 1. Following the plan traverseAnd-
Study for ExploreRegion(red1), the rover will perform an Experi-
ment(rock1) on rock1, Traverse(rock1, canyon) (i.e., move) from
rock1 to canyon, and then Survey(canyon).

For an Experiment goal, the rover can choose from two possi-
ble plans, one using its spectroscope and the other its thermal image
device. In both cases, the rover moves close to the target object, po-
sitions its device arm, and performs the measurement and saves any
data. For the Survey goal, the rover has a single plan, which is to
first IdentifyTargets, which may be fulfilled by a plan that uses the
panoramic camera and then selects a target, and second Experiment
on the selected target object. (A more elaborate scenario would in-
volve iterating through a list of targets.)

Fig. 1 also shows the effects and the resources estimated to be
required for each leaf plan node. We assume these estimations are
specified by the rover’s designer, e.g., based on past experiences.
The resource annotations on plans are single values (when the re-
source usage can be estimated precisely by the designer), or ranges
shown in square brackets (when they cannot be estimated precisely).
For simplicity, we work with lower and upper bound range estimates
(compare [14, 1]). For example, (time: [20,30]) denotes the required
amount of resource time for the plan is estimated to be at least 20
and at most 30 seconds. The remaining annotations are computed
from the leaf nodes and goals as we will describe. In particular, note
that each goal has a set of success conditions annotated to it, in addi-
tional to the effects. More details on this follow in the next section.
Note for space reasons we omit the repeated subtree rooted at Exper-
iment(target) in the right-hand branch of the GPT, as it is indentical
to the subtree rooted at Experiment(rock) apart from the argument.

In order to state an appropriate success condition for goals such
as Experiment(rock1), we use a predicate Measured(X), which is
true if either SpectralProfile(X) or ThermalProfile(X) is true. This
is easily implemented by an appropriate rule in the agent’s beliefs.

4 Quantifying Completeness

Our aim is to provide a principled and general computational ap-
proach to quantify a measure of completeness for a given goal. We
focus on resource consumption and the effects of achieving the goal.

4.1 Preliminaries

A typical BDI agent system consists of a plan library in which, for a
given goal, there are one or more plans that could possibly achieve
the goal (OR decomposition); each plan performs some actions or
posts a number of subgoals all of which must be achieved (AND
decomposition). A subgoal is in turn handled by some plan in the



J. Thangarajah et al. / Quantifying the Completeness of Goals in BDI Agent Systems 881

DE, PE = Definite, Potential Effects

? ExploreRegion(red1) IIJE { TargetLi: , M d

={ TargetL (canyon), ockd), N target))

k1), Measured target)}

Goal §=8 Conditions

N,P = Necessary, Possible Resources i

__________________ 1| N = { (memory,140), (time,560) }

PE = { SpectralProfile(rock1), ThermalProﬁIe:rock!) pectralPr

ThermalProfile(target) )

={ ((drill,2), memory, 200), {time,1120) }

? Experiment{rock1) |

OR

S = { Measured(rock1) }

DE = { ArmPositi ock1), M d(rock1) }

PE = { SpectralProfile(rock1), ThermalProfile(rock1) }
N = { (memory,20), (time,80) }

P = { ((drill,1), (memory, 50), (time,260) }

DE= (Ta.rgetLlsl:canyun:)
PE = { SpectralProfile(rock1),
SpectralProfile(target), ThermalProfile(target) }
N = { (memory, 140), (time,560) }
P = { ((drill,2), memory, 200, (time,1120) }

),

? Survey(canyon)

= (TargetList(canyon), Meﬂsumd[tzrgel) }
DE {Targetl
PE= (Spectralﬁoﬁle:larget: Thenna\F'rnﬁIe(lirgel)}
N = { (memory,120), {time,380) }
P = { (drill,1), (memory,150), (time,560) }

E Traverse(rock1, canyon)

§ ={At{canyon) }
DE = {At{canyon) } PE={}
N = { (time,100) } | P = { (time,300) }

target) }

{ (memory,50), (time,80) }

N = { (drill1), (memory,20); (time,100) } ‘P i e}
= { (memory,30), (time,

I i

| Sﬁec"ﬂsmﬂﬁf’oc*” i 5 traverse{red?, canyon) i ! SUWE]‘fCi”)“’”J |
PR P St Sy bt S N T e i ws e SRR
DE = { AmPositioned{rockl), SpectralProfile{rock), Measuredirocki) } |DE = { AmmP (rock1)) |pg = (atfcargor ] PE=() | |DE= (TargetListcanyon), AmnPosii get))
PE={ PE={) N={ limed00)) P ={ {ime300)] PE = {Sp (target), ThermalP }

(memory, 120}, (time,380) }
P = { (drill 1), (memory,150), (time,560) }

P = { (drill1), (memory,20), (time,260) }
?PosilionArrn{rocH] I MeasurementS(rock1) FF’OSIHOHAH‘MFOCM) ‘

i Experiment(target)
ﬁeasuremenﬂ':rocm) | IdentifyTargets(canyon)
Il

§ = (TargetList(canyon) } 1
DE = {TargetList{canyon) }

Measured(rock1) } PE={}

N = { (memory,100), (time,300) }

|P ={ (memory, 100], (time,300) }

(memnr’y.ﬂ:)‘ (time,30) }

[DE= { ArmPositioned(rock1) } DE = { SpectralProfile(rock1), DE = { ArmPositioned(rock1) }

PE=(} Measured(rock1) } PE={}
N ={ (time,60) } PE={} =1 ti
|P={(time,180) } N ={ (drill,1), (memory,20), (time,40) } : = f (‘}:E;'fﬁ!,,’ }

P = { (drill, 1), (memory,20), (time,80) }

[s= {AmrF 1} S = { M d(rock1) } §= { ArmPositioned(rock1) } S ={ Measured(rock1) }
DE = { ArmPositioned(rock1) } DE ={ SpectralProfile(rock1), DE = { ArmPositioned(rock1) } DE = { ThermalProfile(rock1),
PE= 0_ Measured(rock1) } PE={}
N={ (time,60) } PE={} N ={ (time,60) } PE={}
P = { (time,180) } N = (drill,1), (memory,20), (time,40) } P = { (time, 180) } N ={ (memory,50), (time,20) }
P = { (drill1), (memfly,!ﬂ], (time,80) } h P={
T H [rTTTTTTTT H P - ! r
E positionArm(rockd) ] | measurementS(rock1) i i positionArm(rock1) i i
i | i | 1 ! |
i i

DE = {TargetList{canyon) }
PE={}

N = { (memory,100), (time,300) }
P = { (memory,100), (time,300) }

DE ={ ThermalProfie{rock1),
Measured(rock1) }

E={}

= { (memory,50), (time,20) }

={

Pl
N={{
P = { (memory,50), (time,30) }

Figure 1.

plan library. This decomposition leads to a Goal-Plan Tree structure
of the kind illustrated in Fig. 1.

The spirit of our approach follows that of Clement et al. [1] and
particularly Thangarajah et al. [20, 21]: we require the goals and
plans be annotated with certain information about the resource re-
quirements and effects attained, we generate a Goal-Plan Tree struc-
ture with annotations, and use it as described in the sequel.

4.1.1 Resources

The resources consumed when a goal is executed by an agent de-
pends on the plans that are used to achieve the goal. As such, re-
source requirements are not annotated on goals, but only at the plan
level. Following [20, 14], each plan will have ascribed the resources
necessary for the plan to complete execution. These do not include
the resources required for executing the subgoals of the plan, if any.
This declarative specification can made by the agent designer, or in
some domains learned from past execution traces.

Def. 1 A set of resources R is a set of key-value pairs {(r1,a1), - . .,
(rn,an)} where T is the unique resource name and co; € N is its
corresponding value.

For example, in Fig. 1, plan measurementT has lower-bound re-
sources {(memory, 50), (time, 20)}. N and P are the necessary and
possible resource summaries, defined below in Def. 3.

We consider resources of two types: consumable and reusable.
The former are those that are no longer available following use (e.g.,
drill bits) and the latter are those that can be reused following usage

Goal-Plan Tree in the Mars rover scenario. Resources and effects are shown annotated on nodes.

(e.g., memory, although note in the timescale of the scenario, mem-
ory is not reused). In this work we consider both types to be of equal
importance, since their relative importance depends on the domain.

4.1.2 Effects

A goal g will have a success condition, which describes the state of
the world that must be true in order for the goal to be accomplished
[16]. We define the success condition to be a set of effects, S(g),
where the conjunction of the effects must hold for the goal to be com-
plete (we do not support disjunctions). A plan p will have attached to
it the effects attained by the direct actions of that plan [21] excluding
the effects of any subgoals that are executed by other plans.
Previous work about effects reasoning [21, 20] defined the effects
of a goal (or plan) as simple predicates that are either true or false. As
we have seen, this neglects effects which are not discrete but fulfilled
continuously to a certain degree. For example, a goal like Identify-
Targets in Fig. 1 involves scanning the canyon for targets, and so
may be considered 60% complete once it has scanned 60% of the
area of the canyon, which would result in an effect of (area-scanned,
60). Let £ be the set of all effect-types relevant to the agent system.

Def. 2 An effect is a key-value pair (e, ) where e € &, the effect-
type, is an unique identifying label and o € R is the degree to which
the effect has to be attained for it to be achieved. For discrete effects,
a € {0,100}, for continuous effects, 0 < a < 100.

For example, consider a variant of the goal Identify Targets which
scans an area and selects a target. Its effects can be represented as:
{ (area-scanned, 80), (target-selected, 100) }.
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4.1.3 Summary Information

In order to determine the level of completion of a goal g at the cur-
rent time ¢, with respect to resources or effects, it is necessary to
determine (1) the resources consumed and effects attained thus far in
executing g, and (2) the resources required and effects that should be
attained in order for the goal to complete from ¢.

While the former step can be computed accurately, by monitor-
ing the resource consumption and checking the current state of the
world for effects achieved, the latter step is more complex. The nature
of BDI agent systems are such that there are different ways (plans)
of accomplishing a particular goal, and these may use different re-
sources and bring about different effects. Moreover, plans may fail
and unexpected events may occur. The deliberation on which way
to achieve the goal (i.e., plan selection) is made dynamically dur-
ing execution depending on the context the agent is in, and hence is
not known in advance. Consequently we cannot always say a priori
precisely what resources will be needed to accomplish a given goal.

Further, although no matter which way a goal is pursued, its effects
ought to be attained, the way in which the goal is achieved may result
in further effects. Some of these (side-)effects may be necessary no
matter which way the goal is achieved; others not.

Note that the goal Experiment(rock1) results in the effect Arm-
Positioned(rock1l) no matter which plan is followed, while the ef-
fects SpectralProfile(rockl) and ThermalProfile(rockl) depend on
the choice of plan used.

The second step above therefore requires some form of look-ahead
for both resources and effects. It suffices for us to adopt and extend
the efficient look-ahead mechanism of [20, 21] which uses summary
information to compute a lower- and upper-bound of future resource
usage and effects attained.

Resource Summaries. Previous work used the notion of summary
information to estimate the necessary (lower-bound) and possible
(upper-bound) resource requirements of a goal [1, 20]. Necessary
resources are those that are used no matter which way the agent
chooses to achieve the goal, while possible resources are those that
may be needed in the worst case.

In this work, we adopt the algorithms for computing and updating
resource summaries as described in [20, 14]. We do not detail the
same algorithms here since it is not the contribution of this work and
is not necessary to understand the approach we present.

Def. 3 The dynamically updated resource summary of a goal g at
time t is:

RS'(9) = (N&r(9), Pr(9)) (1)

where Nk(g) is the set of necessary resources and Pj(g) the set of
possible resources required to execute the goal from current time t.

Effect Summaries. Effect summaries of a goal are defined in terms
of definite and potential effects: definite effects are those that are
brought about no matter which way the goal is achieved, while poten-
tial effects are those that may potentially be brought about depending
on the way the goal is achieved.

Thangarajah et al., similar to their work on resource summaries,
presented a set of algorithms for deriving effect summaries at com-
pile time and updating them dynamically at run-time [21].

Def. 4 The effects summary of a goal g is:

ES(g9) = (Dg(9), Pe(g)) 2

where Dg/(g) is the set of definite effects and Pr(g) is the set of
potential effects that will be bought about by pursuing the goal g at
the current time t.

For example, the goal Survey(canyon) in Fig. 1 has def-
inite effects Dg(Survey(canyon)) = {TargetList(canyon),
ArmPositioned(target), Measured(target)}, and potential effects
Pg(Survey(canyon)) = {SpectralProfile(target), ThermalPro-
file(target)}. Note that Dg(g) and Pg(g) are exclusive. Note also
that the success condition of the goal is a subset of the definite
effects, i.e., S(g) € De(g).

4.2 Resources as a Measure of Completeness

The aim of our resource analysis is to provide an agent with a quan-
tified measure of effort with respect to the amount of resources con-
sumed thus far in executing a goal, in the context of the total resource
requirements for achieving the goal. Hence we require the agent to
keep track of the total resources consumed in executing each goal.

Def. 5 Let R'(g) be the set of resources consumed thus far up to
current time t solely by the execution of g.

We write (R'(g)) (r) for the value of resource 7 in R*(g) at time
t,i.e., the value «.. (see Def. 1).

Lower-Bound Resource Consumption Analysis. We use the neces-
sary and possible resource summaries to provide a lower- and upper-
bound resource consumption analysis, respectively.

Def. 6 The lower-bound resource consumption analysis of a goal g
at the current time t is:

> (R*(9))(r)

Rt PNt r
Tedom(m(g)u%(g))( (9)ON4(9))(r)

| B*(9) © Ni(9) |

where dom denotes the domain of the resource types set, i.e., the
set of key values (Def. 1). The resource set addition operator () is
defined as: R1 & R2 = {(r, R1(r) + Ra(r)) | r € (dom(R1) U
dom(Rz2))} where r is a resource type and R;(r) provides the value
of r in the relational set R; C R.

Note that the plausible intuition that C' R}, is non-decreasing does
not hold in general, as in fact can be seen in execution traces in the
Mars rover scenario.

CRy(9) = ©))

Upper-Bound Resource Consumption Analysis. The computation
is the same as for the lower bound, except instead of the necessary
resource summary we use the possible resource summary.

Def.7 The upper-bound resource consumption analysis of a goal g
at the current time t is:

D (R*(9))(r)
t t r
redom (Rt (1)UPY (a) (Rt (9)®PE(9))(r)

CRi,(9) = | Rt(g) ® PL(9) | @

Example 1 Consider the goal ExploreRegion(redl) at the
point where Experiment(rockl) has completed but neither
Traverse(rockl,canyon) nor Survey(canyon) has started. Let
R'(Experiment(rock1)) = {(drill, 1),(memory,40),(time,150)}.
Then we have:
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Nk (ExploreRegion(redl)) = {(drill,0),(memory,120),(time,480)},
P%(ExploreRegion(redl)) = {(drill,1),(memory,150),(time,860)},
and further:

CRY, = (1/(140)+40/(40+120)+150/(150+480)) /3 = 49.6%
CRY, = (1/(14+1)+40/ (40+150)+150/(150+860)) /3 = 28.6%

This approach treats the different resources, e.g., drill bits, mem-
ory, fuel, etc., and the resource types, i.e., consumable and reusable,
to be of equal importance when measuring completeness, placing
the emphasis on domain independence. A future extension would be
to weight certain resources or resource types according to domain-
dependent criteria. It is straightforward to include these weights in
the above computation.

4.3 Effects as a Measure of Completeness

We now turn from resources, a measure of effort, to effects, a mea-
sure of accomplishment. As we have discussed, the effects of a goal
can be thought of as the state of the world that the agent wants to
achieve in order to accomplish the goal. For instance, in the exam-
ple at the end of Sect. 4.1.2, the rover’s goal to survey the area may
have the effects of area-surveyed and target-selected. The percent-
age of these effects currently achieved gives a quantifiable measure
of accomplishment. Note that the issue at hand is not how to express
effects (e.g., the language used for S(g)) but how to quantify goal
completeness. We propose two computational approaches: the first
based on the success condition of the goal and the second on the
effect summaries of the goal.

4.3.1 Completeness Based on the Success Condition

One way of determining the level of completeness of a goal g, with
respect to accomplishment, is to determine the percentage of effects
in the success condition S(g) achieved at the current point in time.

In order to compute this measure the agent needs to know the cur-
rent value of a given effect, and to know the initial values of the
effects in the success condition of the goal.

Def. 8 Let B'(e) be a function that evaluates the current value o of
the effect e € £ as known by the agent at the current time t.

Unlike the success condition or effect summaries, where the value
of the effect is what needs to be accomplished in the future, the value
of the effect determined by B’ (e) is the current value of the effect e
as estimated by the agent.

Def. 9 The initial set of effects for a goal g is Bi(g) = {(e,a")|e €
E}, where o' is the value of e when the execution of g begins.

We compute the level of completeness w.r.t. S(g) by calculating
the percentage of the value of each effect in S(g) currently achieved
by the agent relative to initial value when the goal execution began
and the value to be achieved. For an effect e € dom(S(g)), we write
S(g)(e) to denote the value of e in S(g), and similarly for B*(g).

Def. 10 The level of completion of a goal g at the current time t with
respect to the effects in the success condition is:

CEs(g) =

ecdom(S(g))

For example, the goal Survey(canyon) in Fig. 1 has
S(Survey(canyon)) = {TargetList(canyon), Measured(target)}.
If Identify Targets(canyon) has completed but Experiment(target)
has not commenced, we have CE%(Survey(canyon)) = (1 —
0)/(2 —0) = 50%.

4.3.2 Completeness Based on the Effect Summaries

The above computation does not take into consideration effects other
than those in the success condition of the goal, even for those goals
where some (side-)effects are necessary in order to achieve the goal’s
effects. We include these effects as part of the quantification of com-
pleteness and use effect summaries to present a lower-bound using
the definite effect summary, and an upper-bound using the combined
definite and potential effect summaries (since they are exclusive).
Note that goal side-effects were also included in the resource sum-
mary approach of Sect. 4.2; only in Sect. 4.3.1 are they not relevant.
We adopt the techniques developed in [21] for deriving and up-
dating the effect summaries, but generalize their formulae to operate
on a set of effects that are composed of key-value pairs and not sim-
ple predicates. This generalization changes the way in which the sets
of effects are added () and merged (®). We detail the redefined &
operator below but omit the ® operator as this work does not use it.

Def. 11 The lower-bound effect accomplishment analysis of a goal
g at the current time t, CE},(g), is:

B'(e) — B'(g)(e)
Z Dx(g)(e) — Bi(g)(e) /|DE(9)| (6)

ecdom(Dg(g)) g)

Def. 12 The upper-bound effect accomplishment analysis of goal g
at the current time t, CEL,(g), is:

B'(e)~B'(g)(e).
(Dp(@)@Pp(9)(e) - B (g)(e)

<
ecdom(Dg(g)®Pg(g))
|De(9) ® Pe(g)]

)

where for any two sets of effect-value pairs £y and E2, E1 & E»
= {(e, Er(e) + Ea(e)) | e € (dom(Er) Udom(E»))}

Example 2 Consider the goal Survey(canyon) in Fig. 1 which
has Dg(Survey(canyon)) = {TargetList(canyon), ArmPosi-
tioned(targer), Measured(target)}, and Pr(Survey(canyon)) =
{SpectralProfile(target), ThermalProfile(target)}. If the subgoal
Identify Targets(canyon) has completed but Experiment(target)
has not commenced, and none of the effects were true at the start
of the goal execution, we have:

CE},(Survey(canyon)) = (1 — 0)/(3 — 0) = 33%
CE!,(Survey(canyon)) = (1 —0)/(5 — 0) = 20%

4.4 Implementation

We have implemented our computational approach, and used it on
the example scenario described in Sect. 3. The implementation is in
Orpheus, a Prolog implementation of the agent language CAN [16].
The additional Prolog code for the computation of the completion
measures amounts to approximately 300 lines of code. The imple-
mentation processes the goals in the Mars rover scenario in negligi-
ble additional time, compared to the time without the extra code for
the completeness calculations.
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Recall that our emphasis is not on raw computational efficiency,
but on finding principled, tractable ways to quantify completion es-
timates for goals. Hence we do not perform efficiency comparisons
with other methods — since there are none to directly compare with,
as [20, 14], etc, do not account for partial satisfaction, while [23] do
not provide computational mechanisms — nor characterise the likeli-
hood of plan success/failure, but measure goals’ progress.

In the scenario, given an imminent deadline such as the approach
of dusk, it may be reasonable to terminate the execution of Iden-
tifyTargets(canyon) once a sufficient fraction of the canyon has
been surveyed, or if a sufficient number of targets has been found.
This would allow the top-level goal (ExploreRegion(redl)) to be
completed before the deadline, despite not having fully explored the
canyon for all possible targets. The information computed at run-time
by our approach provides a quantifiable basis for such decisions.

Space limitations prevent us from giving here the detailed traces
from the scenario. The code and execution output are available
from the authors’ website (http://goanna.cs.rmit.edu.
au/~Jjah/orpheus/).

5 Conclusion and Future Work

This work is motivated by how an agent can obtain information to
make the most suitable decisions about its courses of action. We
have provided a principled mechanism for computing completeness
of goals of a BDI-style agent. To our knowledge, this work is the first
to study such computation with an emphasis on tractable, pragmatic
reasoning. Our technical approach leverages and extends earlier work
on efficient resource and effect summarization, and we retain the low
computational overhead. An agent can use the estimations of goal
completeness in order to inform its deliberation in important areas
such as goal prioritization and conflict resolution [23, 20]. This pa-
per provides a foundation for reasoning: it is not our aim here to
specify the mechanisms by which an agent exploits this information
(see, e.g., the discussion in [23]). The approach in this paper applies
to plans as well as goals, except for the completeness based on the
success condition (Sect. 4.3.1).

We have implemented the computational approach and used it to
analyse a Mars rover scenario. Beyond this scenario, we plan to ex-
amine a set of real-world scenarios in order to gain a deeper under-
standing of the usefulness of the approach, particularly the relative
value of the resource-based and the effect-based computations.

Two potential aspects for further work relate to the potentially non-
monotonic nature of effects. First, despite having made one or more
effects become true, these effects could be undone by either another
agent, or by interactions with the environment, such as wind mov-
ing rocks around after the agent has positioned its robot arm, or an
identified target being moved from its initial location. This means
the calculations above would need to take into account the need to
re-establish effects which had been previously made true.

Second, one can consider the resource costs for failed plans. For
example, if the Mars rover attempts a spectroscopic analysis, but
finds that it fails, it may still consume drill bits, memory and time
in doing so. This means that we need to adjust the calculations for
the definite and potential resource estimates for completing the goal
to take the resources used in failed subgoals into account.

Another avenue for further work is to investigate domain-
dependent weighting of resource and effect types. For example, if
a certain resource is unused (such as the drills resource in the Sur-
vey(canyon) goal in the above example) then its contribution to the
goal’s overall completeness can be discounted.

A final direction is how to apply the techniques of this paper to
more complex goal types, such as maintenance goals, for which the
agent maintains a given condition, rather than simply achieve it [3].
For such goals which have a more intricate goal life cycle, the chal-
lenge is to define a suitable notion of completeness measurement.
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