ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and 10S Press.

873

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-873

Knowledge-based Specification of Robot Motions

Moritz Tenorth and Georg Bartels and Michael Beetz'

Abstract.

In many cases, the success of a manipulation action performed
by a robot is determined by how it is executed and by how the
robot moves during the action. Examples are tasks such as un-
screwing a bolt, pouring liquids and flipping a pancake. This
aspect is often abstracted away in Al planning and action lan-
guages that assume that an action is successful as long as all
preconditions are fulfilled. In this paper we investigate how
constraint-based motion representations used in robot control
can be combined with a semantic knowledge base in order to let
a robot reason about movements and to automatically generate
executable motion descriptions that can be adapted to different
robots, objects and tools.

1 Introduction

In Al planning, actions are commonly considered as “black boxes”
that are described by their pre- and postconditions and possibly their
composition from sub-actions. Based on this meta-information, plan-
ning methods can generate sequences of actions to get from a given
initial state to a desired goal state. Such a representation abstracts
away from everything that happens during the action: The assump-
tion is that an action is successful if all preconditions hold at the
time it is started, and that all postconditions will hold afterwards.
While this strict model is somewhat relaxed when probabilistic mod-
els are used for planning (which are able to model uncertain action
outcomes), actions are still considered as “black boxes”. Rarely, there
have been efforts towards more realism in modeling and reasoning.
A famous example is the egg cracking action that has been described
in predicate logic, allowing inference about the effects of actions per-
formed with the egg [12]. However, the focus of this work was more
on inferring “what happens if”” and less on choosing parameters for
successful action execution.

When planning robot manipulation tasks, such an abstracted view
is often not sufficient. For many tasks, success or failure is deter-
mined by the choice of action parameters and the motions that are
performed — for example for screwing a bolt into a hole, flipping a
pancake, pouring liquids into a bowl, or stirring cookie dough (Fig-
ure 1). The representation therefore needs to combine semantic as-
pects, such as the goals of an action, with information about which
motions to perform, and with rules for adapting them to the geom-
etry of the involved objects. In this paper, we investigate how se-
mantically rich (symbolic) task representations can be extended with
meaningful descriptions of robot motions. Our aim is to build com-
posable and semantically interpretable task models that can be pa-
rameterized with models of the involved objects and that are thus

! Institute for Artificial Intelligence and TZI (Center for Computing
Technologies), University of Bremen, Germany
E-mail: {tenorth, georg.bartels, beetz } @cs.uni-bremen.de

Figure 1. Two views of a pouring task that has been described in the
proposed language and executed by the PR2 robot. The task description is
composed of parts that are inherited from a motion library and can
automatically be adapted to different objects.

=

re-usable in different contexts. We describe motions using the task
function approach [13] which analyses the kinematics and dynamics
of scenes in terms of differentiable vector functions. Following the
example of [3], we specify robot motions as robot-specific task func-
tions with desired constraints over their outputs as set points. The
task function approach enables us to automatically generate the cor-
responding feedback control laws at runtime (Section 5). In our pre-
vious work, we have developed a symbolic description language for
motion tasks based on this approach [1, 9]. We proposed to assem-
ble task functions out of sets of one-dimensional relations between
coordinate frames, allowing the flexible and modular description of
complex motions.

These control-level descriptions, however, lack semantic meaning:
At the controller level, there is no notion of a “goal” to be achieved,
or an “object” to be manipulated — movements are only described
by a set of relations between coordinate frames. This impedes auto-
matic adaption of the descriptions to situations involving novel ob-
jects and tools. We address this issue by integrating the constraint-
based models with a formal knowledge representation language, au-
tomated inference and plan-based task execution. Based on semantic
representations of motion templates, part-based object models and
descriptions of the robot’s structure, our approach can automatically
generate motion descriptions that are grounded in the available tools,
objects and robots. The main contributions of this paper are (-) mo-
tion descriptions that combine the strengths of semantic representa-
tions with constraint-based specifications for improved generaliza-
tion and composability; (-) extraction of generic motion patterns of
motions into a library from which particular movements can be de-
rived; (-) methods for describing the motions in terms of relations
between semantically meaningful object parts that can automatically
be identified in object models and that generalize across particular
object types; and (-) techniques for the automatic selection of the
robot components to be used for a motion (e.g. LeftArm, RightArm)
based on a semantic robot model.

874 M. Tenorth et al. / Knowledge-Based Specification of Robot Motions

CRAM plan-based executive

Abstract plan in the plan library
(def-goal (achieve pour-content-onto ?container ?destination)
(with-designators
((pouring-description
(action *((type constraint-motion)
(to pour)
(obj-acted-with ,?container)
(obj-acted-on ,?destination)))))
(resolve pouring-description)
(perform pouring-description)))

Motion library

constr:HoldObjectAtAngle
constrainedBy:
constr:PerpendicConstraint_E8ysUdzg

N-

constr:PointObjectAt
constrainedBy:
constr:PointingAtConstraint_f5BvdFyF

-\

constr:KeepObjectAbove

constrainedBy:
constr:DistanceConstraint_mjJk8Pzr

constrainedBy:
constr:HeightConstraint_OZjsDn3E

—

Constraint-based Controller

task:PouringLiquid

type: knowrob:'PouringSomething'
subAction: task:'MoveAbove'
subAction: task:'TiltBottle'
subAction: task:'TiltBack'

Task composition

task:MoveAbove

task: TiltBottle

task:TiltBack

subClassOf: constr:HoldObjectAtAngle
subClassOf: constr:PointObjectAt
subClassOf: constr:KeepObjectAbove

n | I B |
objectActedOn: kr:PancakeMaker
deviceUsed: kr:PancakeMix and
(predecInKinChain some kr:RightArm)
= Grounding in semantic

scene description

Figure 2. Overview of the proposed system: Programmers can define tasks by deriving motions from templates defined in the motion library. The abstract
descriptions in these templates are grounded in concrete parts of objects that can be found in the scene. The resulting description is interpreted by the
plan-based executive and sent to the constraint-based control framework for execution.

2 Related Work

While there has been substantial work in Artificial Intelligence re-
search on the representation of actions, those approaches usually ab-
stract the patterns away that we are interested in in this paper. For
example, action languages based on the Situation Calculus, e.g. [17],
allow reasoning about the effects of actions, but on a purely sym-
bolic and logical level. In previous work, we have developed the
RoboEarth language [15] as a representation for sharing task-, map-
and object-related information between robots, though tasks are also
only modeled on a symbolic level. In task-level planning approaches
such as STRIPS [5], HTN [4] or PDDL [6], actions are described
by their preconditions and effects, again abstracting away from the
motions that “happen in between”. Recently, different groups have
explored ways to integrate task- with motion planning [21, 8] or with
lower-level information sources [7]. While these approaches are to
some extent similar, they focus primarily on achieving a given goal
configuration, instead of the description of the motion for achieving
it, and on the generation of a plan rather than the semantic repre-
sentation of the involved steps. In robotics, efforts have been made
to create domain-specific languages for robot behavior specification.
Leidner et al [11] store manipulation-related information associated
with the respective object models. Thomas et al. present an approach
for describing high-level behavior using UML statecharts [18]. Van-
thienen et al. propose a domain-specific language as a convenient
way for creating constraint-based task descriptions [19], defining vir-
tual kinematic chains between the tool and the manipulated object. In
our previous work, we have created a similar language [1] that, how-
ever, uses sets of one-dimensional constraints instead of the virtual
kinematic chains. These research efforts mostly aim at facilitating the
life of a human programmer by providing higher-level program struc-
tures, rather than creating semantically rich machine-understandable
descriptions which we strive for with this work.

3 Overview

Figure 2 explains the different components of our approach. Descrip-
tions of single motions or parts thereof can be stored in a motion li-
brary in the robot’s knowledge base (Section 4.1). These motions are
modeled as action classes that are each linked to a set of constraints
to be considered when performing the motion. The constraints re-
fer to abstract descriptions of object parts, but do not specify which
type of object is to be used. Programmers can describe novel move-
ments as a combination of these motion templates by inheriting from
the motion classes in the library and by adding task-specific infor-
mation on the types of objects and the parts of the robot to be used
(Section 4.2). This task description is still very abstract and refers to
objects only at the class level. For execution, it has to be grounded in
the actual situational context the action will be performed in. This in-
cludes the selection of appropriate object parts and robot components
according to the class-level specifications, which the system does us-
ing geometric-semantic models of objects and their functional parts
(Section 4.3). This grounding step, translating from abstract class de-
scriptions to object parts, is key for the generalization capabilities of
the system, as it allows the application of the same motion templates
to very different objects as long as all required functional parts can be
identified. The resulting task description can then be converted into
a robot plan and be executed using the constraint-based controllers
(Section 5).

4 Knowledge-based Motion Representation

As knowledge processing and inference framework we use
KNOWROB [14], a knowledge processing system specially designed
for being used on robots, which is implemented in Prolog and can
load knowledge stored in the Web Ontology Language OWL [20].
The motion descriptions proposed in this paper are represented in
OWL and extend the RoboEarth language [15] that provides struc-

M. Tenorth et al. / Knowledge-Based Specification of Robot Motions 875

tures for representing actions, object models and environment maps.
KNOWROB provides sophisticated methods for including custom
reasoning rules into the Prolog-based inference procedure that allow
to perform inference beyond the capabilities of OWL, which we use
for example for selecting the most appropriate object parts to be used
for a task.

4.1 Motion Library

The motion library contains abstractly described motion patterns —
partial descriptions of motions between objects such as “keep above”
or “keep to the left of”” that form the vocabulary for robot task de-
scriptions. Each motion pattern is described by a set of constraints
between a part of a tool and a part of an object in the world. The
patterns do not yet refer to specific objects, but to generic object
parts (e.g. the center or the main axis) that will later be grounded
in the objects to be used for a task. Each constraint has the following
properties: Its type (e.g. HeightConstr) describes the kind of relation
encoded; the language currently includes the relations left of, right
of, above of, below of, in front of and behind, as well as the 3D dis-
tance, the height above a surface, and the angle between two vectors
(called PerpendicConstr). The toolFeature and worldFeature specity
which object parts of the tool and of the manipulated object are re-
lated by the constraint. These object parts are described in terms of
a class definition (e.g. ObjectMainAxis, Handle) — either by giving
a named class (the CenterOfObject in the example below), or by us-
ing an OWL class restriction that describes a class by its properties.
Depending on the type of constraint, a third feature in the world is
needed to serve as reference, e.g. to define directional relations such
as leftOf or above. In addition, each constraint specifies a lower and
upper bound for its values. In the examples below, a postfix four-
letter hash has been appended to the class names in order to obtain
unique identifiers. The following listing shows the definition of the
KeepObjectAbove motion pattern:’

Class: KeepObjectAbove
SubClassOf:
ConstrMotion ,
constrainedBy some HeightConstr_OZjs ,
constrainedBy some InFrontOfConstr_-Sv4U ,
constrainedBy some LeftOfConstr_fePC ,

Class: HeightConstr-OZjs
SubClassOf:

HeightConstraint ,
toolFeature some CenterOfObject,
worldFeature some SupportingPlane ,
refFeature value ”/torso_lift_link”,
constrLowerLimit value 0.25,
constrUpperLimit value 0.3

Class: InFrontOfConstr_Sv4U
SubClassOf:

InFrontOfConstraint ,
toolFeature some CenterOfObject,
worldFeature some SupportingPlane ,
refFeature value ”/torso_lift_link”,
constrLowerLimit value —0.03,
constrUpperLimit value 0.03

Class: LeftOfConstr_fePC

4.2 Task Definition

Several of these motion patterns can be combined to form an action,
and multiple actions can be combined to a multi-step task descrip-
tion. For example, the task of pouring liquids from a bottle into a

2 In this paper, we use the OWL Manchester syntax and omit the OWL
namespaces for better readability.

pan consists of the three phases “moving the bottle over the pan”,
“tilting the bottle” and “bringing the bottle back into vertical posi-
tion”. Each sub-action combines different patterns, e.g. for holding
the bottle above the pan and for keeping it upright.

This structure can be expressed elegantly in our language. The fol-
lowing task description for a pouring task first describes the class
PouringSomething as a subclass of Pouring with three subactions
MoveAbovePan, TiltBottle and TiltBack. Since OWL does not inher-
ently describe the order of the subactions, we introduce pair-wise
ordering constraints that impose a partial order among them. They
are not to be confused with the motion constraints that describe spa-
tial relations between object parts. The classes for describing the
subactions are each derived from different motion patterns and in-
herit the constraints described for these patterns. For example, the
class MoveAbovePan inherits the constraints HeightConstr_OZjs, In-
FrontOfConstr_Sv4U and LeftOfConstr_fePC from the class Keep-
ObjectAbove and the constraint PerpendicConstr_gpdESyUz from
the class HoldObjectUpright. This very concise formulation is possi-
ble because constraints are a composable description of motions and
thus allow the combination of different patterns.

Class: PouringSomething
SubClassOf:
Pouring ,
subAction some MoveAbovePan,
subAction some TiltBottle ,
subAction some TiltBack ,
orderingConstraints value Pour01_-h0t7 ,

orderingConstraints value Pour02_3KER,
orderingConstraints value Pourl2_TE30

Class: MoveAbovePan
SubClassOf:
KeepObjectAbove ,
HoldObjectUpright ,
deviceUsed some BottleCapInLeftHand ,
objectActedOn some PancakeMaker

Class: TiltBottle
SubClassOf:
HoldObjectAtAngle ,
KeepObjectAbove ,
deviceUsed some BottleCapInLeftHand ,
objectActedOn some PancakeMaker

Class: TiltBack
SubClassOf :
KeepObjectAbove ,
HoldObjectUpright ,
deviceUsed some BottleCapInLeftHand ,
objectActedOn some PancakeMaker

4.3 Resolving Abstract Object Descriptions

The motion patterns only refer to abstract parts of (so far unknown)
objects. The task definition adds information on which types of ob-
jects are to be used as tool (the deviceUsed) and as object to be
manipulated (the objectActedOn). The information about the parts
(from the pattern definition) needs to be combined with the descrip-
tion of which objects these parts belong to (from the task definition)
and with models of the objects’ geometry to identify the positions of
the object parts to be used as roolFeature and worldFeature. For this
purpose, we employ the part-based object representations proposed
in [16] that combine geometric aspects (position of parts and geomet-
ric primitives approximating their shapes) with semantic properties
(type and function of these components). The models can automati-
cally be generated from CAD models using geometric segmentation
techniques. In our experiments we used CAD models downloaded
from online repositories such as the Google/Trimble 3D warehouse’.

3 http:/3dwarehouse.sketchup.com/

876 M. Tenorth et al. / Knowledge-Based Specification of Robot Motions

Spoon458
type: knowrob:'Spoon'
linkToCADmodel: spoon2.dae

properPhysicalParts: 'Container463' f

properPhysicalParts: 'Handle461'

Container463

type: knowrob:'ConcaveSphere'
type: knowrob:'Container
volume: 15, 'ml'

Handle461

type: knowrob:'Cylinder'

type: knowrob:'Handle'

radius: 0.41, 'ecm'

length: 7.1, 'cm'
e

-

Figure 3. Part-based object representation generated from a CAD model.
By geometric analysis, functional parts are identified and stored in the
knowledge base. The resulting models combine geometric (poses,
dimensions) and semantic aspects (types, properties).

The part-based model is represented in the knowledge base (Fig-
ure 3), enabling us to specify logical rules on the level of semantic
object parts (e.g. a handle, the main axis, a bottle cap), that are eval-
uated on the geometric model. Using this approach, the system can
make the link between abstract class descriptions of object compo-
nents and the corresponding geometric parts.

More specifically, the robot has to determine a suitable part Fea-
turelnst that matches the definition of the FeatureClass from the
constraint description (e.g. CenterOfObject), and that is part of an
object of type ObjClass given by the motion description. The fol-
lowing rules are examples of how this functionality is implemented.
In the simplest case, the required parts can already be found in the
part-based object model (first rule). The owl_individual_of predicate
supports complete OWL inference, i.e. the classes do not have to be
simple named classes, but can also be complex OWL class restric-
tions. However, some required parts may not be available in the pre-
computed object model and have to be identified by special rules that
define features such as the main axis of an object (second and third
rule below). This rule-based approach allows to easily extend the set
of primitives that can be used for describing motions.

% Evaluate on pre—computed object model
object_feature (FeatureClass , ObjClass, Featurelnst) :—
owl_individual_of (ObjInst, ObjClass),

owl_has(Objlnst, properPhysicalParts , Featurelnst),
owl_individual_of (Featurelnst , FeatureClass).

% Compute main axis of object

object_feature (FeatureClass , ObjClass, Featurelnst) :—
rdf_equal (FeatureClass , ’ObjectMainAxis’),
owl_individual_of (ObjInst, ObjClass),
object-main_cone (ObjInst, Featurelnst).

% Compute object center: returns object instance itself
object_feature (FeatureClass , ObjClass, Featurelnst) :—
rdf_equal (FeatureClass , ’CenterOfObject’),
owl_individual_of (ObjInst, ObjClass),
FeatureInst = ObjlInst.

[...]

4.4 Adapting Motions to a Robot

Actions can include multiple simultaneous motions that are for in-
stance performed by the left and right arm of a bimanual robot. This
raises the problems of (a) assigning motion patterns to robot parts,
and (b) selecting features on the correct object in case both hands

use the same kind of tool. We therefore explicitly model the robot
to be able to reason about the relation between the motions, objects
and robot parts. For defining dependencies on robot components, we
abstract away from the concrete kinematic structure of a particular
robot and use abstract classes such as LeftArm. These abstract de-
scriptions can be grounded in a detailed model of a robot’s kinematic
and sensory structure described in the Semantic Robot Description
Language (SRDL [10]) that is also based on OWL and available in
the same knowledge base. By combining the part-based object mod-
els with the robot model, we can specify in detail which part of which
object is to be used for a motion. For example, the pouring task is de-
scribed by the cap of the bottle of pancake mix that is attached to
some sub-component of the robot’s left arm using an OWL class re-
striction:

Class: BottleCapInLeftHand
EquivalentTo:
BottleCap and (physicalPartOf some
(PancakeMix and (predecInKinChain some LeftArm)))

In order to resolve this abstract description, the robot selects an ob-
ject that complies with this class restriction, i.e. one that is of the
correct type and in this case attached to some part of the left arm.
By exploiting the transitivity of the predecInKinChain relation, the
robot considers all sub-components of the arm, including for instance
its left gripper. The following object complies with the description,
and the Cone_7c7s as part of the bottle is classified as bottle cap and
selected:

Individual: mondamin—pancake—mix_-SjoS

Types:
PancakeMix

Facts:
predecInKinChain pr2_l_gripper_palm_link ,
properPhysicalParts Sphere_qEux,
properPhysicalParts Cone_-7¢7S,
[...]

While this example used the simple named class LeftArm for describ-
ing which robot part to use, the system supports arbitrary OWL re-
strictions to describe the required properties, for instance support for
force control or a minimum lifting force.

S Execution of Motion Descriptions

The motion descriptions provide a generic plan for an activity with
task-specific information about movements. Our robots are con-
trolled by the CRAM plan-based executive that executes plans writ-
ten in the CRAM Plan Language CPL [2]. CPL is an expressive Lisp-
based language that provides sophisticated control structures for de-
scribing concurrent reactive robot behavior. A core concept of CPL
are designators — partial descriptions of objects, movements or loca-
tions that are first-class objects in the language that the robot can rea-
son about. In our case, an action designator, such as like the pouring-
description in Figure 2 is filled by querying the knowledge base for
a constraint-based motion description. The Prolog queries return a
complete constraint-based specification in which the object instances
and features have been resolved as described in Section 4.3. The re-
sulting action designators contain effective, i.e. executable, motion
descriptions with potentially several partially ordered motion phases.

The CRAM executive reconfigures the constraint-based motion
controller by sending it a new motion phase description that contains
a set of constraints. The controller translates each single constraint,
e.g. bottle cap above frying pan, into a one-dimensional feature func-
tion f(x¢,Xo0,Xv). X¢ and X, denote the Cartesian poses of the tool
and object features, respectively. Additionally, x,, represents the ref-
erence frame w.r.t. which the constraint shall be evaluated. Stacking

M. Tenorth et al. / Knowledge-Based Specification of Robot Motions 877

the one-dimensional feature functions yields the feature function of
the task: y = f(x¢, X0, Xo) . Note that this formalization requires
known transformations between tool and object poses for all features
and that all features share a common reference frame.

Assuming that the tool is controllable by the end-effector of the robot
and that both the object and reference frame are quasistatic during
one control cycle, i.e. X, = %X, ~ 0, we derive the interaction ma-
trix H as the partial derivative matrix of f(x¢,Xo, Xy) W.r.t. 0x¢. H
allows us to map from velocities in the feature space y to the Carte-
sian tool twist t:

. of . of . of . of: .
= — ——Xo + 7—Xo = —X¢ = Hty. 1
Y= g Xt + Ix, X + o = o, X t Y]
Further assuming that the tool is rigidly attached to the end-effector
of the robot, we use the Jacobian J r of the arm of the robot to map

to the space of joint velocities q:

y =HJrq. (@)

A feedback controller calculates a desired yqes from the current
scene and the respective constraints in every control cycle. Multi-
plying y4es with the weighted pseudo-inverse of HJ i yields the
instantaneous desired joint velocities ¢q.s. For more details on the
constraint-based controller we refer the reader to [1]. This pro-
grammable controller exposes a constraint language interface with
few restrictions and allows run-time configuration. The constraint-
based descriptions serve as interlingua between the motion controller
and the plan-based executive and are grounded on both ends of the
system (the CAD model reasoning and the joint state control, re-
spectively). Furthermore, they allow meaningful feedback given by
the controller in constraint space, for example that all constraints but
the have bottle cap at least 15cm above the pan were fulfilled when
the arm stopped.

6 Experiments

We evaluate the contributions of this paper by formulating the task
of pouring liquids from a bottle (in our case pancake batter) in the
proposed language and executing it on our PR2 robot. The repre-
sentations and programs used for the experiments in this article have
been released as open-source software.*. Despite being rather simple,
the pouring task already combines different constraints on position
and orientation in 6D space. And even in this simple task, the bene-
fits of explicitly representing and inheriting motion properties can be
seen: The three motion phases (approaching the goal area, tilting the
bottle and tilting back) share the common motion patterns KeepOb-
JjectAbove and HoldObjectUpright which reduces redundancy in the
descriptions and allows the robot to reason about common aspects of
these motion phases. The following queries explain the main steps
for reading a task description and grounding it in object models. The
robot starts with reading the motion phases of the PouringSomething
action and, for each phase, reading the constraints that are to be con-
sidered.

?7— plan_subevents (’PouringSomething’, Phases).

Phases = [’MoveAbovePan’,’ TiltBottle’,’ TiltBack’].

?7— motion_constraint (’MoveAbovePan’, C).
"PerpendicularityConstraint_.qpdE "’
"HeightConstraint-OZjs’
"LeftOfConstr_fePC’
InFrontOfConstraint_-Sv4U”’

aann

4 Links to the source code repositories and a video of the experiments on the
real PR2 robot can be found at http://knowrob.org/doc/motion_constraints

ol

/
I 1

/4

5 y

Figure 4. Segmented models for a bottle of pancake mix (left) and a soda
bottle (center). The bottle cap was automatically identified in these very
differently shaped bottles. This allowed executing the same task description
using the novel bottle.

These abstract constraints are then combined with the description of
the current scene in order to identify the object features that are to be
controlled. The following query determines the values for the Height-
Constraint_OZjs for the device and tool that are specified in the task
description using the object_feature rules described in Section 4.3.

?7— constraint_properties (
"BottleCapInLeftHand’, ’PancakeMaker’,
"HeightConstraint-OZjs’,
Type, ToolFeature, WorldFeature, RefFrame,
Lower, Upper).

Type = 'HeightConstraint’,

ToolFeature = *Cone-7¢7S’,

WorldFeature = ’FlatPhysicalSurface.AEFIl’,
RefFrame = ’/torso_lift_link’,

Lower = 0.25,

Upper = 0.3.

Before applying the object_feature rules, the robot has to identify
suitable objects that comply with the class restriction for the tool and
world object, i.e. the BottleCapInLeftHand and the PancakeMaker.
The selection of the tool object requires reasoning about the struc-
ture of both the robot and the tool. The inferences for answering the
query for individuals of the BottleCaplnLeftHand given below in-
volve reasoning about the super-components of the gripper the can-
didate object is attached to (the pr2_I_gripper_palm_link):

?7— owl_.individual_of (O, ’BottleCapInLeftHand’).
O = "Cone-7¢7S’ .

?7— sub_component(Super, pr2_l_gripper_palm_link),
owl_individual_of (Super, ’LeftArm’).
Super = pr2_left_arm

For each selected object feature, the system reads the properties
needed for configuring the controller, namely their types, positions
and directions with respect to a given coordinate frame:

?7— feature_properties (’Cone_7¢7S’, Type, Label,
TfFrame, Position, Direction).

Type = ’LineFeature’,

TfFrame = ’/pancake_bottle’,

Position = [—-9.733e¢e—7,1.062¢ —6,0.457],

Direction = [—9.538¢e—11,4.656e—11,—0.008] ;

Since the motions are defined in terms of generic object parts, they
naturally adapt to objects of different types. We demonstrate this by
performing the pouring task using two different bottles. The task is
defined using the center, the main axis and the cap of the bottle whose
positions are determined by geometric object models. Figure 4 shows
the segmented models for a bottle of pancake mix (left) and soda
bottle (right). The motions performed with the pancake bottle are
shown in Figure 1, the motions for the soda bottle in the right part of
Figure 4.

878 M. Tenorth et al. / Knowledge-Based Specification of Robot Motions

7 Discussion & Conclusions

In this paper, we present a synergistic combination of a motion con-
trol framework and a robot knowledge base. From a top-down point
of view, the methods add the capability for describing motions to
abstract plan languages that so far have been limited to the descrip-
tion of atomic action blocks. From a bottom-up perspective, we gain
flexibility in how motions can be described by exploiting the capa-
bilities of a formal, logical knowledge representation language. This
allows us to (a) extract re-usable patterns of motion descriptions and
build up a “motion library”’; (b) parameterize motion descriptions
with models of objects and of the robot’s kinematic structure; (c)
make task descriptions more concise because common parts can be
inherited from background knowledge in the motion library; and to
(d) maintain full flexibility since task descriptions can also locally de-
scribe motion constraints in addition to or instead of inheriting them.

We present a hybrid solution for defining the relation between mo-
tions and object parts. It uses OWL class restrictions to represent
task-dependent information (which tool) and motion-dependent in-
formation (which object part) separately and combines these aspects
for a specific situation using Prolog rules. This is a very flexible ap-
proach since the rules can integrate on-demand computation to iden-
tify the object parts that best comply with a class description. For
describing a new motion, the OWL description has to be extended,
and possibly Prolog rules need to be added. Currently, these rules
need to be defined manually. How many of them are needed in to-
tal depends on the application context, but given that many of the
described concepts are very generic (main axis of an object, handle,
top surface, ...), we expect that a reasonably small set of rules will be
able to cover a wide range of movements.

The work presented in this paper is only the first step towards
semantically rich motion description languages and still has some
limitations that we plan to address in future work: For example, the
constraint definitions still contain numbers that describe the allowed
ranges, e.g. the maximum angle deviation, or the minimum and max-
imum height. These numbers limit the generalizability of task de-
scriptions to rather similar cases — a description for pouring medicine
from one test tube into another will not be usable for pouring water
from a bucket into a bathtub. We plan to explicitly represent mo-
tion parameters that can be adjusted, such as the height from which
something is to be poured, and distinguish them from those constraint
values that need to remain fix because they define a motion, such as
the alignment of the axes of a screw and a nut for a screwing mo-
tion. Based on such a representation, it would be easier to implement
automated ways for determining these values, for example to scale
them with the dimensions of the involved objects.

While the proposed representations are currently manually cre-
ated, we expect that parts of them can be learned while still being
similarly understandable. In fact, we hope that this explicit represen-
tation will help to learn good models: The constraints describe the
essence of a task, and their parameter ranges represent the “screws”
that can be tuned. We believe that learning in this parameter space
will be more effective than learning models of the resulting motions
because the constraints indicate which parts are relevant.

Acknowledgments

This work is supported in part by the EU FP7 Projects RoboHow
(grant number 288533) and SAPHARI (grant number 287513).

REFERENCES

(1]

[2]

[3]

(4]

[3]

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G. Bartels, I. Kresse, and M. Beetz, ‘Constraint-based movement repre-
sentation grounded in geometric features’, in Proceedings of the IEEE-
RAS International Conference on Humanoid Robots, (2013).

M. Beetz, L. Mosenlechner, and M. Tenorth, ‘CRAM — A Cognitive
Robot Abstract Machine for Everyday Manipulation in Human Envi-
ronments’, in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1012-1017, (2010).

J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
belién, K. Claes, and H. Bruyninckx, ‘Constraint-based task specifica-
tion and estimation for sensor-based robot systems in the presence of
geometric uncertainty’, Int. J. Rob. Res., 26(5), 433455, (2007).

K. Erol, J. Hendler, and D.S. Nau, ‘HTN planning: Complexity and
expressivity’, in Proceedings of the National Conference on Artificial
Intelligence, pp. 1123-1123. John Wiley & Sons LTD, (1994).

R. E. Fikes and N. J. Nilsson, ‘STRIPS: A new approach to the appli-
cation of theorem proving to problem solving’, Artificial intelligence,
2(3), 189-208, (1972).

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, ‘PDDL-the planning domain def-
inition language’, AIPS-98 planning committee, (1998).

A. Hertle, C. Dornhege, T. Keller, and B. Nebel, ‘Planning with Se-
mantic Attachments: An Object-Oriented View’, in Proceedings of the
European Conference on Artificial Intelligence (ECAI), pp. 402-407,
(2012).

L. P. Kaelbling and T. Lozano-Pérez, ‘Hierarchical task and motion
planning in the now’, in [EEE International Conference on Robotics
and Automation (ICRA), pp. 1470-1477, (2011).

I. Kresse and M. Beetz, ‘Movement-aware action control — integrat-
ing symbolic and control-theoretic action execution’, in /EEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3245-3251,
(2012).

L. Kunze, T. Roehm, and M. Beetz, ‘“Towards semantic robot descrip-
tion languages’, in IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 5589-5595, (2011).

D. Leidner, C. Borst, and G. Hirzinger, “Things are made for what they
are: Solving manipulation tasks by using functional object classes’, in
IEEE/RAS International Conference on Humanoid Robots, pp. 429—
435, (2012).

L. Morgenstern, ‘Mid-Sized Axiomatizations of Commonsense Prob-
lems: A Case Study in Egg Cracking’, Studia Logica, 67(3), 333-384,
(2001).

C. Samson, M. Le Borgne, and B. Espiau, Robot Control, the Task
Function Approach, Clarendon Press, Oxford, England, 1991.

M. Tenorth and M. Beetz, ‘KnowRob — A Knowledge Processing In-
frastructure for Cognition-enabled Robots’, International Journal of
Robotics Research (IJRR), 32(5), 566 — 590, (2013).

M. Tenorth, A.C. Perzylo, R. Lafrenz, and M. Beetz, ‘Representation
and Exchange of Knowledge about Actions, Objects, and Environments
in the RoboEarth Framework’, IEEE Transactions on Automation Sci-
ence and Engineering (T-ASE), 10(3), 643-651, (2013).

M. Tenorth, S. Profanter, F. Balint-Benczedi, and M. Beetz, ‘Decom-
posing CAD Models of Objects of Daily Use and Reasoning about their
Functional Parts’, in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5943-5949, (2013).

M. Thielscher, ‘A unifying action calculus’, Artificial Intelligence Jour-
nal, 175(1), 120-141, (2011).

U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, ‘A
New Skill Based Robot Programming Language Using UML/P State-
charts’, in IEEE International Conference on Robotics and Automation
(ICRA), (2013).

D. Vanthienen, M. Klotzbiicher, J. De Schutter, T. De Laet, and
H. Bruyninckx, ‘Rapid application development of constrained-based
task modelling and execution using domain specific languages’, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1860-1866, (2013).

W3C, OWL 2 Web Ontology Language: Structural Specification
and Functional-Style Syntax, World Wide Web Consortium, 2009.
http://www.w3.0rg/TR/2009/REC-owl2-syntax-20091027.

J. Wolfe, B. Marthi, and S. Russell, ‘Combined task and motion plan-
ning for mobile manipulation’, in International Conference on Auto-
mated Planning and Scheduling, pp. 254-258, (2010).

