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Abstract. The Choquet integral is one of the most sophisticated and
expressive preference models used in decision theory for multicrite-
ria decision making. It performs a weighted aggregation of criterion
values using a capacity function assigning a weight to any coalition
of criteria, thus enabling positive and/or negative interactions among
criteria and covering an important range of possible decision behav-
iors. However, the specification of the capacity involves many pa-
rameters which raises challenging questions, both in terms of elici-
tation burden and guarantee on the quality of the final recommenda-
tion. In this paper, we investigate the incremental elicitation of the
capacity through a sequence of preference queries selected one-by-
one using a minimax regret strategy so as to progressively reduce the
set of possible capacities until a decision can be made. We propose a
new approach designed to efficiently compute minimax regret for the
Choquet model. Numerical experiments are provided to demonstrate
the practical efficiency of our approach.

1 INTRODUCTION

In the field of Multicritieria Decision Making, aggregation functions
are often used to compare alternatives evaluated on multiple con-
flicting criteria by synthesizing their performances into overall util-
ity values. Such functions must be sufficiently expressive to fit to
Decision Maker’s (DM) preferences, allowing for instance the deter-
minination of his/her preferred alternative. Choquet integrals form a
family of non-linear aggregators that are really appealing for pref-
erence modeling because they enable to model different kind of in-
teractions between criteria and include many aggregators as special
cases (e.g. linear additive models, min, max and any other order stati-
tistics, leximin and leximax, OWA and WOWA [24, 29] and Yaari’s
model [28]). Choquet integral has received much attention in the last
decades and is now widely used in practical decision making [9].

However, to compute overall utility values using a Choquet in-
tegral, decision support systems need to be able to assess model’s
parameters according to DM’s preferences. These parameters used
to capture the value system of the DM are characterized by a capac-
ity function defining the weight attached to every subset of criteria.
Therefore, they are in exponential number relatively to the number of
criteria and their elicitation is a challenging issue. Most of previous
works on capacity elicitation for Choquet integrals consider a static
preference database as input, and focus on the determination of a set
of capacity values that best fits the available preferences. For exam-
ple, one can minimize a quadratic error between Choquet values and
target utility values prescribed by the DM on a sample of reference
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alternatives. Alternatively, one can impose some constraints on Cho-
quet values to enforce the decision model to be compatible with a
partial or total order available on a subset of alternatives. These ap-
proaches are illustrated in many papers see, e.g. [11, 18, 19, 22, 13]
and [10] (Chapter 11), some of them being implemented in decision
support softwares such as TOMASO [15] and MYRIAD [12].

Departing from these standard approaches, we are proposing in
this paper an incremental elicitation process for Choquet integrals, in
which preference queries are selected one at a time, to be as informa-
tive as possible, so as to progressively reduce the set of admissible
capacities until a robust recommendation can be made. This approach
relies on and extends previous works on the incremental elicitation of
linear utility functions, going back to the ISMAUT method [14] and
more recently, strategies developed within the artificial intelligence
community for preference query selection using the minimax-regret
criterion [6, 2, 27, 3]. Regret-based elicitation has been successfully
demonstrated with real users in a prototype for decision support (UT-
pref) and validated in a user study [5]. Adaptation of minimax regret
elicitation strategies to Choquet models is not obvious, as the number
of constraints required to impose that the parameters of the model are
valid is exponential in the number of criteria, in the general case. In
this paper we propose an efficient algorithm that avoids this issue by
focusing on specific (but intuitive) types of preference statements.

2 BACKGROUND AND NOTATION

Let X be the set of alternatives (items, products, candidates. . .) that
need to be compared in order to make a decision. Any alternative
x ∈ X is evaluated with respect to a set of n criteria denoted
N = {1, . . . , n}, and is characterized by a performance vector
(x1, . . . , xn) where xi ∈ [0, 1] represents the utility of x with re-
spect to the criterion i for all i ∈ N . For simplicity, x will indiffer-
ently denote the alternative or its performance vector.

2.1 Choquet integrals

For any alternative x ∈ X , let (.) denote the permutation of
{1, · · · , n} which sorts the components of x by increasing order, i.e.
x(i)≤x(i+1) for i ∈ [[1, n− 1]]. Let X(i) denote the subset of crite-
ria with respect to which x has a utility greater or equal to x(i), i.e.
X(i)={(i), . . . , (n)}; note that X(i+1)⊆X(i) for all i ∈ [[1, n− 1]]
by definition. In the sequel, X(i) will be referred to as the ith level
set of x and Y(i) will denote the ith level set of an alternative y ∈ X .
Let v be a Choquet capacity, i.e. a real-valued set function defined
on 2N such that v(∅) = 0, v(N) = 1 and v(A) ≤ v(B) for all
A ⊆ B ⊆ N , v(A) representing the weight attached to coalition A,
for any A ⊆ N . The Choquet integral is defined by:

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-87

87



Cv(x) =
n∑

i=1

[
x(i) − x(i−1)

]
v(X(i)) with x(0) = 0

Hence an alternative x is as least as good as y whenever
Cv(x) ≥ Cv(y). For example, consider a problem defined on
3 criteria, i.e. N = {1, 2, 3}, and two performance vectors
x = (0.7, 0.6, 1) and y = (0.8, 1, 0.6). The computation of their
Choquet value with the following capacity gives:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v 0 0.1 0.2 0.3 0.5 0.6 0.7 1

Cv(x) = 0.6 + (0.7− 0.6)v({1, 3}) + (1− 0.7)v({3}) = 0.75
Cv(y) = 0.6 + (0.8− 0.6)v({1, 2}) + (1− 0.8)v({2}) = 0.74

Hence we have Cv(x)>Cv(y), meaning that x is strictly preferred
to y. In multicriteria decision making, one needs to ensure that
Cv(x) ≥ Cv(y) whenever x weakly Pareto-dominates y (i.e.
xi ≥ yi for all i ∈ N ). This property holds due to the monotonicity
of v with respect to set inclusion.

In many papers on multicriteria optimization with a Choquet inte-
gral, the capacity is assumed to be given [8, 23, 7, 17]. This assumes
that preference elicitation methods are available to determine the ca-
pacity that best fits DM’s preferences. Following the line opened by
Boutilier in [27, 3] for simpler decision criteria, we suggest here
adopting an incremental approach where capacity elicitation is seen
as a game played with the DM. At every step of the elicitation pro-
cess, the system generates a preference query, and then the DM re-
veals a piece of his/her actual preferences. The answer provides new
constraints on the set of admissible capacities thus reducing the un-
certainty attached to the capacity and therefore to the Choquet val-
ues. In this process, both the problem of selecting the next query and
the one of generating a recommendation are seen as a decision prob-
lem under uncertainty, where the uncertainty is due to the imperfect
knowledge of preference parameters (here the capacity). Our strat-
egy to select the most promising alternative is based on a minimax
criterion aiming at providing the best Choquet value against all ad-
missible choices for the capacity. The selection of the query is made
so that an effective regret reduction is guaranteed whatever the an-
swer is. We present now more formally this approach.

2.2 Minimax regret criterion

Minimax regret [21, 16] is a decision criterion classicaly used for op-
timization under uncertainty over data; it has been more recently ad-
vocated for use in decision-making where the uncertainty is over util-
ity values [3, 20]. Let P be a set of preference statements that match
with the preferences of the DM. P can include different types of in-
formation, from prior knowledge to information obtained by asking
queries to the DM. Assume that DM’s preferences can be modeled
by an element in the family of aggregators FΘ, where Θ is the set
of all admissible parameters of the family (e.g. whenever FΘ repre-
sents the family of Choquet integrals, then Θ is the set of all possible
capacities). Let ΘP denote all parameters in Θ compatible with P .

Definition 1. Given a set of preferences P and assuming a model
FΘ, the pairwise max regret of the alternative x with respect to the
alternative y is defined as follows:

PMR(x, y; ΘP) = maxθ∈ΘP fθ(y)− fθ(x)

where fθ ∈ FΘ is the aggregator corresponding to parameter θ.

In other words, the pairwise max regret of x with respect to y repre-
sents the worst-case loss when recommending x instead of y.

Definition 2. Given a set of alternatives X , a set of preferences P
and assuming a model FΘ, the max regret of x ∈ X is defined as:

MR(x,X ; ΘP) = maxy∈X PMR(x, y; ΘP)

In other words, the max regret of x is the worst-case loss when
recommending x instead of one of the adversary’s choices (i.e.
argmaxy∈X PMR(x, y; ΘP )).

Definition 3. Given a set of alternatives X , a set of preferences P
and assuming a model FΘ, the minimax regret is defined as:

MMR(X ; ΘP) = minx∈X MR(x,X ; ΘP)

An optimal solution for the minimax regret criterion is an alterna-
tive that achieves the minimax regret (i.e. argminx∈X MR(x; ΘP )).
Recommending the latter alternative allows one to guarantee that the
worst-case loss is minimized. In the rest of this article, x∗ will denote
one optimal solution for the latter criterion and y∗ one of its adver-
sary’s choices, arbitrary chosen in argmaxy∈X PMR(x∗, y; ΘP ).

2.3 Incremental elicitation

Given a particular set of preference statements, the worst-case loss
ensured by the minimax regret criterion might still be at unaccept-
able level. By considering additional preferences statements (induc-
ing constraints on the set of admissible parameters), this loss may be
decreased. Indeed, we know that ΘP′⊆ΘP for any set of preference
statements P ′ ⊇P ; then, PMR(x, y; ΘP′) ≤ PMR(x, y; ΘP) for
any x, y ∈ X , and so MR(x,X ; ΘP′) ≤ MR(x,X ; ΘP) for any
x ∈ X . Finally, MMR(X ; ΘP′) ≤ MMR(X ; ΘP) and so the mini-
max regret cannot increase by adding preference statements (usually
it decreases (see [4], pp. 194-202)). Therefore, the minimax regret
criterion can be used within an incremental elicitation process that
progressively asks preference queries to the DM until the minimax
regret drops under a given threshold. At that time, recommending
x∗ ensures that the loss incurred by not choosing the true optimal
alternative is bounded above by that threshold.

Different types of queries can be used when designing such incre-
mental elicitation process. Comparisons queries are relatively sim-
ple, they require the DM to compare a pair of alternatives and state
which one is preferred. Notice however that some queries are more
informative than others (e.g. minimax regret won’t decrease when
asking to compare an alternative with another that Pareto-dominates
the former). Thus, it is important to make a good recommendation
without asking too many queries, focusing on relevant queries. A no-
tion of myopic value of information can be used [25] to evaluate the
relevance of a query. LetQ denote the set of all considered queries.

Definition 4. Given a set of alternatives X , a set of preferences P
and assuming a model FΘ, the worst-case minimax regret of a query
q ∈ Q is defined as follows:

WMMR(q,X ; ΘP) = maxp∈Pq MMR(X ; ΘP∪{p})

where Pq denotes the set of all possible answers to the query q.

Hence the next query of the elicitation process should be chosen in
argminq∈QWMMR(q,X ; ΘP) because any optimal solution for
the WMMR criterion ensures the best reduction of minimax regret
in the answer’s worst-case scenario. Note that computing the optimal
query for WMMR can be computationally intensive when setQ un-
der consideration is too large. We discuss now computational issues
related to minimax regret optimization for Choquet integrals (Sec-
tion 3). We will present our strategy for generating queries within an
incremental elicitation process in Section 4.
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3 MINIMAX REGRET OPTIMIZATION FOR
CHOQUET INTEGRALS

In the procedure defined in subsection 2.2, we have to compute PMR
for all ordered pairs of distinct items to determine the current opti-
mal alternative x∗; notice that PMR(x, x) = 0 and that, in general,
PMR(x, y) �= PMR(y, x). Then, the maximum regret MR can be
computed for each alternative so as to determine the item having
the lowest MR. However, the computational effort can be signifi-
cantly reduced using standard pruning rules for min aggregators, as
shown in [4]. Empirically, if we use such pruning rules, the num-
ber of PMR computations is only slightly higher than linear, but of
course remains quadratic in the worst-case.

We therefore focus our discussion on the computation of PMR,
assuming FΘ is the set of Choquet Integrals. In that case, ΘP is the
set of all capacities compatible with P .

3.1 A General Optimization of Pairwise Max
Regret using Linear Programming

Let v : 2N → R be a set function and vA the decision variable repre-
senting v(A) for any A ⊆ N . Using this notation, v will indifferently
denote the set-function and the vector composed of its values. Thus,
for any alternatives x, y ∈ X , PMR(x, y; ΘP ) can be computed by
solving the following linear program:

max
v

Cv(y)− Cv(x) (1)

s.t. v∅ = 0 (2)

vN = 1 (3)

vA ≤ vA∪{i} ∀A ⊂ N, ∀i ∈ N\A (4)

Cv(a) ≥ Cv(b) ∀a, b s.t a � b ∈ P (5)

Equations (2-4) ensure that v is indeed a capacity and Equation (5)
ensures that v is compatible with P . Thus, for Choquet integrals,
the computation of PMR involves exponentially many variables and
monotonicity constraints (4). For some specific subclasses of capaci-
ties (e.g. 2-additive capacities [22]), it has been shown that the num-
ber of such constraints that are actually needed is much lower. How-
ever, these subclasses correspond to specific attitudes that do not nec-
essarily match with the observed preferences. Hence, we investigate
now the general case without any prior restriction on the admissible
set of capacities.

3.2 A linear programming formulation for
1A0 � Λ preference statements

For any two performance vectors x and y, let A(x,y) be the set of
all level sets of x and y, i.e. {X(i) | i ∈ N} ∪ {Y(i) | i ∈ N}.
Note that sets belonging to A(x,y) are the only ones that appear in
the objective function (1). This specificity can be exploited to sim-
plify the regret optimization problem. Let us indeed consider now
queries involving binary alternatives of type 1A0, where 1A0 rep-
resents a fictitious alternative with a top performance on all crite-
ria in A ⊆ N and a bottom performance on all others. More pre-
cisely, the DM may be asked to compare such alternatives to con-
stant utility profiles of type Λ = (λ, . . . , λ). Note that by defini-
tion, Cv(1A0) = v(A) and Cv(Λ) = λ for any capacity v and
any set A ⊆ N . As a consequence, if the preference 1A0 � Λ
(resp. 1A0 � Λ) is observed, then Equation (5) gives the simple
constraint v(A) ≥ λ (resp. v(A) ≤ λ). Consequently, Equation

(5) can be replaced by boundary constraints over decision variables;
indeed, to ensure that the set-function v is compatible with P , it
is sufficient to update the boundaries of an interval [lA, uA] when-
ever a preference of type 1A0 � Λ or 1A0 � Λ is inserted in P.
Since ΘP∪{1A0�Λ} is the set of all capacities v ∈ ΘP that satisfy
v(A) ≥ λ, and keeping in mind that all capacities are monotonic
by definition, then necessarily v(B) ≥ λ for all these capacities
and all B ⊇ A (i.e. ΘP∪{1A0�Λ} = ΘP∪{1B0�Λ | B⊇A}). Thus,
if the preference 1A0 � Λ is observed, then all preferences of type
1B0 � Λ for B ⊇ A can be inserted in P . Similarly, if the prefer-
ence 1A0 � Λ is observed, then all preferences of type 1B0 � Λ
for B ⊆ A can be inserted in P .

LetP be a set of preferences statements obtained by inserting pref-
erences of type 1A0 � Λ (resp. 1A0 � Λ) and, for each of them, the
preference 1B0 � Λ for all B ⊇ A (resp. 1B0 � Λ for all B ⊆ A).
Let lA, uA be the resulting lower and upper bounds obtained for all
A ∈ 2N , then the following proposition holds:

Proposition 1. Any function v : A → [0, 1] with A ⊂ 2N such that
i) v(A) ∈ [lA, uA] for all A ∈ A, and
ii) v(A) ≤ v(B) for all A,B ∈ A such thatA ⊂ B
can be completed into a capacity in ΘP .

Proof. By construction of P and all its corresponding intervals, it is
sufficient to complete v by setting first v(A) to lA for all A ∈ 2N\A
such that |A| = 1. Then, we iteratively set the value of v(A) to
max{lA,max{B⊂A| |B|=|A|−1} v(B)} for all A ∈ 2N\A such that
v(B) is known for all B ⊂ A such that |B| = |A|−1, so as to obtain
a completely specified capacity.

Thus, Proposition 1 enables one to conclude that all constraints
given by Equation (4) involving vA for any A �∈ A(x,y) can be re-
moved and so PMR(x, y; ΘP ) can be computed by solving the fol-
lowing simpler linear program:

max
v

Cv(y)− Cv(x) (6)

s.t. vX(i+1)
≤ vX(i)

∀i ∈ [[1;n− 1]] (7)

vY(i+1)
≤ vY(i)

∀i ∈ [[1;n− 1]] (8)

vX(i)
≤ vY(j)

∀i, j ∈ N s.t. X(i) ⊂ Y(j) (9)

vY(i)
≤ vX(j)

∀i, j ∈ N s.t. Y(i) ⊂ X(j) (10)

lX(i)
≤ vX(i)

≤ uX(i)
∀i ∈ N (11)

lY(i)
≤ vY(i)

≤ uY(i)
∀i ∈ N (12)

Let wA denote the coefficient of the decision variable vA in the ob-
jective function (6), for any set of criteria A ∈ A(x,y). Note that
wA = −(x(i) − x(i−1)) ≤ 0 for all A ∈ {X(i) | X(i) �= Y(i)},
wA = y(i)− y(i−1) ≥ 0 for all A ∈ {Y(i) | Y(i) �= X(i)} and wA =
y(i)−y(i−1)−(x(i)−x(i−1)) for all A ∈ {X(i) |X(i) = Y(i)}. Since
the objective function has to be maximized, we can deduce that vA
will be as small as possible for all A ∈ {X(i) | X(i) �= Y(i)} and as
large as possible for all A ∈ {Y(i) | Y(i) �= X(i)}. Thus, none of the
constraints (9) are required to find the optimum. Note also that some
constraints given by Equation (10) are unnecessary. Indeed, if there
exists i, j ∈ N such that Y(i) ⊂ X(j), then we also have Y(i) ⊂ X(k)

for all k ∈ [[1; j]], which creates redundant constraints added to
Equation (7); thus, it is sufficient to impose vY(i)

≤ vX(j)
only if

Y(i) ⊂ X(j) and Y(i) �⊆ X(j+1). However, if Y(i+1) ⊆ X(j) is also
satisfied, there is a redundancy with Equation (8). Finally, it is suffi-
cient to impose vY(i)

≤ vX(j)
only if Y(i) ⊂ X(j), Y(i) �⊆ X(j+1)

and Y(i−1) �⊆ X(j). Thus, the number of monotonicity constraints
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is now below 3(n−1) and at most 2(n−1) variables are used (the
elements of A(x,y)).

3.3 Efficient Optimization for PMR

Although the numbers of constraints and variables of the linear pro-
gram defined in (6-12) are polynomial in the number of criteria, the
computation time required by a state-of-the-art solver to obtain min-
imax regret increases significantly with the number of alternatives
due to the quadratic number of PMR optimizations. We show now
how the PMR-optimization problem can be solved efficiently by an
iterative procedure, for any x, y ∈ X and any set of preference state-
ments P of type 1A0 � Λ or 1A0 � Λ, obtained by doing all the
insertions described in the previous subsection.

Let G = (V,A) denote the constraint graph associated to Equa-
tions (7-10). G is defined as follows:
• V is the set of all decision variables in the linear program; thus,
V = {vX(i)

| i ∈ N} ∪ {vY(i)
| i ∈ N}.

• A is the set of arrows (vA, vB) such that vA ≥ vB is given by
Equations (7- 8) or Equation (10) without redundancy.

Note that the 2(n−1) constraints given by Equations (7 - 8) imply
the existence of the two paths Vx = (vX(1)

, . . . , vX(n)
) and Vy =

(vY(1)
, . . . , vY(n)

), which together include all the nodes in V . Recall
that wA denotes the coefficient of vA in the objective function (6).
Let V − (resp. V +) be the restricted sequence of Vx (resp. Vy) to all
nodes vA such that wA ≤ 0 (resp. wA ≥ 0 and vA �∈ V −). As
already noted before, wA ≤ 0 for all A ∈ {X(i) | X(i) �= Y(i)}
and wA ≥ 0 for all A ∈ {Y(i) | X(i) �= Y(i)}. Thus, V − and
V + include together all the nodes in V and have no common node
(see Figure 1 for illustration, where x = (1, 0.8, 0.4, 0.5, 0.1) and
y = (0.8, 0.9, 0.6, 0.2, 0.4)).

Figure 1. Illustration of V − and V + construction from G.

Let v
A+

i
(resp. v

A−
i

) denote the ith node of the sequence V +

(resp. V −). Note that V + (resp. V −) includes all the variables that
have a positive (resp. negative) impact on the objective function;
hence we want to maximize (resp. minimize) the variables in V +

(resp. V −) so as to maximize the objective function. Thus, if there
exists no arrow of type (v

A−
i
, v

A+
j
) in A, then the optimum of the

linear program can be easily obtained. Indeed, it is sufficient to set
vA to its lower bound lA for all vA ∈ V − and vA to its upper bound
uA for all vA ∈ V +. Otherwise, for all arrow of type (v

A−
i
, v

A+
j
) in

A, we need to decide whether to assign the variable v
A−

i
to the lower

bound l
A−

i
at the expense of constraining v

A+
j

or to assign v
A−

i
to

an higher value. This can be done using Algorithm 1 given below,
where D+(vA) (resp. D−(vA)) denotes the restriction of V + (resp.
V −) to the descendants of vA in G and D+

j (vA) denotes the jth ele-
ment in sequence D+(vA). In this algorithm, for each node v

A−
i

we

iteratively compute and compare quantities w+ and w− (lines 7 and
14), where w+ represents at step j the overall weight of the j first
elements of D+(v

A−
i
) and w− is the overall weight of their ances-

tors in D−(v
A−

i
). In the example of Figure 1, for i = 1, we obtain

w+ = w
A+

3
+w

A+
4
= 0.3 and w− = w

A−
1
+w

A−
2
+w

A−
3
= −0.5

at the end of the while loop. The correctness of Algorithm 1 can be
proved using the following loop invariant: “For all k < i, v(A−k ) is
equal to the capacity value of A−k in the optimal solution and for all
vA ∈ V +, v(A) is equal to the maximum feasible capacity value of
A knowing the value of the latter nodes”. Note that the condition of
line 14 can be true only if the body of the while loop is executed at
least once; in this case, B is well defined.

Algorithm 1: Iterative optimization of PMR

Input: Two alternatives x, y ∈ X
Output: v defined on A(x,y) achieving PMR(x, y; ΘP)

1 Construction of V − and V + from x and y
2 foreach vA ∈ V + do v(A)← uA for i = 1 . . . |V −| do

3 w− ← w
A−

i

4 w+ ← 0
5 j ← 1

6 while |w−| ≥ w+ and D+
j (vA−

i
) exists do

7 vB ← D+
j (vA−

i
)

8 if v(B) < l
A−

i
then break

9 w+ ← w+ + wB

10 w− ← w− +
∑

vA∈D−(v
A

−
i

): D+
1 (vA)=vB

wA

11 j ← j + 1

12 end

13 if |w−| < w+ then v(A−i )← v(B) else v(A−i )← l
A−

i

14 foreach vA ∈ D+(v
A−

i
) do v(A)← min{v(A), v(A−i )}

15 end

16 return v

4 AN INCREMENTAL ELICITATION METHOD
FOR CHOQUET INTEGRALS

We introduce now a query strategy assuming the DM is only asked to
compare binary alternatives to constant profiles. Our query selection
strategy uses the WMMR criterion presented in Definition 4; thus,
since the DM is only asked to compare a binary alternative 1A0 to
a constant profile Λ = (λ, . . . , λ), an optimal query is defined by a
pair (A ⊆ N,λ ∈ [lA;uA]) that brings the smallest minimax regret
in the answer’s worst-case scenario. In order to find such a pair, we
have to determine, for all sets A ⊆ N , the value λ∗A ∈ [lA, uA] that
minimizes the WMMR criterion; thus, an optimal query is defined
by a pair (A ⊆ N,λ∗A) that minimizes the latter criterion.

Given a set A ⊆ N , determining λ∗A amounts to minimizing over
λ ∈ [lA, uA] the maximum between MMR(X ; ΘP∪{1A0�Λ}) and
MMR(X ; ΘP∪{1A0�Λ}). Note that MMR(X ; ΘP∪{1A0�Λ}) and
MMR(X ; ΘP∪{1A0�Λ}) are two functions of λ and that the former
is a decreasing one while the latter is an increasing one. Similarly to
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what is observed for utility functions over consequences [27], these
two functions necessarily intersect since they have the same maxi-
mum (i.e. MMR(X ; ΘP)). This intersection gives the value of λ∗A
and can easily be computed by a bisection algorithm relying on the
relative positions of the two curves, observed at two distinct points.
However, it may happen that the WMMR value of the optimal query
is equal to MMR(X ; ΘP), which means that the latter question will
not necessarily induce a regret reduction. In such cases, our proce-
dure chooses a set A ⊆ N that minimizes, for λ = (lA+uA)/2, the
expected value of minimax regret over the two possible answers with
an uniform distribution hypothesis over [lA, uA].

Note that determination of the next query implies to select A
within the 2n−2 possible proper subsets of N , a number which in-
creases significantly with the number of criteria. To make this query
selection step more efficient, we propose, as a heuristic, to focus
on sets directly involved in the computation of PMR(x∗, y∗; ΘP),
where x∗ is an optimal solution for the MMR criterion knowing
P , and y∗ is one of the adversary’s choices. These sets are those in
A(x∗,y∗) = {X∗

(i) | i ∈ N} ∪ {Y ∗(i) | i ∈ N}, where X∗
(i) and Y ∗(i)

respectively denote the ith level set of x∗ and y∗. Thus, the heuristic
will further constrain parameters involved in the computation of the
pairwise max regret of x∗ with respect to y∗ and possibly reduce the
minimax regret. According to this heuristic, at most 2n − 2 sets are
investigated (elements of A(x∗,y∗)) instead of exactly 2n − 2.

5 EXPERIMENTS

In this section, we report a number of numerical tests. The first ones
aim at comparing the computation time of minimax regret calculation
when using either a solver (LP) to optimize (6-12) or the iterative
optimization (IO) algorithm presented in Section 3.3. To do so, we
consider two datasets (“Knapsack5” and “Knapsack10”) consisting
of the Pareto set of two multi-objective knapsack problems (n = 5
and n = 10), restricted to one thousand of alternatives. Results have
been obtained by averaging over 50 runs. In Table 1, we can see that
IO is significantly faster than LP (about five orders of magnitude).
In fact, IO allows our incremental procedure to ask fifty queries in
a few minutes for about a thousand of alternatives, while LP takes
about six hours for ten times less alternatives3.

Table 1. Comparaison of minimax regret computation time in seconds.

Dataset Query LP IO
Knapsack5 0 34.594 0.005
Knapsack5 10 27.583 0.005
Knapsack5 20 28.895 0.005
Knapsack10 0 31.120 0.017
Knapsack10 10 15.197 0.007
Knapsack10 20 13.016 0.006

The second experiments aim at evaluating the efficiency of our
query strategy. Starting from an empty set of preferences P , simu-
lated users answer to queries according to a Choquet Integral drawn
at random. We implement the elicitation procedure introduced in
Section 4 and compute both the minimax regret and real regret (ob-
tained thanks to the user simulated utility model) at each iteration
step. Results have been obtained by averaging over 200 runs and are
given in Figure 2. We can see that the minimax regret reduces reason-
ably quickly as the number of preference queries increases and that

3 Linear optimizations are done using the Gurobi library of Java.

the real regret is much smaller (a fact that has already been observed
a number of times in regret-based elicitation [27, 25, 3]).

Figure 2. Incremental elicitation procedure (Knapsack10).

Now, we want to compare our incremental preference elicitation
procedure based on the Choquet model to the standard elicitation
method based on a linear aggregation function and the Current So-
lution Strategy (CSS) as presented in [3] (based on the comparison
of x∗ and y∗ at each step, see subsection 2.2). To do so, datasets of
100 alternatives evaluated on 10 criteria and characterized by a set
of performance vectors X a are randomly generated. They are con-
structed in such a way that

∑n
i=1 x

a
i = 1 for all x ∈ X a, where

a ∈ {0.5, 1, 2} so as to obtain different types of Pareto sets (con-
trolling the proportion and the location of non-supported4 Pareto-
optimal solutions). We only report results with simulated users an-
swering to queries according to a concave multiattribute utility func-
tion so as to model a preference in favour of “well-balanced solu-
tions”. In the general case (including linear utility model), after at
most 20 queries, both procedures recommend an alternative with
a real regret under ten percent of the maximum real regret in the
dataset, on average. Results are obtained by averaging over 100 runs.

Figure 3. Comparison of incremental elicitation procedures.

In Figure 3, we can see that the real regret, at any step of the elic-
itation process, is smaller with our procedure based on the Choquet
model than with the procedure based on the linear model for any
dataset X a. Indeed, in most cases, there exists well-balanced Pareto-
optimal alternatives (presumably very attractive for the DM) that can-

4 Solutions that do not belong to the boundary of the convex hull of Xa.

N. Benabbou et al. / Incremental Elicitation of Choquet Capacities for Multicriteria Decision Making 91



not be obtained by optimizing a weighted sum of criterion values and
consequently, reducing the space of possible weights cannot lead to
the recommendation of such alternatives. On the contrary, various of
these can be attained by maximizing a concave Choquet integral.

6 DISCUSSION AND CONCLUSION

In this paper we discussed the problem of interactively eliciting a
Choquet capacity using a minimax regret approach. Technical dif-
ficulties are related to the number of parameters needed to charac-
terize a given capacity and the number of constraints required to
characterize the space of admissible capacity functions. We showed
how, assuming that preferences are stated in a particular form, min-
imax regret optimization can be performed efficiently (in particular
we presented both a linear programming formulation and an even
faster algorithm maintaining lower and upper bounds). We presented
experimental results validating both the computational efficiency of
our approach in large problem instances and the quality of recom-
mendations elaborated through our incremental process.

Our work differentiates from previous work on Choquet integrals
in the focus on incremental elicitation; minimax regret provides ro-
bust recommendations. Notably, Ah-Pine et al. [1] assess a feasible
capacity for a Choquet integral given some preferential information
that maximize the margin of the induced constraints (in a fashion
similar to SVM classifiers). This kind of “pointwise” estimation ig-
nore however the specificity of the available items. Moreover, it does
not directly provide a natural strategy for choosing the query to ask
in an incremental elicitation setting.

A first direct continuation of this work is to extend the elicitation
procedure for set recommendation. The approach we have proposed
in this paper extends naturally to sets but is computationally more
demanding. Possible future works include further experimental work
and validation with real users. An interesting direction of research is
incremental elicitation of the capacity of a Choquet integral using a
Bayesian approach (following [26]).
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