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Abstract. We address the problem of finding patterns in an at-
tributed graph. Our approach consists in extending the standard
methodology of frequent closed pattern mining to the case in which
the set of objects, in which are found the pattern supports, is the set
of vertices of a graph, typically representing a social network. The
core idea is then to define graph abstractions as subsets of the ver-
tices satisfying some connectivity property within the corresponding
induced subgraphs. Preliminary experiments illustrate the reduction
in closed patterns we obtain as well as what kind of abstract knowl-
edge is found via abstract implications rules.

1 Introduction

We address here the problem of discovering patterns in an attributed
graph. Most previous work focus on the topological structure of the
patterns, thus ignoring the vertex properties, or consider only local
or semi-local patterns [9]. In [3] patterns on co-variations between
vertex attributes are investigated in which topological attributes are
added to the original vertex attributes and in [13] the authors inves-
tigate the correlation between the support of an attribute set and the
occurrence of dense subgraphs. These works, either starts from the
graph and consider vertex attributes as some additional information
to consider when searching for interesting patterns or consider pat-
terns as structure/attributes pairs.

What we propose in this paper is to consider attribute patterns and
to submit their occurrences to connectivity constraints. We consider
attribute patterns in the standard closed itemset mining approach de-
veloped in Formal concept Analysis (FCA)[6], Galois Analysis [4],
and Data Mining (see for instance [11]). These methods search for
frequent support-closed attribute patterns, easily computed using a
closure operator, together with the corresponding rule bases. We use
then the graph G = (O,E) in the following way: each pattern sup-
port e ⊆ O, as a set of vertices, induces a subgraph Ge of G, and this
subgraph is then simplified by removing vertices in various ways, de-
noted as graph abstractions. The general idea is that the vertices of
this abstract subgraph all satisfy some topological constraint, as for
instance a degree exceeding some threshold, and form the abstract
support of the pattern. We define graph abstractions in such a way
that the standard machinery is preserved: we can still have a closure
operator, and easily compute abstract closed term and abstract rules.
As a result we find less closed patterns, each original implication rule
is preserved, but new rules appear, revealing some new knowledge
which holds on some abstract level.

Technically, we benefit from the notion of extensional abstraction
that has been recently introduced [12, 14] and that consists in only
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considering a subset A of the support space 2O . Accordingly, the
support of any pattern, i.e. a subset of O, is reduced into a smaller ab-
stract support belonging to A. It has been shown that the main prop-
erties mentioned above are preserved through such abstractions: the
corresponding abstract support-closed patterns are closed patterns
according to an abstract closure operator, they form a lattice smaller
than the original one, the abstract equivalence relation is coarser than
the original one, and implication bases are defined in the same way
as in the non abstract case. Such an abstraction always represents
some external a priori information that results in simplified represen-
tations. Abstract closed patterns have mainly been investigated when
the a priori information was some categorization, as a taxonomy or a
partition.This has led to alpha lattices and alpha closed patterns [17].

The main purpose of this paper is to exhibit a new kind of ab-
straction relying, as an a priori information, on a graph connecting
the objects of O. This means that when searching for closed frequent
patterns and for rules that hold in some dataset of objects, we can
take advantage of the graph relating these objects.

In the following example, we consider the graph G = (O,E) =
({a, b, c, d, e, f}, {a-b, a-c, a-d, a-e, b-c, d-e, d-f, e-f}). The ver-
tices in O are objects whose labels are itemsets, i.e. subsets of the at-
tribute set {x,y,z,k,w} according to the boolean Table 1. Consider the
pattern t = xy whose support is {a, b, c, d, f}. The corresponding
induced subgraph is then ({a, b, c, d, f}, {a-b, a-c, a-d, b-c, d-f}).
We consider now that an abstract support is such that in the corre-
sponding induced subgraph all vertices have a degree greater than or
equal to 2. As a result we will remove from the support ext(xy) the
vertex f whose degree is strictly smaller than 2, then consider the
subgraph induced with the remaining vertices {a, b, c, d}, remove d
whose degree is now only 1, and, observing that we have now an
induced subgraph satisfying the degree requirements, state that we
have reached a fix-point that represents the abstract support of t. This
is illustrated in Figure 1.
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Figure 1. Given the graph G drawn in part (a), the subset of vertices
{a, b, c, d, f} induces the subgraph drawn in part (b). The graph abstraction
oft the latter associated to the property degree ≥ 2 is drawn in part (c).

As the abstract support of xy is {a, b, c}, the closure is now ob-
tained by intersecting the corresponding object descriptions and re-
sults in the closed pattern xyk. What happened here is that if we
consider as equivalent two patterns with equal support, the equiv-
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Objects/Items x y z k w
a 1 1 1 1 0
b 1 1 0 1 1
c 1 1 0 1 0
d 1 1 1 0 0
e 0 1 0 1 1
f 1 1 0 1 1

Table 1. The boolean table relating the objects to the items in xyzkw. The
pattern xy has support {a, b, c, d, f}. The corresponding closed pattern, ob-
tained by intersecting the corresponding lines is also xy. The abstract support
(see Figure 1) is {a, b, c} and the abstract closed pattern is then xyk.

alence classes corresponding respectively to supports {a, b, c, d, f}
(to which belongs xy) and {a, b, c, f} (to which belongs xyk) are
merged into a class of the new equivalence relation associated to ab-
stract supports: both xy and xyk have now the same abstract support.
Now recall that each closed pattern is the maximal element of its
equivalence class: this is straightforward as intersecting elements re-
sults in a greatest lower bound, and this is also true regarding the new
equivalence relation as the abstract closed pattern is also obtained by
intersecting a subset of object descriptions. Now, the min-max ba-
sis of implication rules, representing the set of t → q implications
that hold on O, is obtained by considering implications t1 → t2\t1
where t1 is a generator, i.e. a minimal pattern of some equivalence
class, and t2 �= t1 the corresponding closed pattern. Such a rule in
our dataset is for instance x → y. When considering the abstract
supports, the rule still holds but a new min-max rule is now x → yk.
The intuitive meaning of the latter rule is then: in our dataset any ob-
ject o, which belongs to of group of objects in which x occurs and
that all have degree at least 2 in the induced subgraph they define, is
also an occurrence of yk. Such a group is called an abstract group.
To summarize we have obtained a new abstract knowledge, reveal-
ing a relation between patterns that depends on the connectivity of
the network under study.

2 Closed patterns and abstract closed pattern

2.1 Preliminaries

Definition 1 Let E be an ordered set and f : E → E a self map
such that for any x, y ∈ E, f is monotone, i.e. x ≤ y =⇒ f(x) ≤
f(y) and idempotent, i.e. f(f(x)) = f(x), then:

- If f is extensive, i.e. f(x) ≥ x, f is called a closure operator
- If f is intensive, i.e. f(x) ≤ x, f is called a dual closure operator

or a projection.
In the first case, an element such that x = f(x) is called a closed

element.

We define hereunder a closure subset of an ordered set E as the
range f [E] of a closure operator on E, and recall a well known result
on closure subsets of complete ∧-semilattices.2

Proposition 1 Let T be a lattice. A subset C of T is a closure subset
if and only if C is closed under meet. The closure f : T → T is then
defined as f(x) = ∧{c∈C|c≥x}c and C is a lattice.

When the language is the power set of some set X , the meet oper-
ator simply is the intersection operator ∩. As a consequence, closed

2 In a lattice any pair of elements (x, y) has a greatest lower bound x∧ y (or
meet) and a least upper bound (or join) x ∨ y. All ordered sets considered
here are finite, and as all lattices are finite lattices they are also complete
lattices: any subset of a lattice T is then closed under arbitrary meet and
arbitrary join.

patterns can be searched for by performing intersection operations.
We will also further need the dual proposition which states that a sub-
set A of T is a dual closure subset, also denoted as an abstraction,
whenever A is closed under joins. The projection p : T → T is then
defined as p(x) = ∨{a∈A|a≤x}a, A is a lattice and ⊥ belongs to A.
In particular when T is a powerset 2K , p(x) = ∪{a∈A|a⊆x}a.

The standard case in which closed patterns are searched for is
when the language is a lattice and that closure of a pattern relies
on the occurrences of the pattern in a set of objects. In data mining
the set of occurrences is known as the support of the pattern.

Definition 2 Let L be a partial order and O a set of objects, a rela-
tion of occurrence on L×O is such that if t1 ≥ t2 and t1 occurs in
o then t2 occurs in o.

The support of t in O is defined as ext(t) = {o ∈ O |
t occurs in o}.

The cover S(o) of o is defined as the part of L whose elements
occur in the object o.

Whenever a pattern occurs in some object o then a more general
pattern also occurs in o, i.e. t1 ≥ t2 ⇒ ext(t1) ⊆ ext(t2).

When L is a lattice, the interesting case is the one in which objects
can be described as elements of L:

Proposition 2 Let the pattern language L be a lattice and O be a set
of objects. If, for any object o, the cover of o has a greatest element
d(o), denoted as the description of o in T , then for any subset e of O

int(e) =
∧

o∈e

d(o)

is the greatest element that covers all objects of e, and is called the
intension of e, and (int, ext) is a Galois connection on (2O, T ).

Corollary 1 int◦ext and ext◦int are closure operators respectively
on T and 2O and the corresponding sets of closed elements are anti-
isomorphic3lattices whose related pairs (t, e) form a lattice called a
Galois lattice.

Let us consider the equivalence relation on L such that t ≡ t′ if
and only if ext(t) = ext(t′). The maximal elements of an equiva-
lence class associated to some support are then defined as support-
closed. On the conditions of the Proposition 2, such a class has a
greatest element that can be obtained from any of its elements t by
applying the closure operator: f(t) = int ◦ ext(t). The support-
closed elements form exactly the closure subset f [T ] and each of
them represents the class associated to its support. In this case, f is
then denoted as a support closure operator. In the standard case, the
lattice is a powerset 2X of attributes, the description of an object i is
the subset of attributes in relation with i and the Galois lattice formed
by pairs of corresponding closed elements in 2X and 2O ordered fol-
lowing 2O is called in the FCA community a concept lattice[6]. In
data mining, the elements of X are denoted as items and patterns are
therefore itemsets. Proposition 2 follows from, for instance, Theorem
2 in [5].

The set of frequent support closed patterns, i.e. the support-
closed elements with support greater than or equal to some threshold
minsupp represents then all the equivalence classes corresponding
to frequent supports. Such a class has also minimal elements, called
generators. When the patterns belong to 2X , the min-max basis of

3 i.e.isomorphic to the dual of f [T ]
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implication rules[11] that represents all the implications t → t′ that
hold on O, i.e. such that ext(t) ⊆ ext(t′), is defined as follows:

m = {g → f\g | f is a closed pattern , g is a generator f �=
g, ext(t) = ext(f)}

2.2 Abstract closed patterns

Projected or abstract Galois lattices have been recently defined by
noticing that applying a projection operator on T [7, 12] or 2O (or
both) [12, 17] when there exists a Galois connection between them,
we obtain again closure operators and lattices of closure subsets.
Because of the equivalence between projections (dual closures) and
abstractions mentioned above, the corresponding Galois lattices are
also denoted as abstract Galois lattices[14].

Proposition 3 Let (int, ext) be a Galois connection on (2O, T ).
- Let p be a projection on T , then (p ◦ int, ext) defines a Galois

connection on ((2O, p(T ))
- Let p be a projection on 2O , then (int, p ◦ ext) defines a Galois

connection on (p(2O), T )
In both cases the closure subsets form a Galois lattice, respectively

called intensional and extensional abstract Galois lattices.

In the remaining of this article we consider abstract closed pat-
terns as those obtained in extensional abstract Galois lattices, (ab-
stract Galois lattices for short) by constraining the space 2O . The
general idea, as proposed in [14] is that an abstract Galois lattice is
obtained by selecting as an extensional space a subset A of 2O closed
under union i.e. an abstraction (or dual closure subset) and therefore
such that A = pA(2

O) where pA is a projection on 2O . The intuitive
meaning is that the abstract support extA(t) of some pattern t will
then be the greatest element of A contained in its (standard) exten-
sion, i.e. extA = pA ◦ ext and the corresponding abstract support
closure operator with respect to A is therefore fA = int ◦ pA ◦ ext.

Such an abstraction on 2O always represent an external a priori
information representing the user’s view on the data. When the ob-
jects are categorized, for instance in a taxonomy, the categorization
itself, when closed under union, forms an abstraction. In this case an
object o is in the abstract support p ◦ ext(t) of a pattern t whenever
the objects of some category containing o all belong to ext(t). The
main extensional abstraction that has been investigated is the alpha
abstraction, which also starts from an external categorization[17].
Whenever the abstract support replaces the standard support, the in-
clusion order on abstract support also defines an abstract min-max
basis with the same definition as in section 2.1 except that extA re-
places ext.

3 Graph abstractions to investigate closed patterns
when the objects form a (social) network

We consider that the set of objects O is the set of vertices of a graph
G = (O,E) whose edges represents some relation between objects.
A vertex is labelled with an element from a language of patterns L.
From now on, without loss of generality, we will consider a set of at-
tributes (or items) X , and 2X as the pattern language. As mentioned
above we know that there exists a closure operator on 2X such that
a closed pattern is the maximal element (in the inclusion order) of
the equivalent class of patterns sharing the same support. To obtain
abstract closed patterns we will rely on the graph structure and will
use induced subgraphs whose definition we recall now: the subgraph
GO′ induced by a subset O′ of O is such that GO′ = (O′, E′) where
E′ contains all the edges of E relating two vertices of O′.

3.1 Graph abstractions

Following the dual of proposition 1 an abstraction A ⊆ 2O is defined
as a part of 2O closed under union, i.e. ∅ belongs to A and when-
ever a, b are elements of A, a ∪ b also belongs to A. An abstraction
can equivalently be obtained by considering a projection operator on
2O and defining the abstraction as the image p[2O]. This operator
projects any element e of 2O on the maximal element of A included
in e. p is then defined as: p(e) =

⋃
a∈A,a⊆e a and rewrites as:

p(e) = {x ∈ e | ∃a ∈ A s.t. x ∈ a and a ⊆ e},

and e belongs to the abstraction A = p[2O] iff e = p(e).
The following Lemma defines a way to build abstractions.

Lemma 1 Let P : O × 2O → {true, false} be such that

• x �∈ e implies P (x, e) is false
• e ⊆ e′ and P (x, e) implies P (x, e′)

The iteration of the function q defined as q(e) = {x ∈ e|P (x, e)}
reaches a fixed-point and the operator p defined as p(e) =
fixed− point(q, e) is a projection operator. P is then called the
characteristic property of the corresponding abstraction.

A graph abstraction will be defined through a characteristic prop-
erty P (x, e) which expresses some minimal connectivity require-
ment of the vertex x within the induced subgraph Ge. Following
Lemma 1, P has to be monotone in e, i.e. if the connectivity property
is satisfied in the induced subgraph Ge, it has to be still satisfied in
any larger induced subgraph Ge′ ⊇ Ge. This leads to a large class of
graph abstractions, as for instance the degree ≥ k-graph abstraction
Adegree≥k that states that a subset of vertices e belongs to Adegree≥k

whenever d(x) ≥ k for all x in Ge.
An abstract group is any subset of vertices e such that e belongs

to the graph abstraction A. For instance an element of Adegree≥k is
called a degree ≥ k-abstract group and contains only vertices whose
degree in the subgraph induced by the group is larger than or equal to
k. This means that the abstract support of some pattern is the largest
abstract group included in the pattern support.

We give hereunder examples of graph abstractions, defined
through their characteristic property and exemplified in Figure 2.

1. degree ≥ k (see above and Figure 1).
2. k-clan ≥ s: x has to belong to at least one k-clan of size at least s

in Ge. This is a relaxation of the notion of clique[1]: a k-clan is a
subset c of vertices such that there is a path of length ≤ k between
any pair of vertices in Gc. A triangle, a clique of size 3, is a 1-clan
of size 3 (Figure 2-a). Figure 2-b represents a 2-clan of size 6 and
therefore a 2-clan≥ 6 abstract group.

3. nearStar(k, d): x has to have degree at least k or there must be
a path of length at most d between x and some y with degree at
least k. For instance, the simplest nearStar(8, 1) abstract group
is a central node connected with 8 nodes. Such an abstraction is
useful when we want the abstraction to preserve hubs [2](i.e high
degree vertices) together with their (low degree) neighbors (see
Figure 2-c).

4. cc ≥ s: x has to belong to a connected component of size at least
s in Ge (see Figure 2-d).

5. k-cliqueGroup ≥ s: x has to belong to a k-clique group of size
at least s. A k-clique group is a union of k-cliques (cliques of
size k) that can be reached from each other through a series of
adjacent k-cliques (where adjacency means sharing k - 1 nodes).

H. Soldano and G. Santini / Graph Abstraction for Closed Pattern Mining in Attributed Networks 851



Maximal k-cliques groups are denoted as k-cliques communities
and formalize the idea of community in complex networks [10].

×

(a)

×

(b)

×

×

(c)

× ×

(d)

Figure 2. Graph abstractions corresponding to various vertex characteris-
tic properties. In each graph plain circles and plain lines form the abstract
subgraph, crosses and dotted lines represent the vertices and edges out of the
abstract subgraph. (a) x has to belong to a triangle, (b) x has to belong to a
2-clan of size at least 6, (c) x has degree at least 8 or has to be connected to
a vertex y of degree at least 8, (d) x has to belong to a connected component
whose size is at least 3.

Finally, it is interesting to note that we can combine two (or more)
abstractions A1 and A2 in two ways, defining a new composite ab-
straction either stronger or weaker than both A1 and A2. For in-
stance, we may want to consider an abstract subgraph where vertices
both have a degree larger than some k and belong to a connected
component exceeding a minimal size s. On the contrary, we may
want an abstract subgraph such that at least one of the two charac-
teristic properties is satisfied by all the vertices. This would be the
case for instance, if we want to keep both vertices that have a degree
larger than, say 10, and vertices in a star, i.e connected to a hub which
degree is at least 50. The following lemma states that we can freely
combine abstractions in both directions.

Lemma 2 Let P1 and P2 two characteristic properties of abstrac-
tions defined on the same object set O, and let P1 ∧ P2 and P1 ∨ P2

be defined as follows:

• P1 ∧ P2(x, e) = P1(x, e) ∧ P2(x, e)
• P1 ∨ P2(x, e) = P1(x, e) ∨ P2(x, e)

Both P1 ∧ P2 and P1 ∨ P2 are characteristic properties of abstrac-
tions.

Finally note that requiring a frequency property also corresponds
to an abstraction whose characteristic property is Pm(x, e) = |e| ≥
minsupp, and that can be therefore combined to any abstraction,
therefore defining frequent abstract closed patterns.

3.2 Graph-based closed patterns computation and
analysis

When we have defined abstractions and corresponding projections,
graph-based abstract closed patterns are also de facto defined. Using
the projection operator p, we can compute abstract supports p◦ext(t)
and abstract closures int◦p◦ext(t). All top-down generate and close
algorithms, like LCM [16] can then be adapted to direct computation
of abstract closed patterns4. In the experiments in the next section we
have used an indirect approach: we first compute frequent closed pat-
terns and corresponding generators using the CORON software[15].
Starting from the closed patterns t and their supports, we then com-
pute the abstract closed patterns int ◦ p ◦ ext(t). Finally we consider
for each abstract closed pattern tA the generators of all the closed pat-
terns that have produced tA and select the minimal elements among

4 Work in progress

them in order to obtain the corresponding abstract generators5. From
abstract generators and abstract closed terms, computing the min-
max implication rule basis is straightforward. On one hand, the in-
direct approach needs prior computation of the (non abstract) closed
patterns, and this can be much more costly than the direct compu-
tation of abstract closed patterns. On the other hand, once this first
computation is performed, we can apply as many abstract computa-
tions we need, varying graph abstractions and their parameters, and
this can be cost-saving when investigating some new large attributed
graph (see Section 4.3).

We describe hereunder a generic algorithm, relying on the abstrac-
tion characteristic property, to compute the projection of some subset
of the set of objects O:

// Given e ⊆ O and a characteristic property P
u ← false
e′ ← e
While u = false

u ← true
For all vertex x in e′

If P (x, e′) is false
u ← false
e′ ← e′ − {x}

endIf
endFor

endWhile
// As u = false, P (x, e′) is true for all x in e′

// e′ = p(e′) is the abstraction of e with respect to P

This generic algorithm is in O(n2 ∗ d) where d is the cost of com-
puting P (x, e′). In the graph abstraction case, computing P (x, e′)
requires to update the induced subgraph Ge′ when some vertex is re-
moved from e′. Furthermore, the cost d depends on the characteristic
property and will be small as far as the property needs to consider
only close neighbors of x. For instance, considering the degree ≥ k
abstraction, first, there is no need to access neighbors of x, and fur-
thermore, rather than explicitly updating Ge′ when some x is re-
moved from e′ it is more efficient to decrease the degree of the ver-
tices connected to x in e′. Another example is the cc ≥ s graph ab-
straction, in which computing the abstraction of some e comes down
to compute the connected components of Ge and to remove the small
ones with no need to iterate the process.

4 Experiments

We consider here some preliminary experiments in three datasets. In
all three experiments, the data is described as a graph G = (O,E)
whose vertices have as labels elements of 2X where X is a set of
items, i.e. binary attributes. As objects are not always described using
binary attributes, the binarisation preprocessing is described when
necessary. In all experiments we used degree ≥ k as the graph ab-
straction. We also experimented with the conjunction of degree size
and connected component size in the third dataset, but we did not
observe interesting results to report here.

In the three cases, we first generate the frequent closed patterns,
each associated with the generators of its equivalence class, and de-
duce the corresponding min-max basis. We then project the frequent

5 Recall that each closed pattern that produces an abstract closed pattern tA
represents an equivalence class of patterns that will be included in the class
of tA in the new equivalence relation relying on abstract supports.
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closed patterns to obtain the abstract closed patterns and compute
the corresponding abstract generators and abstract min-max basis.
We are interested in the reduction in the number of closed patterns,
and in what, new and abstract, knowledge appears, when abstracting.

4.1 A simple case study

The dataset is extracted from the PhD thesis of P.N. Mougel [8]
and was used to illustrate the problem of mining an attributed graph
with patterns collections of dense subgraphs. The dataset represents
a graph of 18 vertices (persons), connected by edges representing
friendship relations. Each vertex is labelled with a subset of musical
tastes among {rock, folk, pop, blues, jazz}. The graph is reproduced
in Figure 3.
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Figure 3. The labeled graph of musical tastes

Using minsupp = 5/18, we obtain 11 closed patterns (including
the empty support pattern). When computing the min-max basis, we
obtain four rules involving two closed patterns. Rules {rock, jazz}→
{folk} and {folk, jazz} → {rock} are obtained from the closed pat-
tern {rock, folk, jazz} while rules {rock, pop} → {folk} and {folk,
pop} → {rock} are obtained from {rock, folk, pop}. After applying
a (degree ≥ 3) graph abstraction, we obtain only 6 closed patterns
and the following abstract rules: {rock} → {folk}, {jazz} → {rock,
folk}, and {pop} → {rock, folk}. This results in a simpler view of
musical tastes relying on the friendship relation. The last rule, for in-
stance, means that any person who likes pop music and belongs to
a group of friends who also like pop music, also likes rock and folk
music, or more simply: a group of friends who loves pop music also
love rock and folk music. The abstraction process defines what is re-
quired to be a group: with degree ≥ 3, in a group each person has
at least three friends in the group. Note that the abstraction process
reduces the supports and that several equivalence classes of patterns
collapse on the same abstract equivalence class. These classes are
represented by the corresponding closed patterns. We report on Ta-
ble 2 this collapsing process. Each line contains the abstract closed
pattern (A. Patt.), its abstract support size (A. s.), the corresponding
number of connected components (Cc), the closed patterns whose
classes have been merged (M. Patts.), and the size of the union of
corresponding supports (T. s.).

4.2 Teenage Friends and Lifestyle Study

The dataset is denoted as s50-1 and is a standard attributed graph
dataset6. It represents 148 friendship relations between 50 pupils of
a school in the West of Scotland, and labels concern the substance use

6 http://www.stats.ox.ac.uk/˜snijders/siena/s50_
data.htm

A. Patt. A. s. Cc M. Patts. T. s.
∅ 18 1 ∅ 18

{folk} 13 3 {{ folk}} 15
{rock folk} 9 2 {{ rock, folk}, {rock}} 14

{rock, folk, jazz } 4 1 {{ rock, folk, jazz }, {jazz}} 8
{rock, folk, pop } 5 1 {{ rock, folk, pop }, {pop}} 6

All 0 0 {{ folk, blues }, {pop}} 7

Table 2. Abstract closed patterns vs standard closed patterns in the musical
tastes dataset

(tobacco, cannabis and alcohol) and sporting activity. Values of the
corresponding variables are ordered. The binarization process con-
sists in defining variables representing the value intervals. T stands
for Tobacco consumption and has values 1 (no smoking), 2 (occa-
sional) and 3 (regular). C stands for cannabis consumption and has
values 1 (never tries) to 4, D stands for alcohol consumption and has
values 1 (does not drink) to 5, and S stands for sporting activity and
has two values 1 (occasional) and (2) regular. A binary variable rep-
resents an interval, as for instance C23 that has value 1 whenever the
value of C is in [2, 3]. For sake of simplicity we have merged the two
highest values in variables T,C and D. For instance values 4 and 5 in
alcohol consumption are merged into a 4m (4 and more) value. We
report hereunder the binary variables whose conjunctions allow to
represent any interval: for instance D=2 is obtained as {D12,D23m}.

Tobacco Cannabis Alcohol
T1,T2m C1,C12,C23m,C3m D1,D12,D123,D23m,D34m,D4m

We have computed the frequent closed patterns with minimal fre-
quency minsupp = 0.25 and obtained 65 nodes and 66 (generator,
closed) pairs only 15 of which led to informative min-max rules as
in the other pairs the difference between generators and closed terms
only relied on the binarization process. For instance the pair ({D4m,
S2} , {D234m, D34m, D4m, S2}) leads to the rule {D4m, S2}) → ∅,
as whenever D = 4m we also have D234m and D34m. We applied
then the degree ≥ 2 graph abstraction filter resulting in 36 closed
patterns resulting in also 15 informative rules. However, these ab-
stract rules bring a considerable amount of new abstract knowledge.
For instance, at the abstract level, we have the rule S1 → {C3m,
D4m} which means that a group of pupils that have only occasional
sporting activity also is also a group of regular cannabis and alcohol
consumers. However, note that the abstract support is 3 which means
that we have found a unique triangle of friends that have in common
the occasional sporting activity. In fact, this is a case in which the loss
in support is drastic as there are overall 13 pupils having occasional
sporting activity. In other cases, the loss is much smaller, revealing
groups of pupils sharing the same behaviors. For instance, the pattern
{C1, D123} is observed in 28 pupils and have an abstract support of
16 and results in the abstract rule {C1, D123} → T1, i.e. a group of
pupils that have never tried Cannabis and are at worst moderate alco-
hol consumers, also is a group of non smoker. However when adding
S2, the regular sporting activity, to this behavior, there are still 21
pupils having this behavior but the abstract support is empty. As we
see in Figure 4 this is because requiring S2 destroys the groups of
pupils sharing {C1, D123}.

4.3 A DBLP dataset

This is the DBLP dataset as described in [3]. There is 45131 vertices,
228188 edges and 555 connected components. Vertices are authors
that have published at least one paper in one among 29 journal or
conference of the Database and Datamining communities7during the

H. Soldano and G. Santini / Graph Abstraction for Closed Pattern Mining in Attributed Networks 853

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


Figure 4. Subgraphs of pupils sharing a pattern.Vertices and edges of each
subgraph are in plain circles and bold lines. On the left the subgraphs in-
duced by the support (top) and degree ≥ 2-abstract support (bottom) of
{C1,D123,T1}. On the right, the corresponding subgraphs reveal that adding
S2 to the pattern removes from the standard support few vertices (top figure)
but completely destroys the abstract support (bottom figure).

1/1990 to 2/2011 period. An edge links two authors whenever they
are coauthors of at least one article. The conferences are clustered in
three clusters: DB (databases), DM (data mining) and AI (artificial
intelligence) according to a conference ranking site categorization8.

The binary attributes are the journal and conference names to-
gether with the three clusters. An attribute has value 1 if the author
has published in the corresponding journal or conference or cluster.

Using minsupp = 1% we have obtained 205 closed patterns and
applied a strong abstraction filter, requiring that an author belongs to
a subset of the pattern support whose induced subgraph contain only
authors with at least 16 coauthors in the subgraph, i.e a very dense
subgraph. As a result we found 36 closed patterns with non empty
supports as 169 equivalence classes were merged in the empty sup-
port class, 21 classes were unchanged, 11 abstract classes regrouped
two classes, 2 abstract classes regrouped 4 classes and 2 abstract
classes regrouped 8 classes. The unique abstract rule corresponding
to one of the latter abstract classes states that authors in a group of
authors that have published in VLDBJ, have also published in ICDE,
SIGMOD, VLDB (and therefore in a DB conference). A group here
is a subset of authors all of degree at least 16 in the graph induced
by the group. As a result, from the 1276 authors forming the sup-
port of the closed pattern {VLDBJ}, only 38 remains in the resulting
abstract support. Among the eight classes being merged the only im-
plication rule stated that an author that has published in VLDBJ has
also published in at least one conference of the DB cluster. Again,
the abstraction process has revealed some hidden knowledge at the
price of drastically reducing the number of individuals on which this

7 Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI,
ICML, IJCAI, IDA, DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE,
EDBT, ICDT, SAC ? Journals: IEEE TKDE, DAMI, IEEE Int. Sys.,
SIGKDD Exp., Comm. ACM, IDA J., KAIS, SADM, PVLDB, VLDB J.,
ACM TKDD

8 http://webdocs.cs.ualberta.ca/˜zaiane/htmldocs/
ConfRanking.html. DB = {VLDB, SIGMOD, PODS, ICDE,
ICDT, EDBT, DASFAA, CIKM}; DM= {SIGKDD Explorations,
ICDM, PAKDD, ECML/PKDD, SDM}; AI= {IJCAI, AAAI, ICML,
ECML/PKDD};

knowledge relies.

5 Conclusion

We have introduced the notion of graph abstraction that relies on
a connectivity property and investigated the abstract closed patterns
obtained by considering the corresponding notion of abstract support.
Preliminary but promising experiments show the resulting reduction
in the number of closed patterns as well as the kind of abstract knowl-
edge that can be extracted. Further work includes a direct computa-
tion of abstract closed patterns, which is necessary for scalability
purpose, and some investigation about the role of graph abstraction
in detecting attribute based communities.
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