
OpenSim: A framework for integrating agent-based
models and simulation components

Dhirendra Singh and Lin Padgham 1

Abstract.

The growing use of agent-based modelling and simulation for
complex systems analysis has led to the availability of numerous
published models. However, reuse of existing models in new sim-
ulations, for studying new problems, is largely not attempted. This is
mainly because there is no systematic way of integrating agent-based
models, that deals with the nuances of complex interactions and over-
laps in concepts between components, in the shared environment. In
this paper we present an open source framework, called OpenSim,
that allows such integrated simulations to be built in a modular way,
by linking together agent-based and other models. OpenSim is de-
signed to be easy to use, and we give examples of the kinds of simu-
lations we have built with this framework.

1 Introduction

When building simulations of complex interacting processes, it is
often preferable to reuse tried and tested pieces, that have been inde-
pendently validated and verified, as much as possible. For instance, in
simulating the evacuation of a community during a bushfire, it may
be desirable, or even required by users, to build the various pieces
(such as traffic flow, fire spread, human decision making) using ex-
isting specialised platforms and models (such as MATSim2 for traffic
simulation, Phoenix RapidFire3 for fire simulation), and then com-
bine these together into a single simulation [12].

Such integrations are particularly challenging when agent-based
components are included, due to the high levels of interactions with
a shared environment, that must be appropriately managed. For in-
stance, multiple components updating a shared resource in the same
logical time can leave the resource in an inconsistent state. Standards
like the HLA [3] disallow such cases by mandating that only one
component be allowed to update a shared resource at any time (Rule
5 [3]). Such rules serve well where resources by nature can only be
used exclusively, such as an ambulance shared by two disaster sim-
ulation components. However, they are too restrictive for resource
types that can be updated concurrently, such as hospital beds being
used by two disaster simulation components simultaneously, and of-
ten several times in the same time step by the numerous agents within
the components. Here it is not sensible to give precedence to one kind
of emergency, and indeed if sufficient hospital beds were available at
any time then both should be allowed to use them [10].

The issue is further complicated when the resource being shared
by simulation components, is an agent. Here, as well as ensuring that
updates to the agent’s state are consistent in each simulation step,

1 RMIT University, Australia, email: firstname.lastname@rmit.edu.au
2 http://www.matsim.org
3 http://www.bushfirecrc.com/news/news-item/mapping-bushfire-potential

the integration runtime must also ensure that the agent’s actions are
consistent, since they could have being performed in different com-
ponents [13]. For instance, it should not be possible for a sick patient
to be travelling to the hospital in a ambulance in one component, and
family car in another, at the same time.

Other key issues come in the form of incompatibilities between
models relating to the paradigm in use (such as discrete event, time-
stepped, or mathematical), handling of simulation time (models may
operate on different time-scales or not model time at all), sharing
of data (independently developed models may differ in their inter-
nal representations of shared concepts requiring translation), and the
runtime environment (the available simulation pieces may run in sep-
arate environments like Java, Python, Matlab, NetLogo, and so on).
Existing integration frameworks and standards that address some of
these challenges include the High Level Architecture (HLA) [3] and
its predecessor Distributed Interactive Services (DIS) [5], CSIRO
Common Modelling Protocol4, Object Modelling System5, as well
as domain-specific integration platforms like OpenMI6, CIEPI7 and
SISS8. However, other than our own early work with the BLOCKS
framework [11], these do not deal with the nuances specific to com-
bining agent-based models.

In this work, we present OpenSim, a framework for building inte-
grated simulations that include agent-based components, and discuss
example uses of it: a simulation of hospital utilisation during emer-
gencies, a mine excavation and blending simulation, a taxi service
simulation, and a bushfire evacuation simulation. Our core contribu-
tions with OpenSim are that it: (i) enables agent-based couplings, via
runtime support for simultaneous updates to shared resources, and re-
solves outstanding issues identified with our earlier BLOCKS frame-
work (ii) is a complete integration framework that can be used as an
alternative to existing frameworks including the HLA and OpenMI
(iii) is easy to use, designed with the philosophy that simple integra-
tions should be simple to realise (iv) is an Open Source initiative,
with a Java-based runtime implementation.

The remainder of the paper is set as follows. The next section
describes the requirements for an integration framework for agent-
based simulations, and discusses related works in this context, fol-
lowed by, in Section 3, motivating examples of the kinds of integra-
tions we are interested in. We then present, in Section 4, the details
of our OpenSim framework. Section 5 concludes with a discussion
on open issues and the road ahead.

4 http://www.apsim.info/Portals/0/Documentation/Protocol%20
Specification.pdf

5 http://www.javaforge.com/project/oms
6 http://www.openmi.org
7 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6465211
8 https://www.seegrid.csiro.au/wiki/Siss

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-837

837

http://www.matsim.org
http://www.bushfirecrc.com/news/news-item/mapping-bushfire-potential
http://www.apsim.info/Portals/0/Documentation/Protocol%20Specification.pdf
http://www.javaforge.com/project/oms
http://www.openmi.org
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6465211
https://www.seegrid.csiro.au/wiki/Siss


Requirement OpenSim BLOCKS HLA OpenMI

Flexible runtime configuration of components XML Custom FOM XML/GUI
Support different operating environments

√ √ √ √
Combine event-based and time-stepped models

√ √ √ √
Runtime support for pipelined/chained models

√
Partial × √

Progression of simulation time Model-driven Model-driven Model-driven Controller-driven
Shared data mapping and translation User, Inbuilt planned × User User, Inbuilt
Support for serial and concurrent data updates

√
Concurrent-only Serial-only Serial-only

Configurable resource allocation policies
√

Limited × ×
Shared agents (states)

√
Concurrent-only Serial-only Serial-only

Shared agents (actions) Planned × × ×
Table 1. Comparison of existing simulation integration frameworks against the requirements of Section 2

2 Requirements for an Integration Framework

A suitable integration framework should provide a methodology for
systematically building-up a simulation, as well as a runtime infras-
tructure for running the component models, coordinating simulation
time, and synchronising data. In this section, we provide the key re-
quirements for the runtime infrastructure.

Runtime configuration of components: Infrastructure should in-
clude provision for specifying the makeup of the simulation, its com-
ponents and how to initialise them, shared data between components,
user-configurable simulation parameters, initial configuration, log-
ging and recording results, and so on. In HLA, the Federation Ex-
ecution Data (FED) file is used to supply such information to the
runtime infrastructure, while OpenMI uses compositions built using
a visual interface for specifying modules and linking their inputs and
outputs. In contrast, OpenSim uses the standard XML format which
has the added benefit that it is widely supported by parsers and tools.

Support for different operating environments: The framework
should support integration of models that run in different execution
environments, as in [7] that combines the Java-based MATSim traf-
fic flow simulator with the Python-based UrbanSim9 urban devel-
opment simulation. All existing integration frameworks support this
requirement, typically by wrapping existing components to operate
in a common runtime environment such as Java, e.g., Portico10, or
C#, e.g., FluidEarth11. Where HLA/OpenMI implementations link
components via inter-process (network-based) couplings, OpenSim
additionally supports in-process couplings. This means that compo-
nents written in Java can be linked to the Java-based runtime directly,
which can boost execution performance up to six times compared to
inter-process coupling12.

Support for different modelling paradigms: Components being
integrated often operate in different paradigms like event-based,
pull-driven, pipelined/daisy-chained, and time-stepped. For exam-
ple, our work in [9] integrates the event-based Jack belief-desire-
intention (BDI) reasoning platform13 with the time-stepped RePast
Simphony14 agent-based simulation platform. Most frameworks sup-
port this requirement, typically via wrappers and inter-process com-
munication. Where HLA allows time/event-based approaches, and
OpenMI/FluidEarth allows a chained/pull-driven approach, Open-
Sim supports a combination of any of these approaches.

9 http://www.urbansim.org
10 Portico reference implementation of HLA: http://www.porticoproject.org
11 FuildEarth reference implementation of OpenMI: http://fluidearth.net
12 Based on a direct comparison for the example hospital system integration

discussed in Section 3.1.
13 http://aosgrp.com/products/jack
14 http://repast.sourceforge.net

Data sharing between components: Simulation components
should specify what data they publish and subscribe to. Since in-
ternal representations of the data may vary between models, this
may require model-specific translation to convert data to/from the
shared format. In simple cases translation is loss-less, e.g, when con-
verting between Celsius and Fahrenheit. In many cases, however,
conversion requires approximation, aggregation, or dis-aggregation.
OpenMI provides built-in adaptors [1] for converting between spa-
tial representations. OpenSim currently only supports user-specified
translation functions via the wrapper, and we plan to add commonly
requested adaptors based on user feedback.

Management of simulation time: The runtime should manage
progression of simulation time without restrictions on how time is
represented (if at all) in the components. Models should be free to
choose the time granularity at which they execute, which may change
dynamically, such as for event-based execution. OpenSim fully sup-
ports simulation time management, which is model driven, similar
to the HLA. Differences in time granularity can require special at-
tention when a model accesses outdated data from another model,
for which approximation techniques like extrapolation/interpolation
have been proposed for OpenMI [1], and is planned for OpenSim.

Management of shared resources: Models should maintain a
common and consistent view of shared resources as the global simu-
lation progresses. The HLA/OpenMI approach to restrict update ac-
cess to one component in each time step is not desirable. Later work
has separated shared access into two types, resources that can only
be updated serially like in the original HLA, and those that can be
updated concurrently [6]. Allowing concurrent access puts additional
responsibility on the runtime to ensure consistency of updates in each
simulation step. A specific issue is to prevent “overuse” of limited re-
sources, for which two alternative mechanisms have been proposed:
acting ex-ante before the fact [6, 10], or ex-post after [13]. Addition-
ally, frameworks should provide policies for imposing “fairness” in
the use of resources. This is specially relevant for agent-based sim-
ulations, where agents in a model may make several modifications
to a shared resource in a single simulation step. OpenSim is the only
runtime that fully supports this requirement.

Support for shared agents: Sharing agents between components
is more complex than sharing aspects of the environment. Changes in
agent state can be handled via shared serial/concurrent access. How-
ever, there may be actions that could be done by an agent in separate
modules, that are conceptually inconsistent. For instance, a doctor
cannot be simultaneously treating a patient at the hospital in one
component, and going with the ambulance to the disaster scene in
another. OpenSim is the only framework to support this requirement.
Current support is partial: only agent state, not actions, can be shared.

D. Singh and L. Padgham / OpenSim: A Framework for Integrating Agent-Based Models and Simulation Components838

http://www.urbansim.org
http://www.porticoproject.org
http://fluidearth.net
http://aosgrp.com/products/jack
http://repast.sourceforge.net


3 Example Integrations and Architectures

In this section we give examples of three kinds of use cases we have
identified, for which OpenSim can be used.

3.1 Integrating existing simulations

This example captures the motivation of using existing simulations,
that have been independently validated and verified, and combining
them into a single simulation for a new purpose. Here, it is prefer-
able to keep changes to the models as small as possible. As a con-
sequence, common aspects of the environment represented in both
models, cannot be simply pulled out into the larger simulation, as that
requires significant re-engineering of the underlying models. Instead,
the integration framework should allow such “variables” to be suit-
ably linked together, and their states synchronised, at relevant points
during the simulation. Our work in [10, 13] has focused on such is-
sues of synchronisation and conflict resolution for agent-based sim-
ulations. Importantly, these kinds of integrations are not possible in
existing frameworks such as the HLA and OpenMI.

The example simulation we developed, to highlight these kinds of
issues, showed how a shared hospital system would cope with simul-
taneous emergency situations. The integration challenge was to take
two independently developed simulations of emergencies where hos-
pitalisation of patients was being simulated, and combine them into a
a larger simulation with a single shared hospital. The individual sys-
tems existed as two separate Repast time-stepped simulations: one
simulating a natural disaster, the other the spread of a deadly virus.
The key issues are that: (i) disaster and disease components should
both have the option of allocating beds in any timestep. (ii) resources
required together by a component, should be provided to the compo-
nent together. So for instance, it is no use allowing the disease com-
ponent to have a bed, but not public funds also required for the med-
ication for a patient. (iii) conflict resolution should ensure that the
combined bed allocation in any timestep does not exceed the num-
ber available. (iv) a shared ambulance agent is being controlled by
both components and updates to state and actions must be managed
carefully15.

3.2 Building simulations using existing platforms

It is often desirable to combine technologies that specialise in aspects
being modelled, for a specific problem. These technologies can in-
clude domain-specific platforms like MATSim for traffic simulation,
or general-purpose ones like BDI for reasoning agents. This use case
relaxes many of the constraints of the previous one, since the system
architect has some control over what concepts will being modelled
and how they will be shared between platforms, and can design the
application in a way that reduces data representation and conflict is-
sues to some extent. The simulations we have built, that belong to
this category, are:

• Bushfire evacuation simulation: was developed in consultation
with the Country Fire Authority (CFA), and simulates a bushfire
in extreme weather conditions in regional Australia. The fire was
simulated by Phoenix RapidFire, as mandated by the CFA. The
reasoning performed by the residents was implemented in the Jack
BDI platform. The actions of agents, to drive somewhere, were
simulated in MATSim. A visualiser showed the Breamlea land-
scape and roads, the driving agents, and the progressing fire. The

15 As per Section 2, OpenSim does not currently support shared actions.

OpenSim controls the components, and synchronises
data hospital-beds

Integration
Manager

Time
Manager

Conflict
Resolver

Wrapper for component,
translates data hospital-beds

VS with locally implemented
hospital system

Wrapper for component,
translates data hospital-beds

DS with locally implemented
hospital system

init
step
finish

get/set
seed
rollback/step

Figure 1. Architecture of an OpenSim simulation, here showing the ex-
ample integration of the disaster simulation (DS) and viral spread simulation
(VS) for the hospital system of Section 3.1.

BLOCKS runtime infrastructure was used to connect the various
pieces together [12], and we are re-doing it now using OpenSim.

• Flooding response simulation: was developed in collaboration
with local government council and Victoria State Emergency Ser-
vice (SES), to analyse the potential for sandbagging in an urban
area in Melbourne, Australia. It uses regional data including the
local road network, buildings, demographics, and flood progres-
sion data from an earlier event. The actions of residents, such as
driving to/from sandbagging depots, were implemented in Repast
Simphony. The reasoning of the agents was captured using the
BDI representation of goals and plans, derived from interviews
with council, emergency services, and community members 16.

• Taxi service simulation: uses MATSim for simulating the move-
ment of taxis, and the GORITE BDI platform, for the decision
making of the taxi agents as well as the dispatching service. In
this set up, some MATSim agents can be started with no fixed
daily plans, representing taxi agents, and use BDI reasoning to
decide which jobs to take, depending on the situation [8, 2].

These kinds of simulations often require a combination of
time/event/pipelined couplings that cannot be achieved in other
frameworks like HLA/OpenMI. For instance, the bushfire simulation
includes the event-based Jack and time-based MATSim that have to
be pipelined in order to achieve decision-action effect.

3.3 Developing simulations in parts

In the interest of modularity and maintainability, it is often desir-
able to build large simulations from ground up, but as a collection
of smaller simulations. This scenario offers the most flexibility for
designers, with full control over the development of the smaller sim-
ulations and their control and data interfaces.

We are building an example system in this manner, in collab-
oration with an industry partner, to capture the various processes
and constraints in a mining operation. The simulation combines two
smaller simulations that we are also developing: one to model the

16 https://sites.google.com/site/rmitagents/emergency-management

D. Singh and L. Padgham / OpenSim: A Framework for Integrating Agent-Based Models and Simulation Components 839

https://sites.google.com/site/rmitagents/emergency-management


Function Description

init() Initialises the model. Called once at the start of the simulation prior to any other call to the model.
step() Progresses the model simulation by one simulation step. Different models may run at different time granularity. The

TM controls the progression of logical time and this function is called on only the models scheduled to run in the
current logical time.

rollback() Reinstates the model to the precise state that existed prior to the last step call. As a result, a series of repeated
executions step → rollback should result in identical start and end states. Model wrappers should implement
this by saving the full state of the model at the start of every step, and restoring it when this function is called.

setSeed(n) Set the seed to n for all pseudo-random number generators used by the model. As a result, the execution
setSeed(n) → step → rollback → setSeed(n) → step should result in identical start and end
states. Used by the OpenSim controller during conflict resolution to ensure that an execution sequence will converge
to an acceptable resource allocation solution.

getValue(v)
setValue(v,val)

Gets/sets the value of the simulation variable v. Models may differ in how the shared concept v is represented
internally, and the IM uses converters for translating values from one representation to another.

getInUse(v)
setInUse(v,val)

Gets/sets the “in use” attribute of the shared variable v. The getter function returns true if the model is currently
using v, for instance during a multi-step action. The setter is used by the IM to inform components when v is in use
by some other component, and also when it is available for use again.

finish Called once at the end of the simulation to allow models to perform any final tasks then terminate gracefully.

Table 2. OpenSim component model wrapper interface functions

excavation process, and another to model the blending process for
excavated material of varying quality.

This type of work-flow, i.e., building agent-based simulations by
first developing smaller agent-based simulations of sub-systems and
then combining them, is straightforward to achieve in OpenSim.

4 The OpenSim Framework

We now describe our integration framework, OpenSim, that is built
with the requirements of Section 2 in mind, and which can be used
for the kinds of integrations we have described in Section 3. OpenSim
allows disparate simulation components to be combined into a sin-
gle global simulation. The framework provides an interface for con-
trolling the components in the simulation, and linking together the
shared concepts, or variables17, within the individual components,
as well as runtime infrastructure for progressing the simulation and
resolving and synchronising updates to any shared data.

The key modules in the OpenSim runtime infrastructure are:
the Time Manager (TM) for progressing the simulation time, the
Integration Manager (IM) for identifying conflicts in updates
to shared variables as well as for merging the updated values of
shared variables at the end of the timestep, and the Conflict
Resolver (CR), for finding resolutions for flagged conflicts. Apart
from that, the infrastructure also has a Configuration Loader
(CL) for parsing the XML configuration and dynamically loading the
specified components and shared variables at start-up.

OpenSim is the only framework that supports both concurrent and
serial updates to shared resources (Table 1). Our scheme for manag-
ing concurrent updates operates ex post, by acting only when con-
flicts actually occur, and rolling back conflicted components to a
saved consistent state prior to the step. In contrast, is the ex ante
approach of avoiding conflicts in the first place [4, 6, 10]. Previously,
Wang et al. have done some early investigation on including concur-
rent updates in HLA [14], however they do not provide details or
show that this was achieved. Their subsequent work in [15], does not

17 Practically, concepts will be encapsulated in more complex forms such as
data structures and classes, however a discussion based on simple variables
will suffice here to highlight the concerns without loss of generality.

deal with concurrent updates, but does provide HLA-based infras-
tructure to ease the task of rolling back components that may have
progressed optimistically, in systems where there can be no guaran-
tee that all messages from prior timesteps have been received.

Our earlier work in [10] does provide an architecture to deal with
the problem of concurrent update of shared resources, however, it re-
quires significant modifications to the components being integrated.
In that work, conflicts are prevented by mandating that components
have all usage of shared variables pre-approved by the CR. This re-
quires identifying all code within the model that modifies shared vari-
ables, and rewriting it in the form of actions which may be approved
or failed by the CR as a single timestep progresses. The CR ensures
that no component is ahead of other components in action requests
involving shared variables, by more than one request. This allows the
CR to ensure a modicum of fairness in processing requests, but results
in potential idle time as one simulation has to wait for the requests
of a potentially conflicting component. This approach also does not
address issues of “fairness” when components request resources (e.g.
funds) in widely varying amounts per request.

The OpenSim approach, which instead of relying on continuous
requests to the CR to avoid conflicts, has a CR which identifies con-
flicts at the end of a time step. Then after deciding how this should be
resolved, it requests one or more components to re-run the timestep
with modified initial parameters. This approach enables integration
with much less modification of components than [10], and is more
efficient in cases where there is no actual conflict occurring. It also
does not result in the anomalies of unnecessary failures, exhibited by
[6].

4.1 Configuration

In building an integrated simulation using OpenSim a modeller starts
by identifying the shared concepts, or variables, between the simu-
lation components, such as the physical environment, resources, ob-
jects, and agents. The simulation components and their shared vari-
ables are then specified in a configuration file (XML format). In order
for the simulation components to liaise with the OpenSim runtime,
each must be first “wrapped” by implementing the interface of Ta-
ble 2. Then, the combined simulation XML is given to the OpenSim

D. Singh and L. Padgham / OpenSim: A Framework for Integrating Agent-Based Models and Simulation Components840



runtime infrastructure for execution.
Figure 1 shows a system level view of our example integration

for the hospital system, where both the disaster and virus simulation
components share the concept of a hospital. The local representa-
tion of a hospital system may well differ in each simulation, and for
the purpose of combining, some common denominator needs to be
identified, here hospital-beds. Note that the components do not
necessarily need to model beds per se, rather only a general notion
of hospital occupancy, that can be converted to the shared notion of
hospital-beds via functions included in the wrapper implemen-
tation.

4.2 Time management

The management and progression of logical time is done in a manner
similar to [4, 6, 10] via the Time Manager (TM). Each simulation
component sends a request to the TM that then progresses the sim-
ulation to the earliest logical time requested. This setup allows for
integrating components that operate at different time granularity, and
also works for hybrid systems where some components may be time-
stepped (these request time be progressed by a fixed duration) and
some event-driven (these request time advance by variable duration).

Pipelined execution, where desired, is specified via the configura-
tion file, such that the output of one component is fed to another, in
the same timestep.

4.3 Simulation loop

Algorithm 1 shows a simplified version of the procedure for a sin-
gle simulation step performed by the OpenSim infrastructure. The
simulation loop starts with the TM collecting all the components that
are scheduled to run in the current simulation step, and progressing
them via step interface calls (lines 3–5). Then, the IM obtains the
new values of the shared variables, via get calls, and checks for
conflicts (line 6), i.e., when multiple components make incompatible
updates to shared variables, such as if the disaster and virus simu-
lations collectively use more beds than are available. If there are no
conflicts, the IM updates the components with the final values of the
shared variables via set interface calls, so that the shared variables
are synchronised once again (lines 14–16).

If on the other hand, there are conflicts, the IM works with the
CR to resolve them first (line 9). A resolution basically involves the
IM resetting the conflicted components to their start state at the be-
ginning of the time step, via rollback interface calls (line 10),
adjusting the perceived values of the shared variables, via set calls
(line 11), in such a way that the original conflicts cannot occur, and
re-stepping the components once more (line 12). If the re-step causes
new conflicts, then the IM consults the CR again to find a resolution
(that doesn’t undo the previous resolution), then resolves the con-
flicts in a similar way by rolling back, adjusting the shared variables,
and re-stepping yet again. It does this repeatedly until all conflicts
are resolved.

4.4 Shared Resources

Shared resources are specified in OpenSim via the XML configura-
tion file. OpenSim differentiates between two kinds of resources: se-
rially accessible resources that can only be used by one component
at a time, such as a shared ambulance between the disaster and virus
simulations, and concurrently accessible resources that lend them-
selves to simultaneous updates in the same time step. In [6], this is
referred to as exclusive vs cumulative use.

Algorithm 1: OpenSimStep: the main simulation loop
Data: The random generator seed s
Result: Performs one simulation step

1 get components scheduled for this step;
2 shuffle the order in which components will be stepped;
3 foreach component do

4 set random seed to s;
5 step;

6 check conflicts using pre- and post-step shared vars’ values;
7 if conflicts exist then

8 resolve conflicts by finding suitable re-allocation of values;
9 foreach component do

10 rollback the component;
11 set re-allocated values of shared variables;

12 OpenSimStep();

13 else

14 merge updates and calculate final shared values;
15 foreach component do

16 set final values of shared variables;

4.4.1 Serial access

Serial access resources cannot be changed concurrently by multiple
components in the same logical time step. For instance in our hospi-
tal system example, the ambulance is this type of resource. It can
only attend to one emergency call at a time. If both the VS and DS
were to try and send the ambulance to different locations in the same
time step for instance, then only one of those updates can be allowed.
Moreover, the component that is given approval may lock exclusive
access to the resource for several subsequent time steps in order to
fully utilise it. For instance, in our example, it may take several time
steps for a dispatched ambulance to arrive at a location and treat an
injured person. The responsible component must be allowed exclu-
sive access to the ambulance variables for that period. This scheme
is not dissimilar to the HLA resource ownership scheme, where all
resources are essentially accessed serially in this way.

Exclusive access to resources is achieved in OpenSim via the
getInUse and setInUse interface functions. Component wrap-
pers are responsible for implementing these functions. This requires
some understanding of the underlying model logic, and possibly
some changes to it, to determine resource availability before its use,
and decide what to do when it is unavailable.

4.4.2 Concurrent access

As discussed, if the IM has detected an inconsistent state when in-
tegrating the results of the different components, the CR must de-
termine how the conflict should be resolved. At a basic level, when
this inconsistent state has to do with over-use of available resources,
then the CR must decide how to allocate the resources to the different
components. The way in which the CR resolves conflicts is config-
ured by the integration engineer via a resolution policy. We support
four different resolution policies as follows:

• Equal allocation: resolves the over-use by allocating the re-
source equally amongst all using components. For example,
in our integration of the hospital simulations, if the available
hospital-beds=10, the virus simulation (VS) used 6, and
disaster simulation (DS) 10, then equal distribution would result

D. Singh and L. Padgham / OpenSim: A Framework for Integrating Agent-Based Models and Simulation Components 841



in both components seeing hospital-beds=5 when the con-
flicted step is re-run.

• Proportional allocation: resolves the over-use by allocating in
the same proportion as initial conflicted use. So for the exam-
ple above, proportional allocation would allocate 6/16 of 10 beds
(3.75, rounded to 4) to VS and 10/16 (6.25, rounded to 6) to DS.

• Priority allocation: resolves by allocating the resource in priority
order, to the full amount of conflicted use, until depleted. For the
above, priority allocation in favour of VS would allocate 6 beds to
VS and the remainder of 4 beds to DS. Note that this would require
only DS to be re-run, as VS is allocated what it had used.

• Custom: resolves using a custom user-provided function.

There may be multiple conflicts, and it is important that all con-
flicts involving a component are resolved, and the start state mod-
ified appropriately, before the re-run of that component. When re-
running a component, the execution will take a different path once
the modified resource allocation is encountered. This may generate
a new conflict, which will in turn need to be resolved by the same
general process. Although this may require multiple iterations, it is
guaranteed to terminate, if no component is allowed to be given the
same start state more than once. In reality it is only under highly con-
strained circumstances, with highly interdependent components, that
many re-runs may be required. This happens only when exploring
limiting scenarios, where the runtime cost is justified as the purpose
is to understand well what could happen in such extreme situations.

5 Discussion and Conclusion

This paper introduced our framework, OpenSim, for facilitating the
runtime integration of simulation components including agent-based
models. It supports a range of scenarios including combining existing
models, combining general-purpose frameworks that model aspects
of the problem, as well as building new simulations in a modular way
from smaller simulations. It is simple to use: building a combined
simulation requires implementing model wrappers with basic control
and data access functions (Table 2), and specifying the makeup of the
combined simulation via an XML configuration file.

OpenSim is the only framework to support concurrent and serial
updates to shared resources, which is necessary for integrating agent-
based simulations. Conflicts in concurrent updates are managed ex
ante via a rollback-based mechanism. Additionally, it is a fully fea-
tured framework that can be used as a replacement for existing so-
lutions like the HLA and OpenMI (Table 1). Currently, support for
shared agents between components is partial, only agent states can
be shared via serial/concurrent variables, and work is underway to
include shared actions.

We have used, or are using, OpenSim in several projects. These
include the integration of the disaster and virus Repast simulations
for the hospital system, integration of BDI reasoning with MATSim
for a taxi service simulation, a configurable bushfire evacuation sim-
ulation combining MATSim, BDI, and Phoenix RapidFire, for Aus-
tralia, and the mine planning problem where the larger simulation is
being built in a modular way as two sub-simulations.

OpenSim is being released under an Open Source license18, with
a Java-based runtime execution. This is the result of several years
of work [10, 11, 12, 2, 13] on the central issues inhibiting modular
integration including agent-based simulations. We believe that solv-
ing these challenges is necessary to enable reuse of a growing global

18 Release is planned for mid-2014.

repository of agent-based systems for the study of complex social
systems.

ACKNOWLEDGEMENTS

This work is partly funded by ARC Discovery grant DP1093290,
ARC Linkage grant LP130100008, and seed funding from RMIT
University and SolveIT Software (now Schneider Electric). We
would like to acknowledge the work of RMIT University students
Arie Wilsher, Sutina Wipawiwat, and Thomas Wood, for develop-
ment of the various simulation components used in integration, and
help with evaluating existing frameworks.

REFERENCES

[1] Anthony M Castronova, Jonathan L Goodall, and Mehmet B Ercan, ‘In-
tegrated modeling within a hydrologic information system: an OpenMI
based approach’, Environmental Modelling & Software, 39, 263–273,
(2013). 2

[2] Qingyu Chen, Arie Wilsher, Dhirendra Singh, and Lin Padgham,
‘Adding BDI agents to MATSim traffic simulator (Demonstration)’, in
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 1637–1638, Paris, France, (May 2014). International Foundation for
Autonomous Agents and Multiagent Systems. 3, 6

[3] Judith S Dahmann, Frederick Kuhl, and Richard Weatherly, ‘Standards
for simulation: as simple as possible but not simpler the High Level
Architecture for simulation’, Simulation, 71(6), 378–387, (1998). 1

[4] Richard M Fujimoto, ‘Time management in the high level architecture’,
Simulation, 71(6), 388–400, (1998). 4, 5

[5] Ronald C Hofer and Margaret L Loper, ‘DIS today [Distributed Interac-
tive Simulation]’, Proceedings of the IEEE, 83(8), 1124–1137, (1995).
1

[6] R. Minson and GK Theodoropoulos, ‘Distributing RePast agent-based
simulations with HLA’, Concurrency and Computation: Practice and
Experience, 20(10), 1225 – 1256, (2008). 2, 4, 5

[7] T. W. Nicolai, L. Wang, K. Nagel, and P. Waddell, ‘Coupling an ur-
ban simulation model with a travel model a first sensitivity test’, in
Computers in Urban Planning and Urban Management (CUPUM),
number 11-07, Lake Louise, Canada, (2011). See www.vsp.tu-
berlin.de/publications. 2

[8] Lin Padgham, Kai Nagel, Dhirendra Singh, and Qingyu Chen, ‘Inte-
grating BDI agents into a MATSim simulation’, in Proceedings of the
European Conference on Artificial Intelligence (ECAI), Prague, Czech
Republic, (August 2014). 3

[9] Lin Padgham, David Scerri, Gaya Buddhinath Jayatilleke, and Sarah
Hickmott, ‘Integrating BDI reasoning into agent based modelling and
simulation’, in Winter Simulation Conference (WSC), pp. 345–356,
Pheonix, Arizona, USA, (December 2011). 2

[10] David Scerri, Alexis Drogoul, Sarah L. Hickmott, and Lin Padgham,
‘An architecture for modular distributed simulation with agent-based
models’, in Proceedings of Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pp. 541–548, (2010). 1, 2, 3, 4, 5, 6

[11] David Scerri, Ferdinand Gouw, Sarah L. Hickmott, Isaac Yehuda, Fabio
Zambetta, and Lin Padgham, ‘Bushfire BLOCKS: a modular agent-
based simulation’, in Proceedings of Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 1643–1644, (2010). 1, 6

[12] David Scerri, Sarah Hickmott, Karyn Bosomworth, and Lin Padgham,
‘Using modular simulation and agent based modelling to explore emer-
gency management scenarios’, Australian Journal of Emergency Man-
agement (AJEM), 27, 44–48, (July 2012). 1, 3, 6

[13] Dhirendra Singh and Lin Padgham, ‘A rollback conflict solver for in-
tegrating agent-based simulations (Extended Abstract)’, in Proceed-
ings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
1399–1400, Paris, France, (May 2014). International Foundation for
Autonomous Agents and Multiagent Systems. 1, 2, 3, 6

[14] L. Wang, S.J. Turner, and F. Wang, ‘Resolving mutually exclusive in-
teractions in agent based distributed simulations’, in Proceedings of the
36th conference on Winter simulation, pp. 783–791. Winter Simulation
Conference, (2004). 4

[15] Xiaoguang Wang, Stephen John Turner, Malcolm Yoke Hean Low, and
Boon Ping Gan, ‘Optimistic synchronization in hla-based distributed
simulation’, Simulation, 81(4), 279–291, (2005). 4

D. Singh and L. Padgham / OpenSim: A Framework for Integrating Agent-Based Models and Simulation Components842


	1 Introduction
	2 Requirements for an Integration Framework
	3 Example Integrations and Architectures
	3.1 Integrating existing simulations
	3.2 Building simulations using existing platforms
	3.3 Developing simulations in parts

	4 The OpenSim Framework
	4.1 Configuration
	4.2 Time management
	4.3 Simulation loop
	4.4 Shared Resources
	4.4.1 Serial access
	4.4.2 Concurrent access


	5 Discussion and Conclusion

