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Abstract. The dial-a-ride problem is a classic challenge in trans-
portation and continues to be relevant across a large spectrum of
applications, e.g. door-to-door transportation services, patient trans-
portation, etc. Recently a new variant of the dial-a-ride problem,
called ride-sharing, has received attention due to emergence of the
use of smartphone-based applications that support location-aware
transportation services. The general dial-a-ride problem involves
complex constraints on a time-dependent network. In ride-sharing
riders (resp. drivers) specify transportation requests (resp. offers) be-
tween journey origins and destinations. The two sets of participants,
namely riders and drivers, have different constraints; the riders have
time windows for starting and finishing the journey, while drivers
have a starting time window, a destination, and a vehicle capacity.
The challenge is to maximise the overall utility of the participants in
the system which can be defined in a variety of ways. In this paper we
study variations of the ride-sharing problem, under different notions
of utility, from a computational complexity perspective, and identify
a number of tractable and intractable cases. These results provide
a basis for the development of efficient methods and heuristics for
solving problems of real-world scale.

1 INTRODUCTION

With the growth in the use of smartphones, social networks, and per-
sonal GPS, as well as increasing transportation and fuel costs, con-
gestion, and other environmental concerns, there has been a grow-
ing level of interest in ride-sharing services. One-time ride-sharing
services opportunistically match riders with drivers who are trav-
elling along their route. This is a significant commercial growth
area, and many commercial services are already in place such as
Carma,2 Lyft,3 Uber,4 Sidecar,5 and Wingz.6 These services are en-
abled through smart-phone applications that help match riders and
drivers, thereby providing taxi-like services into commuters at a frac-
tion of the costs. In most ride-sharing scenarios riders pay a modest
distance-based fee to the driver of their car, with a small commission
for the service provider.

From an AI perspective, ride-sharing is a source of complex, pos-
sibly online, optimisation problems subject to preferences and un-
certainty [10]. From a data mining perspective, there is a signifi-
ant amount of work on mining transport patterns from GPS trajec-
tory data, which can used to establish typical travel plans of citi-
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zens [16, 7]. A comprehensive review of the ride-sharing problem,
its variants, solution techniques, and challenges is available [5].

We focus on the matching problem between riders and drivers.
We study a variant of the “inclusive ride-sharing” problem in which
both the origin and destination of a passenger are on the route of the
matched driver [5]. This matching is often framed as an optimisation
problem in which a distance- or cost-based objective is minimised.

Contributions. We focus on a variant of inclusive ride-sharing that
has been considered as part of an ongoing collaboration with an in-
dustry partner, Avego,7 who implement the Carma service mentioned
earlier. We assume that each car has a capacity of k+1 partners – one
driver and k passengers. The objective is to maximise the satisfaction
of the all users, specifically that every passenger finds a matching
driver, and each driver finds at least one matching passenger. More
specifically, we consider two different objective functions:

O1 Maximise the number of satisfied participants by including a
maximum number of satisfied users in the matching. In practice,
matchings in which some cars contain only one rider along with
the driver are acceptable.

O2 Maximise the extent to which riders are shared equally amongst
cars, which in the extreme can be used to perfectly balance pas-
sengers across participating cars. In some cities, such as San Fran-
cisco, drivers need a specified number of passengers in a car in
order to benefit from carpooling incentives. This objective allows
us to maximise the extent to which participants can benefit from
those incentives. Thus, the problem becomes a matching with the
same number of users per car.

We study the computational complexity of these problems under
two scenarios: one in which the set of drivers is specified, and another
in which some drivers are willing to participate as riders should this
be beneficial to the objective function. We present a novel theoret-
ical analysis of these ride-sharing problems. In the cases where we
find polynomial-time complexities, the corresponding algorithms are
of practical value in the real-world setting. Our approach provides
novelty over the heuristic approaches proposed in the artificial intel-
ligence literature [10], as well as the general optimisation variants
studied in the operations research literature [1].

2 PRELIMINARIES

Notation. We use various standard notation from graph theory, as
well as a number well-known problems. We denote by G = (V, E)
a graph with a set of vertices, V , and the set of edges, E. For each
vertex v, d◦(v) denotes the degree of v, and N(v) the neighbourhood

7 http://www.avego.com

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-831

831



of v. In the bipartite case, we define Gb = (V, W, E) where V (resp.
W ) represents the first set of vertices (resp. the second set) and E the
set of edges between elements (v, w) such that v ∈ V and w ∈ W .
A k-star is a tree of size k + 1 composed of a central vertex and k
leaves. A k-Dstar is a k-star where the centre is a driver.

In Theorem 1, we present a polynomial reduction from the EXAC-

TONESSAT problem [13], which is defined as follows:

EXACTONESSAT
Instance: A classical SAT formula, φ, in conjunctive normal
form, and constant α.
Question: Does these exist a satisfying assignment to φ in
which exactly α variables are assigned to true.

General Problem Formulation. The general ride-sharing problem
setting that we study in this paper can be described as follows. Let
R be the set of n riders, and D the set of m drivers. Drivers and
riders share a one-time trip close to their desired departure times.
Each rider ri ∈ R has a time window (TW) within which to complete
the journey, [esri , lsri ] (earliest start and latest start) for pick-up time
and [efri , lfri ] (earliest finish and latest finish) for the time by which
he/she must reach the destination. Similarly, each driver dj ∈ D may
have an associated time window [esdj , lsdj ] for his journey start time
sdj , and a time window [efdj , lfdj ] for his arrival time. However, in
practice, drivers tend to specify a fixed start, sdj , and arrival times,
fdj , for journeys. It is this setting we study in this paper: drivers
specify time points, while riders specify time windows.

We assume that we can partition the riders and drivers into
location-centric clusters each located at a vertex in V , i.e. V =
{V1, V2, . . . , Vm}, each of which can be associated with a city, a
neighbourhood, etc. We assume there is negligible travel time to
move within the cluster relative to inter-cluster travel. Let Pdj =
{V dj

1 , V
dj

2 , . . . , V
dj

l } be the path of length (l− 1) from the start lo-
cation V

dj

1 of the driver j to his destination V
dj

l . The driver spends a
fixed time duration to travel from one vertex to the next one through-
out his path; one can deduce a function Dur : V × V → IR that
calculates the distance between each set of V . Each city contains
several riders and/or drivers. Without lost of generality, each vertex
V

dj

h can be seen as a set containing riders and/or drivers.
Our approach involves building, in polynomial-time, a graph

amongst drivers and riders with an edge between them when a match-
ing is possible. Based on this graphical structure we can study the
complexity of potential problems according to the various objec-
tives discussed earlier. Thus, let G = (V, E) be this graph where
V = R∪D and E is the set of feasible matchings between drivers
and riders/drivers; the latter is the case when we allow the possibility
of drivers opting to ride in a particular matching. To construct this
graph we simply need to check for each driver the time constraints
between him and the riders/drivers contained in the sets of the path.
We give an outline for an algorithm to build G:

• For each driver dj ∈D, we have Pdj ={V dj

1 , . . . , V
dj

l }.
• For each set V

dj

h and for each rider (or driver) ri ∈ V
dj

h , if the
destination of ri (denoted dest(ri)), the time windows of ri and
the time associated with driver dj are compatible, we add the edge
{ri, dj} in E. The constraint to satisfy is the following:“
dest(ri) ∈ Pdj \{V dj

z | z ≤ h}
”

∧
“
esri ≤ sdi + Dur(V

dj

1 , V
dj

h ) ≤ lsri

”

∧
“
efri ≤ sdi + Dur(V

dj

1 , dest(ri)) ≤ lfri

”

The graph G has a number of important properties. The set of ver-
tices R associated to riders forms an independent set. In the setting
where drivers do not have the option of becoming riders the set of
vertices D associated to drivers forms an independent set. This re-
laxation leads to a bipartite graph Gb = (D, R, E).

From this graph, the study of different cases of the ride-sharing
matching problem become much easier. For example, we can con-
sider the preferences of users by adding weights to the edges or ver-
tices. We can study settings where we seek the best matching that
maximises the number of users that are satisfied, or by the matching
where every car is completely full or well balanced. Due to the set of
riders, which forms an independent set, a matching is simple to find
and many optimal solutions can be computed efficiently. In the next
two sections we will present different complexity results depending
on the objective we wish to optimise and whether or not drivers have
the option of playing the role of riders in the final matching.

3 DISTINCT DRIVER AND RIDER GROUPS

In this section we consider the setting where the set of drivers and
riders form distinct groups, i.e. drivers do not have the option of be-
coming riders in a matching, even if this would give a better quality
solution. Therefore, the problem involves finding a feasible match-
ing between the sets D and R according to the objective function. In
the following we will present complexity results for both objective
functions O1 and O2, as defined in the Introduction.

3.1 Maximizing the Number of Satisfied Users (O1)

We study the case where drivers are allowed to pick-up at most k
riders. We consider the optimisation problem in which the objective
is to minimise the number of unsatisfied users (driver or riders).

Definition 1. Let π1 be the matching problem where drivers have
a fixed travel route, fixed departure and arrival times, cannot select
to participate as riders, and can collect at most k riders in their car.
The objective is to minimise the number of unsatisfied users.

Theorem 1. The optimisation problem π1 can be solved in polyno-
mial time.

Proof. This problem is equivalent to covering a maximum number
of vertices in the graph Gb, which we will define below, with stars
of size less than k. The existence of a solution to this problem (each
driver can have at most k riders with him) leads to suppose that only
vertices of D can be the center of stars of size less than k.

We define a new bipartite graph G′
b = (kD, R, E′) where the first

independent set is k times the set D and E′ is k times the set of edges
E. To simplify, each vertex associated to a driver is cloned k − 1
times with the same neighbours. From G′

b, a maximum matching
gives an optimal cover with Dstars of size less than k in polynomial
time. Indeed, the k edges from identical vertices (clones) give the
associated k-stars for each driver.

3.2 Balancing Riders across Cars (O2)

We consider the case where the goal is to satisfy a maximum of users
with only full cars (exactly k riders and one driver). The decision
problem is equivalent to finding kα users satisfied using only full
cars, where α is given.
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Definition 2. Let π2 be the matching problem where drivers have
a fixed travel route, fixed departure and arrival times, cannot select
to participate as riders, and must have exactly k passengers. The
decision problem involves finding a cover with α k-Dstars.

Theorem 2. The decision problem π2 isNP-complete.

Proof. One can observe that this problem isNP . We will show that
π2 is NP-complete by presenting a polynomial reduction from the
EXACTONESSAT to π2 as follows.

There are n different users (driver or rider) and γ different full
car configurations containing (k + 1) users. For each user ui, we
define a variable χ

cj
ui for each full car configuration cj contain-

ing ui, and for each configuration cj a variable Cj is defined. For
each cj if the corresponding passenger configuration is in the so-
lution then variable Cj and all variables associated with the users
in the corresponding car must be assigned to true (k + 1 users).
We have (χ

cj
ua ∧ χ

cj
ub ∧ . . . ∧ χ

cj
uz |= Cj) from which, to get

a CNF, we define for each configuration cj the following clauses
(ucj

a , u
cj

b , . . ., u
cj
z are the users in this particular configuration cj):

(¬χ
cj
ua ∨¬χ

cj
ub ∨ . . .∨¬χ

cj
uz ∨Cj)∧ (¬Cj ∨χ

cj
ua)∧ (¬Cj ∨χ

cj
ub)∧

. . .∧(¬Cj∨χ
cj
uz ))∧(Cj∨¬χ

cj
ua)∧(Cj∨¬χ

cj
ub)∧. . .∧(Cj∨¬χ

cj
uz )).

The set of all possible configurations is denoted A , and the equiva-
lences between the variables associated with each configuration are
denoted B .

Each user ui can be included in at most one car configura-
tion, thus we state an AtMostOne constraint on the set of Cj vari-
ables associated with configurations containing ui, thus we have
ATMOSTONE(Cj | ui in configuration Cj). The set of all possible

configurations is denoted C .
The number of car configurations is bounded by the structure of

the graph; for each riders ri this number is equal to the number of
possible matchings with each neighbours (drivers in this case), there-

fore we have
P

j∈N(ri)

„
d◦(j)− 1

k − 1

«
. For the drivers di this num-

ber is equal to the number of configurations from di, then we have„
d◦(di)

k

«
.

We have n users and the objective is to fill α cars with (k + 1)α
users. The polynomial transformation from this instance to the EX-
ACTONESSAT problem is the following CNF with α′ = (k + 2)α
for the number of variables which must be assigned to true:

A

2
6664

(¬χc1
u1 ∨ ¬χc1

u2 ∨ . . . ∨ ¬χc1
uk+1 ∨ C1)

∧ (¬χc2
u1 ∨ ¬χc2

u2 ∨ . . . ∨ ¬χc2
u8 ∨ C2)

...
...

∧ (¬χ
cγ
un ∨ ¬χ

cγ
u6 ∨ . . . ∨ ¬χ

cγ
u11 ∨ Cγ)

∧

B

2
666664

∧
(¬C1 ∨ χc1

u1) ∧ . . . ∧ (¬C1 ∨ χc1
uk+1))

(C1 ∨ ¬χc1
u1) ∧ . . . ∧ (C1 ∨ ¬χc1

uk+1))

–
for C1

...
...

∧
∧

(¬Cγ ∨ χ
cγ
un) ∧ . . . ∧ (¬Cγ ∨ χ

cγ
u11))

(Cγ ∨ ¬χ
cγ
un) ∧ . . . ∧ (Cγ ∨ ¬χ

cγ
u11))

–
for Cγ

∧

C

2
6664

(ATMOSTONE(Cj | u1 in configuration Cj))
∧ (ATMOSTONE(Cj | u2 in configuration Cj))
...

...
∧ (ATMOSTONE(Cj | un in configuration Cj))

⇒ Let us suppose that there exists a solution to the decision problem
π2. Then we have α full cars and (k+1)α satisfied users. For each

full car cj , the configuration variable Cj is assigned at true, and from
A and B this leads to having, for each user ui associated with cj ,
the variable χui assigned to true. By the same argument all remain-
ing Cj variables, and the χui ones, are assigned to false. The set of

constraints in C ensures the uniqueness of each variable assigned to
true. Therefore, we have exactly (k+2)α variables set to true over
all sets of variables defined in the problem. To conclude, there exists
a solution to the instance of EXACTONESSAT with α′ = (k + 2)α.

⇐ Let us suppose that there exists a solution of the decision problem
EXACTONESSAT with exactly α′ = (k+2)α variables assigned to
true. First, we will prove that exactly α variables Cj must be assigned
to true. Let us suppose that exactly α+1 variables Cj are true. Then

from A and B this leads to having (k+1)α+(k+1) number χui

variables assigned to true, and unique by C , so (k+2)α+(k+2)
in all, which is impossible. Let us suppose that exactly α − 1 Cj

variables are true. Then by A and B this leads to having (k+1)α−
(k +1) χui variables assigned to true and unique by C , so there
are (k +2)α − (k +2) variables set to true in all. By supposition

all the other Cj variables are assigned to false, so again by A and
B all χui variables remaining are assigned to false. Therefore, it is

impossible to obtain a solution for π2 and thus exactly α Cj variables
are assigned to true.

From these α true configurations, one can deduce first that (k+1)α

unique variables χui are assigned to true by A , B and C , second
that (γ − α) Cj and [n − (k+1)α] χui are assigned to false. The

true clauses from A give a solution to the problem π2.

4 WHEN DRIVERS MAY CHOOSE TO RIDE

We consider the case where some drivers can opt to become riders
if they do not have to drive in an optimal matching. For this case,
we cannot use a bipartite graph for the problem model because the
set D is no longer an independent set. Thus we work on a graph
G = (V, E) where V = D ∪R.

4.1 Maximizing the Number of Satisfied Users (O1)

We consider the case where the objective is to minimise the number
of unsatisfied users. Due to the fact that the graph G is not bipartite,
the optimal solution is to match a maximum of users with Dstars of
size less than k. Therefore, we propose a polynomial-time maximum
cover with Dstars of size less than k called a k-Dstar cover in order
to solve the following optimisation problem.

Definition 3. Let π3 be the ride-sharing matching problem where
drivers have a fixed travel route, fixed departure and arrival times,
can decide to participate as drivers or riders, and must have at most
k passengers. The aim is to minimise the number of unsatisfied users
(driver or riders alone).

A problem similar to the k-Dstar cover has previously been studied
in the literature [11]. However, we present the idea of finding alter-
nating paths with properties that we need for the algorithm to com-
pute an optimal solution for the problem π3. In this case only drivers
can be the centre of stars. Therefore, we present this new version of
k-star cover with new properties. This results is a generalisation of
the special case studied in [17] where k = 2.
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x3 x4

. . .

xl−1 xlx1x0 x2

C
�∈ M

∈ M

Figure 1. A “backbone” T associated with an M -alternating path C.

Definition 4 (k-Dstar cover). Let G = (V, E) be a graph, a k-Dstar
cover M is a set of edges such that the connected components of the
partial graph induced by M are either simple vertices, or any Dstars
of size less than k.

Definition 5 (M -covered vertex). An M -covered vertex (resp. M -
non-covered) is a vertex which belongs (resp. does not belong) to at
least one edge in M . The set of vertices covered by M (resp. non-
covered by M ) will be denoted by S(M) (resp. NS(M)). An edge
of M between two riders does not exist, by definition.

Definition 6 (Maximum k-Dstar cover). In a maximum k-Dstar
cover, the number of covered vertices is maximum, therefore the num-
ber of non-covered vertices is minimum.

Definition 7 (Vertex degree in relation to M ). Let M be a k-Dstar
cover in a graph G = (V, E). For each i = 1, . . . , n, let d◦

M (xi) be
the number of edges of M which are incident to xi.

We will now give the definition of an alternating path in a k-Dstar
cover which is similar to the classical alternating path in a maximum
matching [2].

Definition 8 (M -alternating path). Let M be a k-Dstar cover in a
graph G = (V, E), an M -alternating path C = x0, x1, . . . , xl is
a path in G such that for i = 0, . . . ,

˚
l
2

ˇ − 1, x0 ∈ NS(M),
{x2i, x2i+1} /∈ M , and if k 
= (2i + 1) {x2i+1, x2i+2} ∈ M .
Note that for each edge in M , one of these vertices is of type driver
by Definition 5.

Definition 9 (“Backbone” of an M -alternating path). Let M be a
k-Dstar cover in a graph G = (V, E), and C = x0, x1, . . . , xl an
M -alternating path in G. The ”backbone”, denoted by T , associated
with the path C is composed of C, the edges of M which are incident
to C, and eventually the extremity of these edges (see Figure 1). Note
that for each edge of M in C, only one extremity can be incident at
one or more vertices in T . And this extremity must be of type driver.

Remark 1. If T contains a cycle, there exists e ∈ M that links two
vertices of C. If one of these vertices is not an extremity of C then
we will have a path of length three in M ; all the vertices are covered
by edges of C except, eventually, the extremities. By definition, x0 ∈
NS(M), thus T contains a cycle when the last vertex xk of C is
connected to another vertex of C by an edge e ∈ M and e 
∈ C; see
the illustration in Figure 2(a). Note that d◦

M (xl)=1.

Definition 10 (Augmenting M -alternating path ). Let C =
x0, . . . , xl be an M -alternating path, and x0 ∈ NS(M). C is
an augmenting M -alternating path if the cardinality of the k-Dstar
cover given by C can be increased by changing the membership in
M of all the edges of C, except possibly for the last one. After this
modification, each edge of M still contains a vertex of type driver.

Remark 2. From Remark 1, a path of length three or four can be
created due to the augmenting operation used in Definition 10. Let
e be the edge of M that creates the cycle in T and thus creates the
path of length three or four after the augmenting operation. Then,
the edge e can be removed from M in order to increase the number
of covered vertices by the k-Dstar cover (see Figure 2(b)).

Definition 11 (Even vertex and odd vertex). Let C = x0, . . . , xl be
an M -alternating path, and x0 ∈ NS(M). A vertex xi with an index
equal to an even number (resp. odd number) in C is called an even
vertex (resp. odd vertex).

We now present Lemma 1 about the augmenting M -alternating
paths and the fundamental Theorem 3 of the k-Dstar cover with M -
alternating paths.

Lemma 1. Let M be a k-Dstar cover, C = x0, x1, . . . , xl an M -
alternating path with x0 ∈ NS(M), and let T be the backbone
associated with the M -alternating path C. C is an augmenting M -
alternating path if and only if there exists a vertex x2i−1, i ∈ IN∗,
of type driver such that d◦

M (x2i−1) 
= k, or of type rider such that
d◦

M (x2i−1) 
=1 ∧ d◦
M (x2i) 
=1.

Proof. Proof by contradiction.

⇒ Suppose that C is an augmenting M -alternating path, and suppose
that an odd vertex x2i−1 of type driver such that d◦

M (x2i−1) 
= k
does not exist (so T does not contain any cycle). Thus, C and its
backbone T have the shape shown in Figure 3.

From Definition 10 and Remark 2, if T does not contain any cycle,
we can simply increase the cardinality of the covered vertices in the
path C by changing the membership in M of all the edges of C. If
we change the edge {x0, x1} in M in order to cover x0, the edge
{x1, x2} must change, else x1 will be a (k + 1)-Dstar centre. In this
way, we change the membership of {x1, x2} in M , which means that
we must change {x2, x3}. Recursively, we will change the member-
ship to M of all C edges. Thus, the last vertex xl will not be covered,
and C will not be an augmenting M -alternating path. This is incon-
sistent with the former assumptions. Therefore, there exists a vertex
x2i−1 such that d◦

M (x2i−1) 
= k.
If we suppose that an odd vertex x2i−1 of type rider such that

d◦
M (x2i−1) 
= 1 and d◦

M (x2i) 
= 1 does not exist, with the same
process we show that it is inconsistent.

⇐ If T contains a cycle, then C contains an augmenting M -
alternating path (see Remark 1). Otherwise, suppose that T does
not contain a cycle, and that there exists a vertex x2i−1, i ∈ IN∗

of type driver such that d◦
M (x2i−1) 
= k or of type rider such that

d◦
M (x2i−1) 
= 1 and d◦

M (x2i) 
= 1. We will show that C is an aug-
menting M -alternating path. Let xj = x2i−1, i ∈ IN∗, be the first
odd vertex on the M -alternating path with d◦

M (xj) < k. We have 3
cases:

x5
x1 x2 x3 x4

e

x0

(a) Example: cycle in the back-
bone T

e

x0 x1 x2 x3 x4 x5

(b) Example: augmenting opera-
tion with a cycle in T

Figure 2. Illustrations for Remark 1.
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T
C

x0 x1 x2 xk−3 xk−2 xk−1 xk ∈ M

�∈ M

. . .

k − 1 k − 1 k − 1

Figure 3. The backbone T associated with C.

1. d◦
M (xj)=0 where xj is of any type, C ends with an non-covered

vertex. So C is an augmenting M -alternating path (see illustration
in Figure 4.a).

2. d◦
M (xj) = 1 and d◦

M (xj+1) = 1 where xj is type driver, the
M -alternating path C contains an edge (xj , xj+1) ∈ M whose
extremities have a degree equal to 1. We remove the part of the
path that is after this edge, this part is already covered. Thus, we
have an M -alternating sub-path, in which all the vertices of odd
index have a degree equal to k and the sub-path end is an edge
(xj , xj+1). It is easy to see that this sub-path is an augmenting M -
alternating path by changing the membership in M of the edges
of C, except the last one (xj , xj+1). So C is an augmenting M -
alternating path (see illustration in Figure 4.b).

3. d◦
M (xj) = 1 and 1 < d◦

M (xj+1) ≤ k where xj is of any type,
the M -alternating path C owns an odd vertex with degree equal
to 1 adjacent to an even vertex with degree strictly greater than 1.
We change the membership in M of the edge between these two
vertices, and we remove the path part which is after the odd ver-
tex with degree equal to 1, this part is already covered. Thus, we
have an M -alternating sub-path, in which all the vertices of odd
index have a degree equal to k, and the sub-path end is like a non-
covered vertex. It is easy to see that this sub-path is an augment-
ing M -alternating path by changing the membership in M of all
C edges as in the first case. So C is an augmenting M -alternating
path (see Figure 4).

Finally, we give the theorem of the equivalence between k-Dstar
cover and augmenting M -alternating path. The proof is a generalisa-
tion of the result in [17] and is related, although not covered by the
one in [11]. Because of lack of space, the proof is omitted.

Theorem 3. Let M be a k-Dstar cover in a graph G, M admits a
maximum cardinality if and only if G does not possess an augmenting
M -alternating path.

xj−1

∈ M

Augmenting

�∈ M

a)

x0 x1 x2

b)

c)

C

C

C C

C

d d

d d

d d

d

d

d d

d

d
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Figure 4. Augmenting of the three cases with j = 2i − 1.

From Theorem 3, we can now introduce the algorithm which gives
a maximum k-Dstar cover, and thus an optimal solution to the prob-
lem π3. Let M be a k-Dstar cover, and let C be an augmenting M -
alternating path. The algorithm substitutes covered edges for non-
covered edges in C, except one of the edges at the end, accord-
ing to the different cases seen in Lemma 1. We denote this oper-
ation Augmenting(M, C), which results in a new k-Dstar cover
which covers one or two vertices more than M . It is very impor-
tant to start from a maximum matching, indeed each edge of M
will contains a vertex associated to a driver di. From this match-
ing, the Augmenting(M, C) algorithm will search augmenting M -
alternating path where the centre of each star is a driver di. The al-
gorithm that creates a maximum k-Dstar cover is:

Data: G = (V, E)
Result: A k-star cover M
begin

M := a Maximum Matching of G;
while there exists an augmenting M -alternating path C do

M := Augmenting(M, C)
end

Return M ;
end

Algorithm 1: Creating a maximum k-Dstar cover.

The algorithm that searches an augmenting M -alternating path
from a non-covered vertex x0 is based on a ”breadth-first search tree”
where the root is x0. For each vertex, we check if the distance to x0

is odd, and then we select the first vertex of type driver whose degree
is less than k or of type rider whose its degree and the degree of its
neighbour equal to 1 according to M .

The breadth-first search has complexity O(n+m) where n (resp.
m) is the number of vertices (resp. edges). In the worst case we
search n times an augmenting M -alternating path. The Algorithm
1 is performed in O(n2).

4.2 Balancing Riders across Cars (O2)

We consider again the perfect balanced objective where kα users are
satisfied with α full cars.

Definition 12. Let π4 be the ride-sharing matching problem where
drivers have a fixed travel route, fixed departure and arrival times,
can decide to participate as drivers or riders, and must have exactly
k passengers. The decision problem involves finding a cover with α
k-Dstars.

Corollary 1. From the Theorem 2, we can assume that the decision
problem π4 isNP-complete. Indeed, the only difference between the
two problems is the number γ of configurations of full cars. For each
driver the number of permutations is equal to the configurations as-
sociated with the drivers’ neighbours N(di) and the ones from di,

giving us
P

j∈N(di)

„
d◦(j)− 1

k − 1

«
+

„
d◦(di)

k

«
. The proof and

the number of variables set to true remains the same.

5 RELATED WORK

There are two complementary research communities interested in the
ride-sharing problem. Firstly in the artificial intelligence community
there is a line of work that focuses on using data mining techniques to
extract human mobility patterns from personal GPS data [7, 15, 8, 16,
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19]. Closely related to this is the study of the evolution of networks
over time [3], which can be useful to predict how mobility patterns
will change into the future.

Ride-sharing viewed as a problem of creating and coordinating
amongst shared plans has also be studied. Kamar et al. develop
and evaluate computational methods for guiding collaboration that
demonstrate how shared plans can be created in real-world settings,
where agents can be expected to have diverse and varying goals, pref-
erences, and availabilities [10]. This is a complex setting in which
formal notions of fairness and efficiency are required, which can be
achieved through concepts from mechanism design and game the-
ory. Yousaf et al. focus on encouraging people to use a ride-sharing
system by satisfying their demands in terms of safety, privacy, conve-
nience and also provide enough incentives for drivers and riders [21].
They formulate the problem as a multi source-destination path plan-
ning problem. In contrast, we have studied a particular set of in-
stances of ride matching that compiles all feasible matches into a
graph over which we can find optimal matches in polynomial time
for cars of known maximum capacity. A number of alternative ap-
proaches to ride-matching have also been proposed in the AI litera-
ture, such as an auction-based approach [12] and genetic algorithm
approaches [9]. These are complementary to our work since different
objective functions are at play.

In the operations research literature there is a significant body of
work on the dial-a-ride problem [1, 4], in which a taxi-like service
is provided to multiple users who have little or no access to public
services. Such services are often used with a permanent or long term
health issues, or who are unable to access public transport. Dial-a-
ride problems are closely related to dynamic pick-up and delivery
problem [6]. Solving dial-a-ride problems is typically very challeng-
ing for systematic optimisation methods. Therefore, these problems
are typically solved using heuristic methods [14] or variants of local
search [18]. Studies of the problem in the presence of dynamic re-
quests, time-windows, and uncertainty have also been reported [20].

6 CONCLUSION AND FUTURE WORK

We have presented a novel theoretical analysis of the ride-sharing
problem. We proposed a mathematic model of the problem and a
transformation into a compatible ride-sharing graph. This allowed us
to study the problem according to several constraints and objectives.
Our complexity results show that maximising the number of satisfied
ride-sharing users can be achieved in polynomial time when each
car has a known maximum capacity that should not be exceeded,
regardless of whether or not some drivers are willing to participate
as riders. We believe that these results for this polynomial case can
be extended to settings where cars have different capacities, which
would make our results even more general in practical. However, if
we require a solution that perfectly balances occupancy across cars
then the problem becomes NP-complete.

Our ongoing work is focusing on the use of preferences in the ride-
matching problem. The approach we have presented in this paper can
be immediately applied in the case where preferences are interpreted
as ruling out particular matches. However, more interesting situations
arise when preferences provide an implicit ranking over matching
proposals.
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