
Model Checking Auctions as Artifact Systems:
Decidability via Finite Abstraction

Francesco Belardinelli 1

Abstract. The formal verification of auctions has recently received
considerable attention in the AI and logic community. We tackle this
problem by adopting methodologies and techniques originally de-
veloped for Artifact Systems, a novel paradigm in Service Oriented
Computing. Specifically, we introduce a typed version of artifact-
centric multi-agent systems (AC-MAS), a multi-agent setting for Ar-
tifact Systems, and consider the model checking problem against
typed first-order temporal epistemic specifications. Notably, this for-
mal framework is expressive enough to capture a relevant class of
auctions: parallel English (ascending bid) auctions. We prove decid-
ability of the model checking problem for AC-MAS via finite ab-
straction. In particular, we put forward a methodology to formally
verify interesting properties of auctions.

1 Introduction

The formal verification of game structures is a topic of growing in-
terest in the AI and logic community [2, 16, 25]. In particular, the
verification of auctions has received considerable attention recently
[3, 18, 26]. Indeed, it is hard to overestimate the relevance of auctions
and auction-based mechanisms in a wide range of distributed sys-
tems [23, 19]. However, with some notable exceptions, most of the
research on this topic has focus on the design of auctioning mech-
anisms, while the model checking problem has only partially been
addressed.

In this paper we tackle the issues pertaining to model checking
auctions by adopting methodologies and techniques originally devel-
oped for Artifact Systems, a novel paradigm for business processes
[21]. Artifact Systems (AS) are best described in terms of interact-
ing modules, or artifacts, which typically consist of a data model,
accounting for the relational structure of data, and a lifecycle, de-
scribing the evolution of the system over time. To keep the verifi-
cation task tractable, most contributions disregard the data content
of artifacts as well as the agents implementing the services. Still, in
Artifact Systems and auctions alike it is crucial to reason about the
actions agents can perform, the knowledge they possess, as well as
the states they can jointly reach. Hence, the formal verification of
both AS and auctions can benefit from techniques developed in the
area of reasoning about knowledge [15, 22].

Taking inspiration from the works above, this paper aims at pro-
viding a twofold contribution. Firstly, we put forward an agent-based
abstraction techniques to model check Artifact Systems. Secondly,
we apply this methodology to the formal verification of auctions. In
this paper we focus on parallel English auctions and model these
as artifact-centric multi-agent systems (AC-MAS) [6, 7], a multi-
agent setting for Artifact Systems. Then, we tackle the model check-

1 Laboratoire IBISC, Université d’Evry, France, email: belardinelli@ibisc.fr

ing problem against specifications written in a first-order temporal
epistemic logic. Notably, the specification language includes predi-
cates whose interpretation might be infinite (e.g. total orders on ra-
tional numbers). This modelling choice calls for novel abstraction
techniques with respect to the state-of-the-art. Specifically, the no-
tion of uniformity, which has proved to be sufficient to obtain finite
abstractions [6, 12] has to be recast to account for this more complex
setting. Finally, we describe an abstraction techniques for AC-MAS,
and prove that a specification is satisfied by a concrete, infinite-state
AC-MAS iff it is satisfied by its finite abstraction. In particular, this
result applies to parallel English auctions.

Related Work. To our knowledge [3, 18, 26] are among the first
contributions to consider the formal verification of auctions. In [18]
the problem of model checking strategy-proofness of Vickrey auc-
tions is investigated; while [26] propose a formal approach to check
for shilling behaviours in auctions. Overall, [3] is the contribution
most closely related to the present work in spirit, as the authors also
analyse the verification of agent-based English auctions, but a key
difference is that their models abstract from the data content of auc-
tions. On the more general subject of Artifact Systems verification, in
[11, 13] this problem is investigated in relation to first-order linear-
time specifications; while [20] considers data-centric dynamic sys-
tems. In both cases the specification language is synctactically re-
stricted, while no such restriction is here considered. Other works
considering these features are [5, 6, 7], upon which this paper builds.
However, the task of formally verifying parallel English auctions
calls for novel abstraction techniques with respect to the cited ref-
erences.

Scheme of the Paper. In Sections 2-4 we present parallel En-
glish auctions and AC-MAS, a multi-agent framework for Artifact
Systems. Also, we introduce the typed first-order temporal epistemic
logic tFO-CTLK and state the corresponding model checking prob-
lem. In Section 5 we show that AC-MAS are expressive enough to
model parallel English auctions. Sections 6 and 7 contain the main
theoretical results of the paper: in Section 6 we define a notion of
bisimulation for AC-MAS and in Section 7 we state sufficient con-
ditions for the model checking problem to be decidable via finite
abstraction. The technique is then applied to the formal verification
of parallel English auctions. For reasons of space all proofs are omit-
ted. However, an extended version of this paper with further details
and selected proofs is available as [8].

2 Auctions

Hereafter we focus on parallel English (ascending bid) auctions [14].
This kind of auction is of particular interest in the present context, as
it is common to a number of distributed scenarios, including popular

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-81

81

auctioning websites. In parallel English auctions we typically have
a single auctioneer A and a finite number of bidders B1, . . . , B�.
The auctioneer puts on sale a finite number of items, starting from
a base price that is public to all bidders. For sake of presentation,
we consider the bidding process as structured in discrete rounds. At
each round, the bidder can either choose to bid for a specific item
or to skip the round. At the end of the bidding process, each item
is assigned to the bidder with the highest offer. We assume that our
bidders are rational and each of them has an intrinsic value for each
item being auctioned: she is willing to buy the item for a price up to
her true value, but not for any higher price. Also, each bidder keeps
this information private from other bidders and the auctioneer.

We are interested in verifying auctions against properties concern-
ing the evolution of the bidding process and the knowledge acquired
by bidders. For instance, we might want to check that (i) the base
price for each item is indeed known to all agents, and not only this but
that the base price is actually common knowledge. Also, we might
want to express that (ii) the true value of each bidders for each item is
indeed unknown to the actioneer and the other bidders, and it remains
so throughout the bidding process. Other specifications of interest
might be liveness properties such as (iii) the bidders are always able
to make a higher bid, unless they have already hit their true value.

We remark that model checking such properties is extremely com-
plex. Indeed, prices are usually represented by real or rational num-
bers; hence auctions typically belong to the realm of infinite-state
systems. In what follows we provide a formal model for auctions
and prove that we can model check properties such as (i)-(iii) above
by considering finite abstractions of concrete infinite-state auctions.

3 Artifact-centric Multi-agent Systems

We now fix the basic notation for databases used hereafter [1]. In
what follows we assume a finite number of types T1, . . . , Tk.

Definition 1 (Db schema and instance) A (typed) database schema
is a finite set D = {P1/a1, . . . , Pn/an, Q1/b1, . . . , Qm/bm} of
typed relation symbols R with arity c ∈ N and type Tk1 , . . . , Tkc .

Given a countable interpretation domain Uh for each type Th, a
D-instance over U1, . . . , Uk is a mapping D associating in a type-
consistent way (i) each relation symbol P ∈ D with a finite a-ary
relation D(P) over Uk1 × . . .× Uka , and (ii) each relation symbol
Q ∈ D with a (possibly infinite) b-ary relation D(Q) over Uk1 ×
. . .× Ukb .

In Def. 1 we depart from the standard notion of db instance as
the interpretation D(Q) of a symbol Q ∈ D can be infinite in
principle. Intuitively, the symbols Q are used to model background
information on the interpretation domains, e.g. the total order <
on the set Q of rational numbers. The set of all D-instances over
U1, . . . , Uk is denoted as D(�U). The active domain adom(D) =
〈adom1(D), . . . , adomk(D)〉 of a db instance D is a tuple where
each adomh(D) is the set of all individuals in Uh occurring in
some relation D(P). Since D and each D(P) are finite, so is each
adomh(D). Notice that the relations D(Q) do not contribute to the
definition of the active domain. Finally, with an abuse of notation we
write f : Uh → U ′

h to express that f is a function s.t. for each type
Th, f(u) ∈ U ′

h if u ∈ Uh. We now introduce the disjoint union ⊕
of db instances. Let the primed version of the db schemaD above be
the db schema D′ = {P ′

1/a1, . . . , P
′
n/an, Q

′
1/b1, . . . , Q

′
m/bm}.

Definition 2 (Disjoint union ⊕) GivenD-instances D and D′, D⊕
D′ is the (D ∪ D′)-instance s.t. for every relation symbol R, D ⊕
D′(R) = D(R) and D ⊕D′(R′) = D′(R).

Intuitively, the operator ⊕ will be used to describe the transition
of a system from a current state D to the successor state D′.

We now introduce a notion of agent inspired to multi-agent sys-
tems [6, 15].

Definition 3 (Agent) Given a countable interpretation domain Uh

for each type Th, an agent is a tuple A = 〈D, Act, Pr〉 s.t. (i) D is
the local database schema; (ii) Act is a finite set of (typed) actions
α(�T), where the tuple �T of types are the formal parameters of α;
and (ii) Pr : D(�U) �→ 2Act(�U) is the local protocol function, where
Act(�U) is the set of ground actions α(�u), for α(�T) ∈ Act and
�u ∈ �U |�T | a tuple of (type-consistent) ground parameters.

As standard in multi-agent systems, each agent A performs the
actions in Act according to the protocol function Pr. Moreover, we
assume that A is in some local state D ∈ D(�U), that is, the informa-
tion she possesses is structured as a database.

As agents interact, we consider their composition.

Definition 4 (AC-MAS) Given a countable interpretation domain
Uh for each type Th and a set Ag = {A0, . . . , A�} of agents
Ai = 〈Di, Acti, P ri〉, an artifact-centric multi-agent system is a
tuple P = 〈Ag, s0, τ〉 s.t. (i) s0 ∈ D0(�U) × . . . × D�(�U) is the
initial global state; and (ii) τ : D0(�U)× . . .×D�(�U)×Act(�U) �→
2D0(�U)×...×D�(�U) is the global transition function, where Act(�U) =
Act0(�U) × . . . × Act�(�U) is the set of joint (ground) actions, and
the transition τ(s, 〈α0(�u0), . . . , α�(�u�)〉) is defined iff αi(�ui) ∈
Pri(Di) for all i ≤ �.

AC-MAS are rich enough to formalize the framework of Artifact
Systems, as shown in [5, 7] for instance. We now introduce some
basic terminology. We denote a joint (ground) action as α(�u) for
α = 〈α0(�T0), . . . , α�(�T�)〉 and �u = 〈�u0, . . . , �u�〉, and define the

transition relation s → s′ on global states iff s
α(�u)−−−→ s′, i.e.,

s′ ∈ τ(s, α(�u)) for some α(�u) ∈ Act(�U). An s-run r is an in-
finite sequence s0 → s1 → · · · , with s0 = s. For n ∈ N, we
set r(n) = sn. A state s′ is reachable from s if there is an s-run r
s.t. r(i) = s′ for some i ≥ 0. Finally, we introduce S as the set of
global states reachable from the initial state s0. The following class
of AC-MAS will feature prominently in the paper.

Definition 5 (Rigidity) An AC-MAS P is rigid iff for every Q ∈ D,
s, s′ ∈ S, and Di ∈ s, Dj ∈ s′, we have Dj(Q) = Di(Q).

In rigid AC-MAS the symbols Q ∈ D have the same interpreta-
tion in all global states and for all agents, consistently with the in-
tuition that these represent persistent properties of the interpretation
domains known to all agents. We refer to this relation as P(Q). Fur-
ther, two global states s = 〈D0, . . . , D�〉 and s′ = 〈D′

0, . . . , D
′
�〉

in S are indistinguishable for agent Ai, or s ∼i s′, if Di = D′
i

[15]. Finally, for technical purposes we refer to the global db schema
D =

⋃
Ai∈Ag Di of an AC-MAS. Then, each state s is associated

with the D-instance Ds ∈ D(�U) s.t. Ds(R) =
⋃

Ai∈Ag Di(R).
Also, we write adom(s) for adom(Ds). Notice that for every state
s, the associated Ds is unique, whereas the converse is not true in
general. Furthermore, we lift the disjoint union operator ⊕ to global
states so that s⊕ s′ is defined as 〈D0 ⊕D′

0, . . . , D� ⊕D′
�〉.

4 The Typed Logic tFO-CTLK

We now consider the specification language for AC-MAS. For each
type Th let Varh (resp. Conh) be a countable set of (typed) variables
(resp. constants). A (typed) term is any element t ∈ Varh ∪ Conh.

F. Belardinelli et al. / Model Checking Auctions as Artifact Systems: Decidability via Finite Abstraction82

Definition 6 (tFO-CTLK) The typed first-order CTLK formulas ϕ
over a db schema D are defined by the following BNF:

ϕ ::= t = t′ | R(�t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ |
Kiϕ | Cϕ

where R ∈ D, �t is a type-consistent tuple of terms, t, t′ are terms
of the same type, x ∈ Varh, and i ≤ �.

We introduce the abbreviations ∃, ∧, ∨, �=, and define free and
bound variables as standard. For a formula ϕ, varh(ϕ) (resp. frh(ϕ)
and conh(ϕ) denotes the set of its variables (resp. free variables and
constants) of type Th. A sentence is a formula with no free variables.
We use the standard abbreviations EXϕ, AFϕ, AGϕ, EFϕ, and
EGϕ. By Def. 6 free variables can occur within the scope of modal
operators; this is a major feature of the present framework in com-
parison with, for instance, [9, 17].

We now assign a meaning to tFO-CTLK formulas by using AC-
MAS. Given countable interpretation domains Uh s.t. Conh ⊆ Uh,
a (type-consistent) assignment is a function σ : Varh �→ Uh. Also,
we denote by σx

u the assignment s.t. (i) σx
u(x) = u ∈ Uh; and (ii)

σx
u(x

′) = σ(x′) for every x′ ∈ Varh different from x. For conve-
nience, we extend assignments to constants so that σ(t) = t when-
ever t ∈ Conh,

Definition 7 (Satisfaction) We define whether an AC-MAS P satis-
fies a tFO-CTLK formula ϕ in a state s ∈ S for assignment σ, or
(P, s, σ) |= ϕ, as follows (the clauses for propositional connectives
are straightforward and thus omitted):

(P, s, σ) |= R(�t) iff 〈σ(t1), . . . , σ(tc)〉 ∈ Ds(R)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ adomh(s), (P, s, σx

u) |= ϕ
(P, s, σ) |= AXϕ iff for all runs r, if r(0) = s then (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r, if r(0) = s then there is k ≥ 0 s.t.

(P, r(k), σ) |= ϕ′, and for all j, 0 ≤ j < k
implies (P, r(j), σ) |= ϕ

(P, s, σ) |= EϕUϕ′ iff for some run r, r(0) = s and there is k ≥ 0 s.t.
(P, r(k), σ) |= ϕ′, and for all j, 0 ≤ j < k
implies (P, r(j), σ) |= ϕ

(P, s, σ) |= Kiϕ iff for all s′, s ∼i s
′ implies (P, s′, σ) |= ϕ

(P, s, σ) |= Cϕ iff for all s′, s ∼ s′ implies (P, s′, σ) |= ϕ

where ∼ is the transitive closure of
⋃

Ai∈Ag ∼i.

A formula ϕ is true in s, or (P, s) |= ϕ, if (P, s, σ) |= ϕ for all
σ; while ϕ is true in P , or P |= ϕ, if (P, s0) |= ϕ.

Notice that we adopt an active-domain semantics, that is, in each
state s quantified variables range only over the active domain of s,
which is finite. Nonetheless, by the unconstrained alternation of free
variables and modal operators, we can refer to these “active” individ-
uals in successive states, where they might no longer be active.

The key concern of this paper is to investigate the model checking
problem for AC-MAS against tFO-CTLK specifications defined as
follows.

Definition 8 (Model Checking Problem) Model checking an AC-
MAS P against a tFO-CTLK formula ϕ amounts to finding an as-
signment σ0 such that (P, s0, σ0) |= ϕ.

If all Uh are finite, the model checking problem is decidable, as
P is a finite-state system. However, this is not the case in general, as
the following result shows.

Theorem 1 The model checking problem for AC-MAS w.r.t. tFO-
CTLK is undecidable.

In Section 6 and 7 we develop an abstraction technique to tackle
this issue. But first we introduce an auction scenario to illustrate the
formal machinery.

5 Auctions as AC-MAS

In this section we apply the formal framework of AC-MAS devel-
oped in Section 3 to model the parallel English auctions in Section
2. The relatively small size of the data model in auction AC-MAS
will allow us to outline in Section 7 the verification procedure for
tFO-CTLK specifications. We consider a single auctioneer A and a
finite number of bidders B1, . . . , B�. The domains of interpretation
include a finite set Items of items, as well as the set Q of rational
numbers to represent values for base prices, true values and bids. We
use the same names to denote interpretation domains and types. We
start by defining the auctioneer as an agent according to Def. 3.

Definition 9 (Auctioneer) The auctioneer A = 〈DA, ActA, P rA〉
is defined as

• DA = {Base/2, {Bid i/2}i≤�,Status/2, < /2} where
Base(it, bp) represents the base price bp ∈ Q for item
it ∈ Items , each Bid i(it, bd) represents the bid bd ∈ Q of
bidder Bi for item it, Status(it, st) keeps track of the status
of items; status st has two possible values: active if item it is
actively traded, or term if the bidding phase for it has terminated.
Finally, < is the standard “strictly less” symbol on Q.

• ActA = {initA(it, bp), time out(it), skipA}.
• initA(it, bp) ∈ PrA(D) if item it does not appear in any tu-

ple in D(Status); time out(it) ∈ PrA(D) if (it, active) ∈
D(Status); while the action skipA is always enabled.

Intuitively, the auctioneer non-deterministically chooses to put
some item it up for auctioning by performing action initA(it, bp).
The base price bp is then registered in Base . She keeps track of bid-
der Bi’s offers in Bid i and non-deterministically stops the bidding
phase for a specific item it by action time out(it). At that point, the
item is withdrawn and can no longer be put on sale.

Further, each bidder Bi can be represented as the following agent.

Definition 10 (Bidder) Each bidder Bi = 〈Di, Acti, P ri〉 is de-
fined as

• Di = {TValuei/2,Base/2, {Bid i/2}i≤�,Status/2, </2}
where TValuei(it, tv) represents the true value tv ∈ Q of item
it for bidder Bi, while Base , Bid i, Status and < are defined as
for the auctioneer.

• Acti = {init i(it, tv), bid i(it, bd), skipi}.
• init i(it, tv) ∈ Pri(D) if (it, active) ∈ D(Status) and item it

does not appear in D(TValuei); bid i(it, bd) ∈ Pri(D) when-
ever item it appears in D(TValuei), the highest bid bdj in some
Bid j (j �= i) for item it is strictly less than the true value tv for
bidder Bi, (it, active) ∈ D(Status), and bdj < bd ≤ tv. The
action skipi is always enabled.

By Def. 10 it is apparent that each bidder can bid only for actively
traded items, whenever bids have not exceeded her true value. No-
tice that symbols Base , Bid i, Status and < are shared by all agents.
However, each relation can be modified by at most one agent (Base
and Status by the auctioneer; Bid i by bidder Bi). Hence, the con-
sistency of db instances is preserved. Also, the information contained
in TValuei is private to each agent Bi.

We can now define English auctions as AC-MAS.

Definition 11 (Auction AC-MAS) Given the set Ag =
{A,B1, . . . , B�} of agents on sets Items , Q, and {active, terms},
the auction AC-MAS is a tuple A = 〈Ag, s0, τ〉 where

F. Belardinelli et al. / Model Checking Auctions as Artifact Systems: Decidability via Finite Abstraction 83

• s0 = 〈DA, D1, . . . , D�〉 is the global state where for all j ∈
{A, 1, . . . , �}, Dj(<) is the “strictly less” relation on Q, while
all other relations are empty;

• τ is the global transition function s.t. s
α(�u)−−−→ s′ iff

– αA = initA(it, bp) and s′ modifies s by adding tuples (it, bp)
and (it, active) to relations D′

A(Base) and D′
A(Status) resp.;

– αi = init i(it, tv) and s′ modifies s by adding tuple (it, tv) to
relation D′

i(TValuei) for bidder Bi;
– αi = bid i(it, bd

′) and s′ modifies s by replacing any tuple
(it, bd) in Dj(Bid i) with (it, bd′), for j ∈ {1, . . . , �};

– αA = time out(it) and (it, active) /∈ D′
j(Status) and

(it, term) ∈ D′
j(Status), for j ∈ {A, 1, . . . , �};

– αA = skipA or αi = skipi for some i ≤ �, and D′
i = Di.

Notice that the auction AC-MAS A in Def. 11 respects the intu-
itions on the progress of an auction for multiple items in parallel.
Since bidders can bid any value in Q (up to tv), there can be an in-
finite number of bids in principle, so the AC-MAS A is really an
infinite-state system. Of course, in our presentation we made a num-
ber of conceptual abstractions. However, we maintain that the present
formalisation satisfies an idealised notion of parallel English auction,
as it has been successfully analysed in game theory [14]. Finally, no-
tice that the interpretation of symbol < is rigid. Since < is the only
symbol with an infinite interpretation, the auction AC-MAS A is in-
deed rigid.

While A intuitively fulfils the informal description of an auction,
we need to develop formal verification methods to check this fact.
Hence, we turn to considering properties of interest that can be ex-
pressed in the specification language tFO-CTLK. First, one feature of
the auction we might want to check is that for each item it ∈ Items
there is exactly one base price bp registered in the relation Base ,
while bidders associate at most one true value tv to each item it
(possibly none). This can be expressed as

AG ∀it(∃!bp Base(it, bs) ∧ ∃≤1tv TValuei(it, tv))

where the quantifiers ∃! and ∃≤1 are defined as standard in first-order
logic with identity.

In tFO-CTLK we can also express what agents know about the
information content of the auction. For instance, specification (i)
in Section 2 requires that the base prices of items remain common
knowledge throughout the auction:

AG ∀it ∃bp C Base(it, bp)

On the contrary, according to (ii) the true value of items for each
bidder Bi is secret to all other bidders and to the auctioneer:

AG ∀it ¬∃tv ∨
j �=i∨j=A Kj TValuei(it, tv)

Further, we can express properties on the progress of the auction-
ing process. As an example, for each bidder Bi each bid is less or
equal to her true value:

AG ∀it, bd, tv((Bid i(it, bd) ∧ TValuei(it, tv))→ bd ≤ tv)

Also, specification (iii) states that each bidder Bi can raise her bid
unless she has already hit her true value:

AG ∀it, bd(Bid i(it, bd)→
→ (TValuei(it, bd) ∨ EF ∃bd′(bd′ > bd ∧ Bid i(it, bd

′))))

We refer to [8] for further examples of specifications in tFO-
CTLK.

In the next sections we develop the theory that will allow us to
model check specifications as above on a particular class of artifact-
centric multi-agent systems that includes the auction AC-MAS A.

6 Bisimulation

In this section we introduce a notion of bisimulation for AC-MAS.
Similar notions have already appeared in the literature [6, 7]. How-
ever, in this paper we consider typed languages and, most impor-
tantly, relations Q ∈ D with a possibly infinite interpretation. This
extended framework has an impact notably on the key concept of uni-
formity. In the rest of the section we let P = 〈Ag, s0, τ〉 and P ′ =
〈Ag′, s′0, τ

′〉 be AC-MAS and assume that s = 〈D0, . . . , D�〉 ∈ S
and s′ = 〈D′

0, . . . , D
′
�〉 ∈ S ′. Also, each Ch is a finite set of con-

stants of type Th.

Definition 12 (Isomorphism) The db instances D,D′ ∈ D(�U) are
isomorphic, or D � D′, iff there exists a type-consistent bijection
ι : adomh(D) ∪ Ch �→ adomh(D

′) ∪ Ch s.t. (i) ι is the identity on
each Ch; and (ii) for every R ∈ D and �u ∈ (Dom(ι))c, �u ∈ D(R)
iff ι(�u) ∈ D′(R). When this is the case, ι is a witness for D � D′.

The global states s and s′ are isomorphic, or s � s′, iff there exists
a type-consistent bijection ι : adomh(s) ∪ Ch �→ adomh(s

′) ∪ Ch
s.t. for every Ai ∈ Ag, ι is a witness for Di � D′

i. Any function ι as
above is a witness for s � s′.

Isomorphisms preserve the interpretation of individual constants
as well as of relation symbols P ∈ D. As to symbols Q ∈ D, the
witness ι preserves the interpretation only for individuals in the ac-
tive domain. Clearly, � is an equivalence relation.

Observe that isomorphisms are such w.r.t. specific sets Ch of con-
stants. Hereafter we assume the various Ch to be fixed. While iso-
morphic states share a common relational structure, they do not nec-
essarily satisfy the same first-order formulas, as satisfaction depends
also on values assigned to free variables. To account for this, we have
to recast the notion of equivalent assignments in [6].

Definition 13 (Equivalent assignments) Given isomorphic states
s, s′ and sets of variables Vh ⊆ Varh for each type Th, the assign-
ments σ : Varh �→ Uh and σ′ : Varh �→ U ′

h are equivalent for all Vh

w.r.t. s and s′ iff there exists a bijection γ : adomh(s)∪Ch∪σ(Vh) �→
adomh(s

′) ∪ Ch ∪ σ′(Vh) s.t. (i) the restriction γ|adomh(s)∪Ch
is

a witness for s � s′; (ii) σ′|Vh = γ · σ|Vh ; and (iii) for every
�u ∈ (Dom(γ))b and Ai ∈ Ag, �u ∈ Di(Q) iff γ(�u) ∈ D′

i(Q).

Intuitively, equivalent assignments preserve the (in)equalities of
the variables in each Vh as well as the interpretation of symbols
Q ∈ D. Two assignments are said to be equivalent for a tFO-CTLK
formula ϕ if they are equivalent for all frh(ϕ).

Plain bisimulations are known to preserve satisfaction in a propo-
sitional modal setting [10]. We now investigate the conditions under
which this applies to AC-MAS as well, beginning with a notion of
simulation. Throughout the rest of the paper we assume w.l.o.g. that
conh(ϕ) ⊆ Ch for every type Th.

Definition 14 (Simulation) A relation S on S × S ′ is a simulation
if 〈s, s′〉 ∈ S implies: 1. s � s′;

2. for t ∈ S, if s→ t then there is t′ ∈ S ′ s.t. s′ → t′, s⊕t � s′⊕t′

and 〈t, t′〉 ∈ S;
3. for Ai ∈ Ag, t ∈ S, if s ∼i t then there is t′ ∈ S ′ s.t. t ∼i t′,

s⊕ t � s′ ⊕ t′ and 〈t, t′〉 ∈ S.

Two states s and s′ are similar iff 〈s, s′〉 ∈ S for some simulation
S. Simulations can naturally be extended to bisimulations.

Definition 15 (Bisimulation) A relation B on S ×S ′ is a bisimula-
tion iff both B and B−1 = {〈s′, s〉 | 〈s, s′〉 ∈ B} are simulations.

F. Belardinelli et al. / Model Checking Auctions as Artifact Systems: Decidability via Finite Abstraction84

Two states s and s′ are bisimilar iff 〈s, s′〉 ∈ B for some bisim-
ulation B. Also, P and P ′ are bisimilar, or P ≈ P ′, iff so are their
initial states s0 and s′0. By Lemma 2 in [8] bisimilar, hence isomor-
phic, states preserve (typed) first-order formulas. However, this is no
longer the case for the full tFO-CTLK language. We refer to [4] for
an example of this fact. To overcome this difficulty we introduce a
novel notion of uniformity.

Definition 16 (Uniformity) An AC-MAS P is uniform iff for every
s, t, s′ ∈ S, t′ ∈ D(�U),

1. if s
α(�u)−−−→ t and s⊕ t � s′ ⊕ t′ for some witness ι, then for every

type-consistent constant-preserving extension ι′ of ι to �u, we have

that s′
α(ι′(�u))−−−−−→ t′;

2. if s ∼i t and s⊕ t � s′ ⊕ t′, then s′ ∼i t
′.

Further, if P is rigid, then (i) the set D(�U) above is restricted to db
instances t′ agreeing on the interpretation P(Q) of symbols Q ∈
D; (ii) for all �u ∈ U∗, there exist �v, �v′ in U∗ s.t. (�v, �u) ∈ P(Q)
and (�u,�v′) ∈ P(Q); and (iii) for all �u ∈ P(Q), for all i < b −
1, there exists v s.t. (u0, . . . , ui, v, ui+1, . . . , ub−2) ∈ P(Q) and
(u1, . . . , ui, v, ui+1, . . . , ub−1) ∈ P(Q) (with an abuse of notation
we assume that for ui+1 = ub−1 or ui = u0 the tuple ends or begins
with v).

Intuitively, conditions (1) and (2) in Def. 16 say that if state t is
reached by executing the ground action α(�u) in s, and v is uniformly
replaced with v′ in s, �u and t, thus obtaining, say, s′, �u′ and t′, then
t′ can be reached by executing α(�u′) in s′. Further, the condition
on rigid AC-MAS is aimed at obtaining the same uniform transitions
while keeping fixed the interpretation of symbols Q ∈ D.

In particular, we have the following result.

Proposition 17 The auction AC-MAS A is indeed uniform.

As a result, the auction AC-MAS A is both rigid and uniform.
We now state the main contribution of this section, which lifts the

result in [6] to AC-MAS with types and predicates with an infinite in-
terpretation. Hereafter sups∈S{|adomh(s)|} =∞ whenever an AC-
MAS P is unbounded, i.e., there are no bh ∈ N s.t. |adomh(s)| ≤ bh
for all s ∈ S.

Theorem 2 Consider bisimilar and uniform AC-MASP andP ′, and
a tFO-CTLK formula ϕ. If for every Th,
1. |U ′

h| ≥ 2 sups∈S{|adomh(s)|}+ |Ch|+ |varh(ϕ)|
2. |Uh| ≥ 2 sups′∈S′{|adomh(s

′)|}+ |Ch|+ |varh(ϕ)|
then P |= ϕ iff P ′ |= ϕ

A proof of Theorem 2 is provided in [8]. Intuitively, if each AC-
MAS has enough elements to simulate the transitions in the other
system, then they satisfy the same formulas. By this result, if in ad-
dition each {|adomh(s)| | s ∈ S} is bounded, and therefore all
sups∈S{|adomh(s)|} are finite, then an infinite and uniform AC-
MASP can in principle be verified by model checking a finite bisim-
ilar system P ′, whose interpretation domains satisfy condition (1) in
Theorem 2. In the next section we introduce a class of infinite and
uniform AC-MAS that admits finite abstractions.

7 Finite Abstraction

In this section we state sufficient conditions to reduce the model
checking problem for an infinite AC-MAS to the verification of a fi-
nite system. The main result is given as Theorem 3, which guarantees

that for bounded and rigid AC-MAS uniformity is sufficient to obtain
bisimilar finite abstractions that preserve tFO-CTLK formulas. In the
following we assume for technical reasons and w.l.o.g. that any AC-
MAS P is such that adomh(s0) ⊆ Ch (as each adomh(s0) is finite).
Also, Nh =

∑
Ai∈Ag max{α(�x)∈Acti,�x∈Varh}{|�x|}.

Definition 18 (Bounded AC-MAS) An AC-MAS P is bh-bounded,
for bh ∈ N, iff for all s ∈ S, |adomh(s)| ≤ bh.

Thus, an AC-MAS is bh-bounded if no active domain of its reach-
able state space contains more than bh distinct elements of type Th.
An AC-MAS P is bounded if for every type Th, P is bh-bounded
for some bh ∈ N. Observe that bounded AC-MAS may still contain
infinitely many states. So, bounded AC-MAS are infinite-state sys-
tems in general, whose model checking problem cannot be tackled
by standard techniques for finite-state systems.

We now introduce abstractions in a modular manner by first defin-
ing abstract agents.

Definition 19 (Abstract agent) Let A = 〈D, Act, Pr〉 be an agent
defined on a countable interpretation domain Uh for each type Th.
Given a countable set U ′

h of individuals for each Th, the abstract
agent A′ is a tuple 〈D′, Act′, P r′〉 on U ′

1, . . . , U
′
k s.t. (i) D′ =

D; (ii) Act′ = Act; and (iii) Pr′ is the smallest function s.t. if
α(�u) ∈ Pr(D), D′ ∈ D′(�U ′) and D′ � D for some witness ι,
then α(�u′) ∈ Pr′(D′), where �u′ = ι′(�u) for some type-consistent
constant-preserving bijection ι′ extending ι to �u.

Given a set Ag of agents, let Ag′ be the set of the corresponding
abstract agents.

We remark that A′, as defined in Def. 19, is indeed an agent ac-
cording to Def. 3. We now present the notion of abstraction.

Definition 20 (Abstraction) Let P = 〈Ag, s0, τ〉 be an AC-MAS,
and Ag′ the set of abstract agents as in Def. 19. The AC-MAS P ′ =
〈Ag′, s′0, τ

′〉 is an abstraction of P iff (i) s′0 � s0, and (ii) τ ′ is

the smallest function s.t. if s
α(�u)−−−→ t, s′, t′ ∈ D′(�U) and s ⊕ t �

s′⊕t′ for some witness ι, then s′
α(ι′(�u))−−−−−→ t′ for some type-consistent

constant-preserving bijection ι′ extending ι to �u.

Notice that P ′ is indeed an AC-MAS as it satisfies the relevant
conditions on protocols and transitions in Def. 4. Also, by varying
each U ′

h we can obtain different abstractions. Moreover, the abstrac-
tion of a rigid AC-MAS is not itself rigid in general. The last point is
key in the definition of finite abstractions.

We immediately state the main technical result of the paper, while
referring to [8] for details and full proofs.

Theorem 3 Consider a bounded, uniform and rigid AC-MAS P
over infinite interpretation domains Uh, a tFO-CTLK formula ϕ,
and interpretation domains U ′

h s.t. Ch ⊆ U ′
h. If for every type Th,

|U ′
h| ≥ 2bh + |Ch|+max{|varh(ϕ)|, Nh}, then there exists an ab-

straction P ′ of P over U ′
1, . . . , U

′
k s.t. P |= ϕ iff P ′ |= ϕ

We remark that the U ′
h in Theorem 3 might as well be finite. So, by

using a sufficient number of abstract values in U ′
h, we can in principle

reduce the model checking problem for infinite-state AC-MAS to the
verification of a finite abstraction.

Corollary 4 Given a bounded, uniform and rigid AC-MAS P over
infinite domains �U , and a tFO-CTLK formula ϕ, there exists a finite
abstract AC-MAS P ′ s.t. ϕ is satisfied by P iff P ′ satisfies ϕ.

Notice that the assumption of rigidity is essential to obtain finite
abstractions. To conclude this section we briefly outline how to de-
rive a finite abstraction of the auction AC-MAS A in Section 5.

F. Belardinelli et al. / Model Checking Auctions as Artifact Systems: Decidability via Finite Abstraction 85

7.1 Abstract Auction

We observe that the auction AC-MAS A is indeed bounded, uni-
form and rigid. We showed above that A is uniform and rigid. As
to boundedness, notice that the only infinite interpretation domain
in A is the set Q of rational numbers. By definition of A, for each
global state s, there can be at most |Items|(2|Ag|−1) distinct ratio-
nal numbers in the active domain of s: |Items| elements to represent
base prices, |Items|(|Ag|−1) elements to represent true values, and
|Items|(|Ag| − 1) elements for bids. Further, consider the specifi-
cations appearing in Section 5 to be verified. No constant appears in
these formulas and the active domain of the initial state s0 is empty,
therefore so is the set CQ of constants for rational numbers. Finally,
13 variables of type Q appear in our specifications, and this number
exceeds NQ. As a consequence, we consider a finite abstract domain
U ′

Q of cardinality greater of equal to 2|Items|(2|Ag| − 1) + 13, as
required in Theorem 3.

We now describe briefly the abstract agents A′ and B′
1, . . . , B

′
�

for the concrete auctioneer A and bidders B1, . . . , B�. By Def. 19
the abstract bd schema D′ and action types in Act′ are the same as
D and Act. As to the protocol functions, now these take values not in
Q but U ′

Q. As an example, consider the clause for action bid i(it, bd)
in Def. 10: bid i(it, bd) ∈ Pri(D) whenever the item it appears in
D(TValuei), the highest bid bdj in some Bid j (j �= i) for item it
is strictly less than the true value tv for bidder Bi, bdj < bd ≤ tv,
and (it, active) ∈ D(Status). Now, the condition on protocols in
Def. 19 requires that for D′ ∈ D′(�U), bid i(it, bd

′) ∈ Pr′i(D
′
i)

whenever D′ � D for some witness ι. In particular, this means that
bd′ ∈ U ′

Q is an abstract value that has not yet been used to represent
any bid in D′. By assumption |U ′

Q| ≥ 2|Items|(2|Ag| − 1) + 13 on
the cardinality of U ′

Q in Theorem 3 it is always possible to find such
an element.

Finally, given the set Ag′ = {A′, B′
1, . . . , B

′
�} of abstract agents

on Items , {active, term} and U ′
Q, we briefly illustrate the abstract

auction AC-MAS A′ = 〈Ag′, s′0, τ
′〉 where

• s′0 = s0|adom(s0) is the initial state;
• τ ′ is the global transition function that mimicks τ . For instance, if

αi = bid i(it, bd
′), then s′

α(�u)−−−→ t′ whenever t′ is the db instance
that modifies s′ by replacing any pair (it, bd) in D′

j(Bid i) with
(it, bd′), where bd′ ∈ U ′

Q has been found as detailed above.

Moreover, by Def. 20 and the definition of isomorphism, we have
that bd′ is strictly greater than the highest bid bdj in some Bid j in t′

for item it, but less than the true value tv for bidder Bi. This infor-
mation defines the interpretation Dt′(<) of symbol < in t′. Indeed,
the interpretation of < in A′ is not rigid, thus allowing for the reuse
of values. In our example, the old value bd would no longer appear
in the active domain of t′. Hence it might be used again in the next
transition if needed.

Reasoning as above we can generate the whole state space S ′ of
the abstract auction AC-MAS A′, as Items , {active, term} and U ′

Q

are finite. Then, we can model check our tFO-CTLK formulas on
this finite abstraction. Indeed, both the concrete AC-MAS A and the
interpretation domain U ′

Q satisfy the hypotheses of Theorem 3. Thus,
by this result it is guarantee that the specifications are satisfied in the
abstraction A′ iff they are satisfied in the concrete AC-MAS A.

8 Conclusions and Future Work

In this paper we advanced the state-of-the-art on the verification of
auctions by model checking. First, we extended the framework of

AC-MAS [6, 7] to support both typed languages and relations with
an infinite interpretation. We argued that both features are essential
to formalise parallel English (ascending bid) auctions as AC-MAS.
Most importantly, we provided a novel abstraction technique within
this enhanced setting. As a result, we are now able to model check a
significant class of infinite-state AC-MAS, including parallel English
auctions, against sophisticated specifications in tFO-CTLK.

In future work we aim at applying the theoretical results above to
concrete use cases. Indeed, one relevant issue concerns the bound-
edness check for AC-MAS. In this respect, it would be of interest
to find sufficient conditions ensuring boundedness, similarly to those
discussed in [20]. Further, general constructive techniques to build
abstractions from concrete AC-MAS are also essential for deploy-
ment in business processes.

REFERENCES

[1] S. Abiteboul et al. Foundations of Databases, Addison-Wesley, 1995.
[2] T. Ågotnes et al. ‘Verifiable equilibria in boolean games’, In Rossi [24].
[3] A. Badica and C. Badica, ‘Specification and verification of an agent-

based auction service’, in Information Systems Development, 239–248,
(2010).

[4] F. Belardinelli and A. Lomuscio, ‘Decidability of model checking non-
uniform artifact-centric quantified interpreted systems’, In Rossi [24].

[5] F. Belardinelli et al. ‘Verification of Deployed Artifact Systems via Data
Abstraction’, in Proc. of ICSOC’11, pp. 142–156, (2011).

[6] F. Belardinelli et al. ‘An Abstraction Technique for the Verification of
Artifact-Centric Systems’, in Proc. of KR’12, pp. 319 – 328, (2012).

[7] F. Belardinelli et al. ‘Verification of GSM-Based Artifact-Centric Sys-
tems through Finite Abstraction’, in Proc. of ICSOC’12, pp. 17–31,
(2012).

[8] F. Belardinelli, ‘Model checking auctions as artifact systems via finite
abstraction’, Technical report, Université d’Evry, (2014).

[9] K. Bhattacharya et al. ‘Towards Formal Analysis of Artifact-Centric
Business Process Models’, in Proc. of BPM’07, pp. 288–304, (2007).

[10] P. Blackburn et al. Modal Logic, Cambridge University Press, 2001.
[11] E. Damaggio et al. ‘Artifact Systems with Data Dependencies and

Arithmetic’, ACM Transactions on Database Systems, 37(3), 22:1–
22:36, (2012).

[12] G. De Giacomo et al. ‘Bounded Situation Calculus Action Theories and
Decidable Verification’, in Proc. of KR’12, pp. 467–477, (2012).

[13] A. Deutsch et al. ‘Automatic Verification of Data-centric Business Pro-
cesses’, in Proc. of ICDT’09, pp. 252–267, (2009).

[14] D. Easley and J. Kleinberg, Networks, Crowds, and Markets, Cam-
bridge University Press, 2010.

[15] R. Fagin et al. Reasoning About Knowledge, The MIT Press, 1995.
[16] D. Fischer et al. ‘Model Checking Games for the Quantitative mu-

Calculus’, Theory Comput. Syst., 47(3), 696–719, (2010).
[17] C. Gerede, J. Su, ‘Specification and Verification of Artifact Behaviors in

Business Process Models’, in Proc. of ICSOC’07, pp. 181–192, (2007).
[18] E. Tadjouddine et al. ‘Abstractions for model-checking game-theoretic

properties of auctions’, in Proc. of AAMAS ’08, pp. 1613–1616, (2008).
[19] N. Haque et al. ‘Resource allocation in communication networks using

market-based agents’, Knowledge-Based Systems, 18(4-5), 163–170,
(2005).

[20] B. Hariri et al. ‘Verification of relational data-centric dynamic systems
with external services’, in Proc. of PODS, pp. 163–174. ACM, (2013).

[21] R. Hull, ‘Artifact-Centric Business Process Models’, in Proc. of
OTM’08, pp. 1152–1163, (2008).

[22] A. Lomuscio et al. ‘MCMAS: A Model Checker for the Verification of
Multi-Agent Systems’, in Proc. of CAV’09, pp. 682–688, (2009).

[23] D. Reeves et al. ‘Exploring bidding strategies for market-based schedul-
ing’, Decision Support Systems, 39(1), 67–85, (2005).

[24] F. Rossi, ed. Proc. of IJCAI 2013, Beijing, August 3-9, 2013.
[25] N. Troquard et al. ‘Model checking strategic equilibria’, in Proc. of

MoChArt, pp. 166–188, (2008).
[26] H. Xu et al. ‘Real-time model checking for shill detection in live online

auctions’, in Software Engineering Research and Practice, pp. 134–
140, (2009).

F. Belardinelli et al. / Model Checking Auctions as Artifact Systems: Decidability via Finite Abstraction86

