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Abstract. The study of facility location in the presence of self-
interested agents has recently emerged as the benchmark problem
in the research on mechanism design without money. Here we study
the related problem of heterogeneous 2-facility location, that features
more realistic assumptions such as: (i) multiple heterogeneous facili-
ties have to be located, (ii) agents’ locations are common knowledge
and (iii) agents bid for the set of facilities they are interested in. We
study the approximation ratio of both deterministic and randomized
truthful algorithms when the underlying network is a line. We devise
an (n− 1)-approximate deterministic truthful mechanism and prove
a constant approximation lower bound. Furthermore, we devise an
optimal and truthful (in expectation) randomized algorithm.

1 Introduction

Mechanism design without money is a relatively recent and challeng-
ing research agenda introduced by Procaccia and Tennenholtz in [8].
It is mainly concerned with the design of truthful2 (or strategyproof,
SP for short) mechanisms in scenarios where monetary compensation
cannot be used as a means to realign the agents’ interest to the mech-
anism designer’s objective (as, e.g., done by VCG mechanisms). It
has been noticed that such a circumstance occurs very frequently in
real-life scenarios, as payments between agents and the mechanism
are either illegal (e.g., organ transplant) or unethical (e.g., in the case
of political decision making). To circumvent the impossibility of uti-
lizing payments to enforce truthfulness, Procaccia and Tennenholtz
propose instead to leverage the approximation ratio of the mecha-
nism in those cases where the optimal outcome is not truthful. The
facility location problem is arguably the archetypal problem in mech-
anism design without money [8]. It demands locating a set of facili-
ties on a network, on input the bids of the agents for their locations,
in such a way as to minimize the total connection cost of the agents
(i.e., the sum of the distances of each agent to the nearest facility).
If we regard the problem of locating facilities as a political decision
(e.g., a city council locating facilities of public interest on the basis of
the population residing in a certain area), the impossibility to utilize
payments in this context becomes immediately apparent.

Inspired by the facility location problem, and aiming at analyzing
a richer and more realistic setting, we introduce and study the het-
erogeneous 2-facility location without money.3 In detail, it demands
locating 2 heterogeneous facilities (i.e., serving different purposes)
on a network on input the bids of the agents for the facilities they are
interested in, the aim being that of minimizing the connection cost of

1 SCM, Teesside University UK, email: {p.serafino, c.ventre}@tees.ac.uk
2 A mechanism is SP if truthtelling is a dominant strategy for agents. See §3.
3 The present research agenda and some preliminary results were sketched in

the extended abstract [10].

the agents to the facilities they bid for. We study the approximation
ratio of truthful deterministic mechanisms when agents are located
on a line, prove that the optimal algorithm is not truthful (by giving a
lower bound of 9/8) and propose a truthful (n− 1)-approximate de-
terministic algorithm. In order to provide better approximation guar-
antees we then turn our attention to randomized algorithms. We de-
vise an optimal randomized algorithm and prove it is truthful in ex-
pectation.

The remainder of this paper is organized as follows. §2 is devoted
to survey some related literature. In §3 we formalize our model for
the heterogeneous facility location problem on the line. In §4 we
discuss our results about deterministic algorithms whereas in §5 we
present our results for randomized algorithms.

2 Related Work

The facility location problem has proved a fertile research problem
and, as such, has been addressed by various research communities.

The Social Choice community has been mostly concerned with
the problem of locating a single facility on the line. In his classi-
cal paper [7] Moulin characterizes the class of generalized median
voter schemes as the only deterministic SP mechanisms for single-
peaked agents on the line. Schummer and Vohra [9] extend the result
of Moulin to the more general setting where continuous graphs are
considered, characterizing SP mechanisms on continuous lines and
trees. They show that on circular graphs every SP mechanism must
be dictatorial.

From a Mechanism Design perspective, the aforementioned pa-
per [8] initiated the field of approximate mechanism design without
money. For the 2-facility location problem, they propose the Two-
Extremes algorithm, that places the two facilities in the leftmost and
rightmost location of the instance, and prove that it is group strate-
gyproof and (n− 2)-approximate, where n is the number of agents.
Furthermore, they provide a lower bound of 3/2 on the approxima-
tion ratio of any SP algorithm for the facility location problem on
the line and conjecture a lower bound of Ω(n). The latter conjecture
has been recently proven by Fotakis et al. [3]. Their main result is
the characterization of deterministic SP mechanisms with bounded
approximation ratio for the 2-facility location problem on the line.
They show that there exist only two such algorithms: (i) a mechanism
that admits a unique dictator or (ii) the Two-Extremes mechanism
proposed in [8]. Lu et al. [6], improve several bounds studied in [8].
Particularly, they prove a 1.045 lower bound for randomized mech-
anisms for the 2-facility location problem on the line, and present
a randomized n/2-approximate mechanism. Alon et al. [1] derive a
linear (in the number of agents) lower bound for SP mechanisms on
continuous cycles. Furthermore, they derive a constant approxima-
tion bound for randomized mechanisms in the same settings. Dokow

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-807

807



et al [2] shift the focus of research to discrete lines and cycles in-
stead. They prove that SP mechanisms on discrete large cycles are
nearly-dictatorial in that all agents can effect the outcome to a certain
extent. Contrarily to the case of continuous cycles studied in [9], for
small discrete graphs Dokow et al. prove that there are anonymous
SP mechanisms. Furthermore, they prove a linear lower bound in the
number of agents for the approximation ratio of SP mechanisms on
discrete cycles. Another interesting line of research in this area advo-
cates the use of imposing mechanisms, i.e. mechanisms able to limit
the way agents exploit the outcome of a game. For the facility loca-
tion problem, imposing mechanisms typically prevent an agent from
connecting to some of the facilities, thus increasing her connecting
cost and penalizing liars. Following this wake, in [4] Fotakis et al.
consider winner-imposing mechanisms, namely mechanisms that (i)
allocate a facility only at a location where there is an agent request-
ing it (as opposed to mechanisms that allocate facilities at arbitrary
locations) and (ii) require that an agent that wins a facility (i.e. has
a facility allocated to her location) must connect to it. Fotakis et al.
prove that the winner-imposing version of the Proportional Mecha-
nism proposed in [5] is SP for the K-facility location problem and
achieves an approximation ratio of at most 4K, for K ≥ 1. Further-
more they propose a deterministic non-imposing group strategyproof
O(log n)-approximate mechanism for a variant of the facility loca-
tion problem on the line with opening costs of facilities and no con-
straint on the number of facilities to be located.

3 Model and Preliminary Definitions

The heterogeneous 2-facility location problem on the line (here-
inafter facility location, for short) consists of locating facilities on
a linear unweighted graph. More specifically, we are given a set
of agents N = {1, . . . , n}; an undirected unweighted linear graph
G = (V,E), where V ⊇ N ; a set of facilities F = {F1,F2}.

Agents’ types are subsets of F, called their facility set. We denote
the true type of agent i as Ti ⊆ F.4 A mechanism M for the facility
location problem takes as input a vector of types T = (T1, . . . , Tn)
and returns as output a feasible allocation M(T ) = (F1, F2), such
that Fi ∈ V and F1 �= F2. Given a feasible allocationF = (F1, F2),
agent i has a cost defined as costi(F) =

∑
j∈Ti

d(i, Fj), where
d(i, Fj) denotes the length of the shortest path from i to Fj in G.
Naturally, agents seek to minimize their cost. Therefore, they could
misreport their facility sets to the mechanism if this reduces their
cost. We let T ′i ⊆ F denote a declaration of agent i to the mechanism.
We are interested in the following class of mechanisms.

A mechanism M is truthful (or strategyproof, SP, for short) if
for any i, declarations of the other agents, denoted as T−i, and
T ′i , we have costi(F) ≤ costi(F ′), where F = M(T ) and
F ′ = M(T ′i , T−i). A randomized M is a truthful in expectation
if the expected cost of every agent is minimized by truthtelling.

We want truthful mechanisms M that return an allocation
F = M(T ) that minimize the social cost function cost(F) =∑n

i=1 costi(F), namely: M(T ) ∈ argminF feasible cost(F). We
call these mechanisms optimal and denote an optimal alloca-
tion on declaration vector T as OPT (T ) if cost(OPT (T )) =
minF feasible cost(F). Alas, sometimes we have to content ourselves
with sub-optimal solutions. In particular, we say that a mechanism
M is α-approximate if cost(M(T )) ≤ α · cost(OPT (T )). Fur-
thermore, we denote as Vj [T ] the set of agents wanting access to

4 Sometimes, slightly abusing notation, we will regard Ti as a set of indices
j s.t. Fj ∈ Ti.

1 2 3 4 5

{F1} {F2} {F1,F2} {F2} {F1}

Figure 1. Instance showing that OPT is not truthful

facility Fj according to a declaration vector T , i.e., Vj [T ] = {i ∈
N |Fj ∈ Ti}.

For the sake of notational conciseness, in the remainder of the pa-
per we will often omit the declaration vector T (e.g., Vk[T ] sim-
ply denoted as Vk) and denote an untruthful declaration (T ′i , T−i) of
agent i by a prime symbol (e.g., Vk[T

′
i , T−i] simply denoted as V ′k).

4 Deterministic Mechanisms

In this section we study deterministic mechanisms for the 2-facility
location problem. We first ask ourselves whether the optimal alloca-
tion for the facility location problem is truthful, to which we give a
negative answer in Theorem 1 and provide also a lower bound of 9/8
for the approximation of deterministic SP algorithms. Afterwards,
we discuss an (n − 1)-approximate deterministic algorithm for the
facility location problem.

Theorem 1. No deterministic α-approximate SP mechanism can ob-
tain an approximation ratio α < 9/8.

Proof. Let us consider the instance depicted in Figure 1 according to
the following declarations: T1 = {F1}, T2 = {F2}, T3 = {F1,F2},
T4 = {F2}, T5 = {F1}. It can be easily checked that the optimal
locations for this instance are the ones that locate a facility on node
3 and the other on either node 2 or 4, namely: (F ∗1 = 2, F ∗2 = 3),
(F ∗1 = 4, F ∗2 = 3), (F ∗1 = 3, F ∗2 = 2) and (F ∗1 = 3, F ∗2 =
4). Let us note that any α-approximate algorithm with α < 9/8 on
input T would return an optimal solution. Indeed, it can be easily
checked that the two second-best solutions (F1 = 2, F2 = 4) and
(F1 = 4, F2 = 2) are 8/7-approximate, being their cost 8 whereas
cost(OPT (T )) = 7.

Let us consider the optimal solution (F ∗1 = 2, F ∗2 = 3). If
agent 5 reports T ′5 = {F1,F2}, then the only optimal solution is
OPT (T ′i , T−i) = (3, 4). We note that, since the cost (with respect
to (T ′i , T−i)) of this optimal solution is 8 whereas the cost of any
second best solution (i.e, (F1 = 4, F2 = 3), (F1 = 2, F2 = 3)
and (F1 = 2, F2 = 4)) is 9, any α-approximate algorithm with
α < 9/8 would return the optimum. Furthermore, we note that the
optimal solution is not SP, since cost5(OPT (T ′i , T−i)) = 2 < 3 =
cost5(OPT (T )). We note that, due to the intrinsic symmetry of the
instance, a similar argument applies for solution (F ∗1 = 4, F ∗2 = 3)
when agent 1 reports T ′1 = {F1,F2}.

Let us consider the optimal solution (F ∗1 = 3, F ∗2 = 4). If
agent 2 reports T ′2 = {F1,F2}, then the only optimal solution is
OPT (T ′i , T−i) = (F ∗1 = 2, F ∗2 = 3). We note that, since the cost
(with respect to (T ′i , T−i)) of this optimal solution is 7 and the cost of
any second best solution (i.e, (F1 = 2, F2 = 4), (F1 = 3, F2 = 4)
and (F1 = 4, F2 = 3)) is 8, any α-approximate algorithm with
α < 9/8 would return the optimum. Furthermore, we note that the
optimal solution is not SP, since cost2(OPT (T ′i , T−i)) = 1 < 2 =
cost2(OPT (T )). We note that, due to the intrinsic symmetry of the
instance, a similar argument applies for solution (F ∗1 = 3, F ∗2 = 2)
when agent 4 reports T ′4 = {F1,F2}.

We now discuss TWOEXTREMES, a deterministic mechanism
which is truthful and returns linear-approximate allocations. The al-
gorithm, reported in Algorithm 1, is inspired by Two-Extremes of
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[8], the difference being that, due to the multi-dimensional nature of
our problem, we need to check for the feasibility of solutions putting
facilities at the extremes and handle cases of clash.

Algorithm 1: TWOEXTREMES

Require: Line G, facilities F = {F1,F2}, declarations
T = {T1, . . . , Tn}

Ensure: F (T ), a (n− 1)-approximate allocation for 2-facility
location on G

1: F1 := minV1[T ]
2: F2 := maxV2[T ]
3: if F1 = F2 then

4: if F2 − 1 �= NIL then

5: F2 := F2 − 1
6: else

7: F1 := F1 + 1
8: end if

9: end if

10: return (F1, F2)

We begin by proving the truthfulness of the algorithm.

Theorem 2. Algorithm TWOEXTREMES is SP.

Proof. For the sake of contradiction, let us assume that there ex-
ist i ∈ N with type Ti and an untruthful declaration T ′i such that∑

j∈Ti
d(i, Fj(T )) >

∑
j∈Ti

d(i, Fj(T
′
i , T−i)), where Fj(Z) de-

notes the location in which TWOEXTREMES, on input the declara-
tion vector Z , assigns facility Fj . We need to analyse three cases: (a)
i = minV1, (b) i = maxV2, and (c) i /∈ {minV1[T ], maxV2[T ]}.

If case (a) occurs, it can be either Ti = {F1} or Ti = {F1,F2}.
If Ti = {F1} then F1 = i, costi(F (T )) = 0 and i cannot decrease
her cost any further by misreporting her type. If Ti = {F1,F2}, then
it can be either i = maxV2 (in which case the algorithm returns
(F1 = i − 1, F2 = i) or (F1 = i, F2 = i + 1), costi(F) = 1 and
i cannot decrease her cost any further by lying) or i < maxV2 (in
which case F1 = i and i cannot influence the location of facility F2).

It is easy to check that case (b) is symmetric to case (a).
If case (c) occurs, then it can be either: Ti = {F1}, Ti = {F2}

or Ti = {F1,F2}. If Ti = {F1}, then i > minV1. It is easy to
check that if minV1 �= maxV2 then i cannot influence the location
of facility F1. Let us assume then that � = minV1 = maxV2. In
this case the algorithm outputs either (F1 = �, F2 = � − 1) or
(F1 = � + 1, F2 = �). In either case, if T ′i = ∅ the output of the
algorithm does not change, whereas if F2 ∈ T ′i then the algorithm
outputs (F ′1 = �, F ′2 = i) (as i > maxV2) and costi(F (T )) ≤
costi(F (T ′i , Ti)). It is easy to check that the case when Ti = {F2}
is symmetric to the case when Ti = {F1}.

If Ti = {F1,F2} then minV1 < i < maxV2, and it is easy to
check that i cannot influence the outcome of the algorithm.

In order to prove the approximation guarantee of TWOEX-
TREMES, we initially prove a lower bound on the value of the optimal
social cost.

n−1
2

n−1
2
− 1

Fi

δ

Figure 2. Bounding OPTi from below

n−1
2

n−1
2
− 1

F ∗2 F2

δ + δi

Figure 3. Computing cost(LR2(T )). Full edges denote links used by
OPT2 while dashed edges denote links used in cost(LR2(T ))−OPT2.

Lemma 3. Let T be an instance of the 2-facility location prob-
lem, such that n1 = |V1|, n2 = |V2|, and δ > 0 is the number
of empty nodes in between V1 and V2. Then the following holds:
cost(OPT (T )) ≥ n2

1
4

+
n2
2
4
− 1

2
+ 2δ.

Proof. Let us take into consideration the minimum-cost instance de-
picted in Figure 2. In this instance, all but one agents requesting a
facility are in a contiguous chain, whereas the isolated agent is at
distance δ from the nearest agent (in Figure 2 this pattern is shown
for agents in Vi). It can be easily checked that the following holds:

OPT ≥ 2

n1−1
2∑

i=1

i+ δ + 2

n2−1
2∑

i=1

i+ δ =
n2
1

4
+

n2
2

4
− 1

2
+ 2δ,

which concludes the proof.

Theorem 4. Algorithm TWOEXTREMES is (n− 1)-approximate.

Proof. Let us consider a generic instance T . Moreover, let
(F ∗1 , F

∗
2 ) be an optimal solution for such an instance, and

let cost(OPT (T )) = OPT1 + OPT2, where OPT1 =∑
i∈V1

d(i, F ∗1 ) and OPT2 =
∑

i∈V2
d(i, F ∗2 ) denote the cost in-

curred by the agents to connect to facility F1 and F2, respectively.
Let LR(T ) be the solution output by TWOEXTREMES on input T
and let (F1 = LR1(T ), F2 = LR2(T )) denote the locations that
LR(T ) computes for the two facilities. We can express the cost of
location (F1, F2) as function of the optimal allocation (F ∗1 , F

∗
2 ) as

follows:

cost(LR(T )) = OPT1 + 2
∑

i∈NR
1 \F1

d(i, F1) + d(F1, F
∗
1 )

+OPT2 + 2
∑

i∈NL
2 \F2

d(i, F2) + d(F2, F
∗
2 ),

where NR
j (NL

j , respectively) denotes the set of nodes in Vj [T ] to
the right (left, respectively) of the median. Figure 3 gives the geo-
metric intuition behind this equality.

We can then observe:

cost(LR(T )) ≤OPT + (n1 − 3) · d(F1, F
∗
1 ) + d(F1, F

∗
1 )

+ (n2 − 3) · d(F2, F
∗
2 ) + d(F2, F

∗
2 )

≤OPT + (n− 3) · (d(F1, F
∗
1 ) + d(F2, F

∗
2 ))

F1 F ∗2 F ∗1 F2

n2 − 1 n1 − 1

δδ1 δ2

Figure 4. Upper bound to d(F1, F ∗1 ) and d(F2, F ∗2 )
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where: (i) the first inequality follows from upper-bounding d(i, F1)
and d(i, F2), respectively, by d(F1, F

∗
1 ) and d(F2, F

∗
2 ), whereas the

second inequality follows from upper-bounding n1 and n2 by n− 1
(i.e., max{n1, n2} ≤ n since |V1| > 0 and |V2| > 0). In order to
upper bound d(F1, F

∗
1 ) and d(F2, F

∗
2 ), let us consider the generic in-

stance depicted in Figure 4, where δ is the number of “empty” nodes
between F ∗2 and F ∗1 , δ1 is the number of empty nodes between F1

and F ∗2 and δ2 is the number of empty nodes between F ∗1 and F2.
It is easy to check that d(F ∗1 , F1) ≤ (n1

2
+ n2 − 1 + δ + δ1) and

d(F ∗2 , F2) ≤ (n2
2

+ n1 − 1 + δ + δ2), which applied to the last
inequality yields:

cost(LR(T )) ≤ OPT + (n− 2)

(
3

2
(n1 + n2) + 2δ + δ1 + δ2

)
.

In virtue of Lemma 3, 3
2
(n1 + n2) + 2δ + δ1 + δ2 is bounded

from above by OPT . Applying the above lower bound to the last
inequality yields the following: cost(LR(T )) ≤ (n − 1) · OPT
which proves the claim.

We finish this section by proving that the analysis of TWOEX-
TREMES presented above is tight.

Theorem 5. The upper-bound for the TWOEXTREMES algorithm is
tight.

Proof. We are going to exhibit an instance for which the TWOEX-
TREMES algorithm obtains an approximation ratio of (n − 1). The
instance we consider is the one depicted in Figure 5 and is such
that |V1| = n, |V2| = 1 and n is odd. The number of nodes of
the graph is n + δ, where δ is the number of empty nodes. The
declarations, depicted in brackets below each nodes are as follows:
Ti = {F1} for each 1 ≤ i < n, Tn = {F1,F2}. As before, (F ∗1 , F ∗2 )
and (F1, F2) denote the optimal allocation and the outcome of the
TWOEXTREMES algorithm, respectively. It is easy to check that (1)
gives the cost of the optimal location, whereas (2) gives the cost of
(F1, F2):

cost(OPT (T )) = 2 ·

(n−1)
2∑

i=1

(i) + δ =
n2 − 1 + 4δ

4
(1)

cost(LR(T )) =
n−1∑
i=1

(δ + i+ 1)

=
n2 − 3n+ 2(n− 1)δ − 2

2
. (2)

Equation (3) below expresses the approximation ratio of the
TWOEXTREMES algorithm with respect to the instance of Figure 5
as a function of both the number of players n and the number of
empty nodes δ.

α(n, δ) = 2 · n
2 − 3n+ 2(n− 1)δ − 2

n2 − 1 + 4δ
(3)

We can see from (3) that if δ ∈ ω(n2) then α(n, δ) tends to n −
1.

It is not hard to check from the analysis above that if there are no
empty nodes in the instance, then TWOEXTREME returns a constant
(i.e., 2 as n tends to infinity) approximation of the minimum social
cost. This implies that for instances that are not sparse in requests,
the gap between our bounds becomes slim.

· · · · · · · · ·{F1} ∅ ∅ {F1} {F1} {F1} {F1} {F1,F2}

n−3
2

n−1
2

δ

F1 F ∗2 ≡ F2F ∗1

Figure 5. TWOEXTREMES is Θ(n− 1)-approximate

5 Randomized Mechanisms

In this section we present our main result, a truthful randomized op-
timal algorithm for the 2-facility location problem. The main idea
of the algorithm is to use randomization between optimal outcomes
whenever possible, and to adopt a truthful-preserving allocation pol-
icy whenever the set of optimal solutions is too small to allow ran-
domization. To describe the algorithm, it is important to define a cou-
ple of concepts of interest.

Let Sk be the set of optimal locations taking into consideration the
requests for facility Fk alone.5 By the results in [7], we know that the
optimal location for a single facility is a median and therefore the set
of the optimal locations is either a singleton, i.e. when the number of
requests is an odd number, or has size greater than 1, i.e. when the
number of requests is even.

A solution Fk is extreme for Sk w.r.t. Sk+1 if: (i) |Sk| = 2, (ii)
|Sk ∩ Sk+1| ≤ 1 and (iii) Fk = argmax�∈Sk

{d(�, Sk+1)}, where
d(�, Sk+1) = mins∈Sk+1 d(�, s).

Let O denote the set of optimal allocations for the 2-facility loca-
tion problem. M ⊆ O is a mean set for Sk if the expected value of
Fk when a solution is drawn uniformly at random from M equals
the average over Sj . More formally, M ⊆ O is a mean set for Sk

if E
U
[Fk] = avg(Sk) = max(Sk)+min(Sk)

2
, where U is the uniform

distribution defined over M. Furthermore, an allocation for Fk that
is drawn uniformly at random from a mean set M for Sk will be
referred to as mean solution for Sk. For the sake of notational con-
ciseness, when referring to extreme and mean solutions we omit Sk

and Sk+1 as they can be easily deduced from the context.

Lemma 6. If i ∈ Vk and V ′k = Vk \ {i}, then d(i, avg(Sk)) <
d(i, avg(S′k)).

Proof. Let us consider the case when i ≤ min{Sk}, the case when
i ≥ max{Sk} is symmetric. If |Sk| = 1, let sk denote the sole
element of Sk. If i /∈ V ′k , then |S′k| > 1 and S′k is such that
min(S′k) = sk and max(S′k) = �, where � ∈ V ′k is the loca-
tion of the leftmost agent such that � > sk and k ∈ T�. Clearly,
i ≤ avg(Sk) < avg(S′k), which implies the claim. If |Sk| > 2, then
|S′k| = 1. If i /∈ V ′k then S′k = {max(Sk)} from which it follows
that i ≤ avg(Sk) < avg(S′k), and the claim.

Lemma 7. Let i ∈ N be an agent such that i ∈ Vk, V ′k = Vk \ {i}.
Then min�∈Sk{d(i, �)} ≤ min�′∈S′

k
{d(i, �′)}.

Proof. Let us assume that i ≤ min(Sk). Sk can be either a singleton
(if |Vk| is odd) or have cardinality greater than 1 (if |Vk| is even). Let
Sk = {sk}, then |S′k| > 1. Let r = max(S′k). The thesis holds since
min�∈Sk |i− �| = |i− sk| = min�′∈S′

k
|i− �′|. If |Sk| > 1, let l =

min(Sk) and r = max(Sk). Then S′k = {r}. The thesis holds in
this case since min�∈Sk |i−�| = |i−l| < |i−r| = min�′∈S′

k
|i−�′|.

The same argument holds for the case when i ≥ max(Sk). Finally,
we observe that when min(Sk) < i < max(Sk) then i /∈ Vk.

5 For notational convenience, in this section we let the index of the two facili-
ties be binary and all the operations involving indexes be modulo 2. Hence,
we will refer indistinctly to one facility as Fk and to the other one as Fk+1.
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In essence, the previous lemma states that in a monodimensional
setting if an agent does not declare a facility to which she is interested
in, the space of optimal allocation points gets further away from her.

Lemma 8. Let Fk and F ′k be two extreme solutions. Then it must be
Fk = F ′k.

Proof. We note that since Fk and F ′k are by hypothesis two extreme
solutions it must be that Sk = S′k = {l, r}. Let us suppose w.l.o.g.
that Fk = r. Since both Fk and F ′k are extreme solutions, it must be
the case that |Sk ∩ Sk+1| ≤ 1 and |S′k ∩ S′k+1| ≤ 1. This implies
that s ≤ l < r, where s is the element of Sk+1 nearest to Sk. Let
us suppose, for the sake of contradiction, that F ′k = l. In this case
it must be l < r ≤ s′, where s′ is the element of S′k+1 nearest to
Sk. We observe that whenever this happens s ∈ S′k+1, which implies
that |Sk ∩ S′k+1| ≥ 2 and contradicts the hypothesis that F ′k is an
extreme solution.

The previous lemma essentially states that an agent cannot gain
on a facility assigned as an extreme solution, unless she changes the
declaration for that facility.

Lemma 9. Let |Sk| = 1, F ′k be an extreme solution for S′k, and let
V ′k = Vk \ {i}. Then d(Fk, i) ≤ d(F ′k, i).

Proof. Since Fk = min�∈Sk{d(i, �)}, and since, in the best case
for agent i, F ′k = min�′∈S′

k
{d(i, �′)}, by Lemma 7 d(i, Fk) ≤

d(i, F ′k).

We can now discuss the algorithm RANDOPT. Algorithm 2 reports
the pseudocode for RANDOPT. Algorithm RANDOPT makes use of
procedure COMPUTEMEANSET, which takes as input two locations
Lk and Lk+1 and returns a mean set M such that E

U
[Fk] = Lk

and E
U
[Fk+1] = Lk+1. We point out that the proof of Theorem 10

provides a constructive and efficient way of computing mean setM.

Algorithm 2: RANDOPT
Require: Line G, facilities F = {F1,F2} , declarations

T = {T1, . . . , Tn}
Ensure: F (T ) optimal allocation for 2-facility location on G

1: ∀k Sk := Opt(Vk[T ])
2: if ∃k ∈ {0, 1} s.t. |Sk| = 2 and |Sk ∩ Sk+1| ≤ 1 then

3: Fk := argmax
v∈Sk

{ d(v, Sk+1)}

4: if |Sk+1| = 2 then

5: Fk+1 := argmax
v∈Sk+1

{ d(v, Sk)}

6: return (Fk, Fk+1) w.p. 1
7: else

8: M :=COMPUTEMEANSET(Fk, avg(Sk+1))
9: return (Fk, Fk+1) ∈M w.p. 1/M

10: end if

11: else

12: M :=COMPUTEMEANSET(avg(Sk), avg(Sk+1))
13: return (Fk, Fk+1) ∈M w.p. 1/M
14: end if

We are now going to prove two important properties of algorithm
RANDOPT.

Theorem 10. Algorithm RANDOPT always returns an optimal solu-
tion.

Proof. It is easy to check that RANDOPT returns either a mean so-
lution or an extreme solution. We are going to prove now that the
solutions returned by the algorithm are actually feasible. It is easy to
see that solutions returned by RANDOPT are always feasible when-
ever Sk∩Sk+1 = ∅, so in the remainder we are going to assume that
Sk ∩Sk+1 �= ∅. We need to consider three cases: (c.1) both facilities
are allocated as extreme solutions (Line 6), denoted in the sequel as
(E,E); (c.2) one facility is allocated as an extreme solution while
the other facility is allocated as a mean solution (Line 9), referred to
as either (E,M) or (M,E); and (c.3) both facilities are allocated as
mean solutions (Line 13), denoted as (M,M).

In Line 6 (case c.1) the algorithm allocates both facilities as ex-
treme solutions, so |Sk| = 2, |Sk+1| = 2 and |Sk ∩ Sk+1| ≤ 1. Let
us suppose w.l.o.g. that Sk = {l, l+ 1} Sk+1 = {l+ 1, l+ 2}. It is
easy to check that (l, l+2), where the first (second, respectively) ele-
ment of the ordered couple denotes the location of facility Fk (Fk+1,
respectively), is a feasible extreme solution for Fk and Fk+1.

In Line 9 (case c.2) the algorithm allocates a facility as an extreme
solution and the other one as a mean solution. W.l.o.g. let us suppose
that Fk is allocated as an extreme solution and Fk+1 is allocated as
a mean solution. Therefore, we have |Sk| = 2, |Sk ∩ Sk+1| ≤ 1 and
|Sk+1| �= 2. Let us denote Sk = {l, l+1} and let us suppose w.l.o.g.
that Sk ∩ Sk+1 = {l + 1} (i.e., the case when Sk ∩ Sk+1 = {l}
is symmetric). There are two cases to consider: (i) |Sk+1| = 1, (ii)
|Sk+1| > 2. We notice that in both cases Fk = l is a feasible extreme
solution for Sk. When case (i) occurs, then Sk+1 = {l + 1} and
M = {(l, l + 1)} is a feasible mean set for Sk+1. When case (ii)
occurs,M = {(l,min(Sk+1)), (l,max(Sk+1))} is a feasible mean
set for Sk+1.

In Line 13 (case c.3) the algorithm returns an (M,M) solution,
so either (i) |Sk| �= 2 and |Sk+1| �= 2 or (ii) |Sk ∩ Sk+1| > 1.
Let us consider case (i). Let us suppose that |Sk| > 2. If allocations
(min(Sk),min(Sk+1)) and (max(Sk),max(Sk+1)) are in O then
M = {(min(Sk),min(Sk+1)), (max(Sk),max(Sk+1))} is triv-
ially a mean set, and the claim is true. The same holds if (min(Sk),
max(Sk+1)) and (max(Sk),min(Sk+1)) are in O. If neither of the
previous holds, then min(Sk+1) = max(Sk+1), hence Sk+1 =
{s} and s ∈ {min(Sk),max(Sk)}. Then both (min(Sk) + 1, s)
and (max(Sk) − 1, s) are in O and M = {(min(Sk) + 1, s),
(max(Sk) − 1, s)} is a mean set. Let us consider the case when
|Sk| = 1, and let Sk = {s}. If |Sk+1| = 1 then Sk = Sk+1. We
note that in this case {(s, s − 1), (s, s + 1)} is a feasible mean set
for both Sk and Sk+1. If |Sk| = 1 and |Sk+1| > 2, this case is anal-
ogous to the case when |Sk| > 2 and |Sk+1| = 1 that we analysed
above. Let us now consider case (ii). Since |Sk ∩ Sk+1| > 1, then
|Sk| ≥ 2 and |Sk+1| ≥ 2. Then, either {(min(Sk),min(Sk+1)),
(max(Sk),max(Sk+1))} or {(min(Sk),max(Sk+1)), (max(Sk),
min(Sk+1))} is a feasible mean set for both Sk and Sk+1.

We now prove that the algorithm is truthful.

Theorem 11. Algorithm RANDOPT is SP.

Proof. Consider the outcomes F = RANDOPT(T ) and F ′ =
RANDOPT(T ′i , T−i). We next show that costi(F) ≤ costi(F ′).
Assume by contradiction that costi(F) > costi(F ′); this implies
that there exists at least a facility k ∈ {0, 1} such that d(i, E[Fk]) >
d(i, E[F ′k]), where Fk (F ′k, respectively) denotes the position of fa-
cility k in F (F ′, respectively). In the remainder we will denote as
Sk and S′k the optimal locations of facility k in the instances T and
(T ′i , T−i), respectively.
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We have already noticed that algorithm RANDOPT returns ei-
ther an extreme solution or a mean solution. We denote a possi-
ble output transition of RANDOPT as (F0, F1) → (F ′0, F

′
1), where

the left-hand side pair denotes the outcome of the algorithm when
each agent reports truthfully, whereas the right-hand side pair de-
notes the outcome of the algorithm when agent i misreports her
type. It can be easiliy showed that all possible output transitions
of algorithm RANDOPT can be represented by the directed graph
G = (V, E), such that V = {(E,E), (E,M), (M,E), (M,M)}
and E = V × V \ {((E,E), (E,E))}, i.e. the set of arcs of G com-
prises all possible transitions but (E,E)→ (E,E). We are going to
prove that transition (E,E)→ (E,E) cannot occur. Firstly, we no-
tice that if a solution of type (E,E) is returned then either Sk �= S′k
or Sk+1 �= S′k+1. Let us suppose w.l.o.g. that Sk �= S′k (i.e. the case
when Sk+1 �= S′k+1 is symmetric). If Fk is an extreme solution for
Sk and Sk �= S′k then F ′k is a mean solution for S′k, which would
result in a transition (E,E) → (M,E). To prove the claim, we are
now going to prove that every arc of G represents an SP transition.

It can be easily verified that transition (M,M) → (M,M) is SP
by Lemma 6, whereas transitions (M,E)→ (M,E) and (E,M)→
(E,M) are SP by Lemmata 6 and 8.

We note that we can regard (M,M) → (E,M) and (M,M) →
(M,E) as one case, as in both cases one facility makes a transition
M → M and the other one makes a transition M → E. Lemma 6
assures that transition M →M is SP. Let us focus then on transition
M → E. Two cases can occur: (i) Sk = S′k, in which case it must
be |Sk| = |S′k| = 2 and (ii) Sk �= S′k, in which case |Sk| = 1
and |S′k| = 2. In case (i), let Sk = {l, l + 1}. We notice that |Sk ∩
Sk+1| > 1 and E[Fk] = l + 1

2
must hold. Let us suppose w.l.o.g.

i ≤ l (i.e. the case when i ≥ l + 1 is symmetric). We note that i
can gain on k only if F ′k = l, which implies that l < l + 1 ≤ s
where s is the nearest point of S′k+1 to Sk. This can only happen if
Fk+1 ∈ Ti and Fk+1 /∈ T ′i . It follows that E[|F ′k − i|] = E[|Fk −
i|]− 1

2
but E[|F ′k+1 − i|] ≥ E[|Fk+1 − i||] + 1

2
, which implies that

d(i, E[F ′k])+d(i, E[F ′k+1]) ≥ d(i, E[Fk])+d(i, E[Fk+1]). In case
(ii), we note that Fk ∈ Ti (i.e., if Fk /∈ Ti the location of facility Fk

is irrelevant to agent i) and Fk /∈ T ′i . By Lemma 9 this transition is
SP.

We note that we can regard cases (E,M) → (E,E) and
(M,E)→ (E,E) in the same way, as in both cases we have a tran-
sition E → E and a transition M → E. We notice that transition
E → E is SP by Lemma 8. Let us now focus on transition M → E.
We notice that in this case |Sk| = 1 and F ′k is an extreme solution.
By Lemma 9 this transition is SP.

We note we can regard (E,E)→ (E,M) and (E,E)→ (M,E)
as one case, in both cases we have a transition E → E and a tran-
sition E → M . For the transition E → E, we note that Lemma 8
ensures truthfulness. Let us now analyse transition E → M . Agent
i can only gain if Fk ∈ Ti, so the only possible lie is T ′i = Ti \ {k}.
Since Fk is an extreme solution, Sk = {l, l + 1}. Let us suppose
w.l.o.g. that i ≤ l < l + 1 (i.e., the case when l < l + 1 ≤ i is
symmetric). It is easy to check that S′k = {l+ 1} and i < Fk ≤ F ′k,
which implies that d(i, Fk) ≤ d(i, F ′k).

Let us now consider the case (M,M) → (E,E). We notice that
in this case |Sk| �= 2 and |Sk+1| �= 2. To prove this, let us sup-
pose for the sake of contradiction that |Sk| = 2. In order to have an
(M,M) pair it must be the case that |Sk ∩ Sk+1| > 1 which im-
plies that |Sk+1| ≥ 2. We notice that in this case |S′k+1| = 1, which
would not result in a (E,E) pair. Let us then consider the case when
|Sk| �= 2 and |Sk+1| �= 2. We highlight that, since |Sk| �= 2 and
|Sk+1| �= 2 but |S′k| = |S′k+1| = 2, it must be that Vk �= V ′k

and Vk+1 �= V ′k+1, from which it follows that |Sk| = |Sk+1| = 1.
Furthermore it must be the case that Fk ∈ Ti (i.e. otherwise the lo-
cation of facility Fk would be irrelevant for the cost of agent i) and
Fk /∈ T ′i . We can apply to both M → E transitions Lemma 9 to
show that strategyproofness is preserved.

Let us now consider the case (E,E)→ (M,M). We have |Sk| =
2, |Sk+1| = 2. We are going to prove that Sk �= S′k and Sk+1 �=
S′k+1. For the sake of contradiction, if Sk = S′k, then Sk+1 �= Sk+1

and |S′k+1| = 1. Since F ′k must be a mean solution for S′k, it must
be that |S′k ∩ S′k+1| ≥ 1, which is a contradiction, since |S′k+1| =
1. Furthermore, we can assume that Fk ∈ Ti (i.e., otherwise the
location of facility Fk would be irrelevant for agent i) and Fk /∈ Ti.
We observe that |S′k| = |S′k+1| = 1. Since (in the best case for agent
i) Fk = min�∈Sk{d(i, �)} and since F ′k = min�′∈S′

k
{d(i, �′)} (as

S′k is a singleton) by Lemma 7 strategyproofness is preserved.
We note we can regard (E,M) → (M,E) and (M,E) →

(E,M) as the same case, since both cases have a transition E →M
for one facility and a transition M → E for the other one. To fix
ideas, let us assume facility Fk makes transition E → M and fa-
cility Fk+1 makes transition M → E. We are going to prove that
Sk �= S′k and Sk+1 �= S′k+1. We note that |Sk| = 2 and |S′k+1| = 2.
Let us suppose for the sake of contradiction that Sk = S′k. We reach a
contradiction since |S′k| = |S′k+1| = 2 can yield either a (M,M) so-
lution (if |S′k∩S′k+1| ≥ 2) or a (E,E) solution (if |S′k∩S′k+1| ≤ 2).
Let us suppose now that Sk+1 = S′k+1. As before, we reach a con-
tradiction since |Sk| = |Sk+1| = 2 can yield either a (M,M) solu-
tion or a (E,E) solution. Furthermore, it can be easily checked that
|S′k| = 1 and |Sk+1| = 1. We can now analyse each transition singu-
larly. Let us focus on transition E →M . We can restrict ourselves to
the case when Fk ∈ Ti (i.e., otherwise the location of facility Fk does
not affect the cost of agent i) and Fk /∈ T ′i . Since (in the best case
for agent i) Fk = min�∈Sk{d(i, �)} and F ′k = min�′∈S′

k
{d(i, �′)}

(as S′k is a singleton), strategyproofness is guaranteed by Lemma 7.
Let us consider transition M → E. Once again, we can restrict to
the case when Fk+1 ∈ Ti and Fk+1 /∈ T ′i . Since |Sk+1| = 1 and
Fk+1 is an extreme solution, by Lemma 9 strategyproofness is pre-
served.
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