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Abstract. We present a formal framework and implementation for
declarative spatial representation and reasoning about the topological
relationships between boolean combinations of regions (i.e., union,
intersection, difference, xor). Regions of space here correspond to
arbitrary axis aligned n-polytope objects, with geometric parameters
either fully grounded, partially grounded, or completely unspecified.
The framework is implemented in the context of CLP(QS)2, a con-
straint logic programming based declarative spatial reasoning system
providing support for geometric and qualitative spatial abstraction
and inference capabilities.
We demonstrate that our method can solve packing, contact, con-
tainment, and constructive proof problems that are unsolvable us-
ing standard relational algebraic approaches for qualitative spatial
reasoning (QSR). Our approach is driven by general accessibility of
spatial reasoning via KR languages for their application in domains
such as design, geography, robotics, and cognitive vision.

1 Motivations

Knowledge representation and reasoning about space may be for-
mally interpreted within diverse frameworks such as: (a) geomet-
ric reasoning & constructive (solid) geometry [Kapur and Mundy,
1988]; (b) relational algebraic semantics of ‘qualitative spatial cal-
culi’ [Ligozat, 2011]; and (c) by axiomatically constructed formal
systems of mereotopology and mereogeometry [Aiello et al., 2007].
Independent of formal semantics, commonsense spatio-linguistic ab-
stractions offer a human-centred and cognitively adequate mecha-
nism for logic-based automated reasoning about spatio-temporal in-
formation [Bhatt et al., 2013].
Formalizations (e.g., logical, relational-algebraic) of space and de-
velopment of tools for efficiently reasoning with spatial information
is a vibrant area of research within knowledge representation and
reasoning (KR) [Renz and Nebel, 2007, Bhatt et al., 2011a,b]. Re-
search in qualitative spatial representation and reasoning has primar-
ily been driven by the use of constraint-based reasoning algorithms
over an infinite (spatial) domain to solve consistency problems in the
context of qualitative spatial calculi [Ligozat, 2011]. The key idea
behind the development of qualitative spatial calculi has been to par-
tition an infinite quantity space into finite disjoint categories, and uti-
lize the special relational algebraic properties of such a partitioned
space for reasoning purposes [Guesgen, 1989, Ligozat, 2011]. Simi-
larly, logic-based axiomatisations of topological and mereotopolog-
ical space and a study of their general computational characteristics
have also been thoroughly investigated [Aiello et al., 2007, Borgo,
2009, Kontchakov et al., 2013]. In spite of significant developments
in the theoretical foundations of spatial representation and reason-
ing, and the availability of relational-algebraically founded spatial
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reasoning algorithms [Condotta et al., 2006], what is still missing
in the (geometric and qualitative) spatial reasoning community is a
unifying KR-based framework of space, and an implementation of
geometric and qualitative spatial representation and reasoning in a
manner that would seamlessly / natively integrate with general KR
languages and frameworks in artificial intelligence (AI). Addressing
this gap, recent research initiatives have started to address formali-
sations of space / spatial reasoning within declarative KR languages
such as logic programming and constraint logic programming [Bhatt
et al., 2011b, Schultz and Bhatt, 2012]; the approach underlying this
line of work, manifested by the CLP(QS) spatial reasoning system,
marks a clear departure from other reasoning tools by its use of the
constraint logic programming framework for formalising the seman-
tics of geometric and qualitative spatial representation and reasoning.
The approach has been driven by and found applicability in a range
of AI systems concerning visuo-spatial language, learning, and cog-
nition [Bhatt et al., 2013] (e.g., a prime recent example here being
architectural design cognition [Bhatt et al., 2014]).
This paper is situated in the context of the CLP(QS) declarative
spatial reasoning framework – currently, CLP(QS) provides topo-
logical reasoning capabilities over uniform-dimensional 2D regions
that can be interpreted as convex polygons, and additionally, sup-
ports orientation reasoning with intrinsically-oriented point objects3.
We extend CLP(QS) with the capability to reason about boolean
combinations of regions —i.e., union, intersection, difference, xor—
natively within the constraint logic programming framework. Re-
gions of space within our framework correspond to arbitrary n-
polytope objects, with geometric parameters either fully grounded,
partially grounded, or even completely unspecified. In other words,
our approach supports mixed qualitative-quantitative spatial reason-
ing, which is desirable since a purely geometric approach is not sat-
isfactory when only incomplete information is available about the
regions, or when the information about relationships between re-
gions is qualitative (e.g., in domains involving space and natural lan-
guage). An additional feature of our approach is that it is possible to
freely mix different types of spatial relations (e.g., topology, orienta-
tion, distance, shape) and different types of objects (e.g., rectangles,
cuboids, spheres, points). We show decidability of our algorithm for
solving the consistency problem on spatial constraint networks with
a finite number of objects. Furthermore, we demonstrate the imple-
mentation by its application for solving classes of packing [Simo-
nis and O’Sullivan, 2008], contact, containment4, and constructive
proof problems (Section 4) that are unsolvable using standard re-
lational algebraic approaches, and point out general applications of

3 Internally (within CLP(QS)), all reasoning tasks are reduced to a polyno-
mial encoding of spatial relations such that constraint solving can be ap-
plied by the constraint logic programming engine in its query-answering
process.

4 The inability of relational algebraic methods to handle containment prob-
lems is illustrated in [Ladkin and Maddux, 1988]; our approach is able to
handle such problems, but we leave out this aspect in the paper because of
space restrictions.
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our approach in a range of spatial information systems and cognitive
technologies involving spatio-linguistic abstraction and computation.

2 Logic Programming with Spatial Relations

Spatial information consists of objects and relations between ob-
jects. This is expressed as a constraint network G = (N,E), where
the nodes N of the network are spatial objects and the edges be-
tween nodes specify the relations between the objects. An object be-
longs to given object domain, e.g. points, lines, squares, and circles
in 2D Euclidean space, and cuboids, vertically-extruded polygons,
spheres, and cylinders in 3D Euclidean space. We denote the object
domain of node i as Ui. A node may refer to a partially ground,
or completely geometrically ground object, such that Ui can be a
proper subset of the full domain of that object type. Each element
i′ ∈ Ui is called an instance of that object domain. A configuration
of objects is a set of instances {i′1, . . . , i′n} of nodes i1, . . . , in re-
spectively. A binary relation Rij between nodes i, j distinguishes a
set of relative configurations of i, j; relation Rij is said to hold for
those configurations, Rij ⊆ Ui × Uj . In general, an n-ary relation
for n ≥ 1 distinguishes a set of configurations between n objects:
Ri1,...,in ⊆ Ui1 ×· · ·×Uin . An edge between nodes i, j is assigned
a logical formula over relation symbols R1, . . . , Rm and logical op-
erators ∨,∧,¬; given an interpretation i′, j′, the formula for edge e
is interpreted in the standard way, denoted e(i′, j′):

• R1 ≡ (i′, j′) ∈ R1ij

• (R1 ∨R2) ≡ (i′, j′) ∈ R1ij ∪R2ij

• (R1 ∧R2) ≡ (i′, j′) ∈ R1ij ∩R2ij

• (¬R1) ≡ (i′, j′) ∈ (Ui × Uj) \R1ij

An edge between i, j is satisfied by a configuration i′, j′ if e(i′, j′)
is true (this is generalised to n-ary relations). A spatial constraint
network G = (N,E) is consistent if there exists a configuration of
N that satisfies all edges in E.

2.1 Constraint Logic Programming

We now have a logical framework for talking about spatial objects
and relations. In a broader AI context, we can express arbitrary do-
main rules that can also have a spatial component. For example, we
could take the bounding boxes and direction vectors of two people
from a video feed and determine whether the people are in conversa-
tion by specifying a formula involving spatial relations between the
objects and other domain-specific non-spatial aspects.
But how can we evaluate the truth of the spatial relations? One
method is to parameterise the objects and encode the relations as
polynomial equations and inequalities. For example, we define an
axis-aligned square as a 2D point (x, y) of its bottom-left corner, and
a side length l, where x, y, l are reals. Two squares s1, s2 are discon-
nected if (s1x + s1l < s2x) or (s1y + s1l < s2y ) or the converse
inequalities. If the system of polynomial expressions is satisfiable,
then the spatial constraint network is consistent; the variables may
be assigned to a real value (ground) or not (unground), meaning that
we can evaluate any combination of spatial relations between ob-
jects, and the objects can be ground, partially ground, or completely
unground. Thus, we can integrate spatial reasoning and logic pro-
gramming using Constraint Logic Programming (CLP) [Jaffar and
Maher, 1994]; this system is called CLP over qualitative spatial do-
mains, CLP(QS). Many linear and non-linear solvers are employed:
CLP(R), Satisfiability Modulo Theories (SMT), Cylindrical Alge-
braic Decomposition (CAD), etc.
Notice that the definition of disconnected can be satisfied in four
mutually exclusive (qualitative) ways: s1 is left of s2, s1 is below

s2, etc. In the context of a larger spatial constraint network, it may
be the case that only one of these options is consistent with the other
relations in the network. Thus, CLP(QS) has two core components:
(1) a search procedure for identifying important sub-networks, (2) a
transformation strategy for efficiently solving a corresponding sys-
tem of polynomials.

2.2 Related Work on Spatial Logics

The region connection calculus (RCC) is a spatial logic of topolog-
ical relations between regions [Randell et al., 1992]. The theory is
based on a single connects predicate C(x, y) interpreted as the topo-
logical closures of regions x and y having at least one point in com-
mon (i.e. the regions touch at their boundaries or their interiors over-
lap). The authors identify fourteen binary relations that form a sub-
sumption hierarchy, in addition to defining Boolean operators sum,
product, complement, difference, and a unique universal region.
We adopt the language of various RCC relations: disconnected (dc),
externally connected (ec), partial overlap (po), equal (eq), part of
(p) proper part of (pp), discrete from (dr). Let IA be the interior of
A:

A dc B ≡def ¬∃x(x ∈ A ∩B)

A ec B ≡def ∃x(x ∈ A ∩B) ∧ ¬∃x(x ∈ IA ∩ IB)

A po B ≡def ∃x(x ∈ IA ∩ IB) ∧ ∃x(x ∈ IA ∩ ¬B)
∧ ∃x(x ∈ ¬A ∩ IB)

A eq B ≡def ∀x(x ∈ A ↔ x ∈ B)

A dr B ≡def A dc B ∨A ec B

A p B ≡def ∀x(x ∈ A → x ∈ B)

A pp B ≡def A p B ∧ ¬(A eq B)

Wolter and Zakharyaschev [2000] extend RCC8 by also allowing
Boolean combinations of regions as possible interpretations of a re-
gion variable in RCC8; the theory is called BRCC8.

3 The SPLIT relation

The key mechanism in our framework for defining topological rela-
tions between boolean combinations of objects is the SPLIT rela-
tion. Informally, SPLIT divides a pair of objects into a set of non-
overlapping objects that covers the original objects by partitioning
them along their intersection boundaries. Three additional relations
are defined, namely DIFF, INT, and XOR, that select the relevant
subset of non-overlapping objects defined by SPLIT for difference,
intersection, and symmetric difference, respectively. Given a spatial
domain, the two questions are: (1) does a SPLIT relation exist? (2)
How can the SPLIT relation be efficiently implemented? The fol-
lowing set of properties for a SPLIT relation must hold in order for
the consistency problem to be decidable in our presented framework.

Definition 1. Let S be a domain of spatial regions in a topolog-
ical space (U, I). Let a, b ∈ S and C ⊂ S, then the relation
SPLITS(a, b, C) on a domain S holds if:

1. |C| ∈ N,
2. ∀c1, c2 ∈ C(c1 �= c2 → c1 dr c2),
3. a ∪ b =

⋃
c∈C c,

4. ∀c ∈ C((c ∩ a \ b = c) ∨ (c ∩ b \ a = c) ∨ (c ∩ a ∩ b = c)).

Condition 1 states that C contains a finite number of regions. Con-
dition 2 states that the regions in C must not overlap, although they
can touch at their boundaries. Condition 3 states that the unions of

C. Schultz and M. Bhatt / Declarative Spatial Reasoning with Boolean Combinations of Axis-Aligned Rectangular Polytopes796



the regions in C must be equal to the union of regions a and b. Con-
dition 4 states that the regions in C must partition a and b such that
each c is either only part of a, or only part of b, or only part of the
intersection of a and b. One important property of SPLITS is that
C is a subset of S. Intuitively, if we think of SPLITS as an operator
that takes regions a and b as input and produces C as output, then S
is closed under this operation; it divides regions a and b into smaller
or equal regions in the same domain. This aspect allows us to formu-
late divide and conquer definitions which are proven to be decidable
(Section 3.2).

3.1 Splitting Rectangular Polytopes

An axis-aligned rectangular D-polytope in Euclidean space is de-
fined as the intersection of two axis-aligned half-spaces in each of
the D spatial dimensions, D > 0. We can define a split relation
SPLITDPOLY by projecting the corresponding half-spaces of the
polytope onto a line parallel to the dimension axis, resulting in the in-
tersection of two rays (i.e. 1-D half-spaces) in each dimension. Two
such polytopes a, b are therefore defined by four bounding points. If
the projections of a and b intersect then the four points x1 ≤ x2 <
x3 ≤ x4 can define between one and three non-overlapping intervals
that cover the projections of a and b, e.g. [x1, x2], [x2, x3], [x3, x4].
If there exists a dimension where the projections of a and
b do not intersect, then the polytopes do not intersect, i.e.
SPLITDPOLY(a, b, {a, b}). Otherwise, a D-polytope can be con-
structed by selecting one of the non-overlapping intervals for each
of the D dimensions; the set of polytopes is non-overlapping if each
polytope is a unique combination of intervals. Let C be the sub-
set of these polytopes that intersects either a or b, or both a and b,
in the relation SPLITDPOLY(a, b, C).5 The (finite) number of such
polytopes, |C| is in the range [1, 3D]. C is a finite non-overlapping
subset of axis-aligned D-polytopes that cover a and b, therefore
SPLITDPOLY satisfies Conditions 1− 4 in Definition 1.
Each derivative relation DIFF, INT, XOR selects different sub-
sets of C from SPLIT. Let a, b ∈ S, and C ⊂ S. If SPLIT(a, b, C),
then:
(1) DIFF(a, b, {c ∈ C|c ∩ b = ∅}),
(2) INT(a, b, {c ∈ C|(c ∩ (b ∩ a)) = c}),
(3) XOR(a, b, {c ∈ C|(c ∩ (b ∩ a)) = ∅}).
For example, Figure 1 illustrates the difference operation DIFFRECT

for rectangles. Using the SPLIT relation, the problem of determin-
ing whether a topological relation between unions of objects can be
decided using a divide and conquer approach, where A, B1 and B2

can be objects, or unions of objects:

A dc union(B1, B2) ≡def A dc B1 ∧ A dc B2

A p union(B1, B2) ≡def

A p B1 ∨DIFF(A,B1, A
′) ∧ A′ p B2

A pi union(B1, B2) ≡def B1 p A ∧ B2 p A

A eq union(B1, B2) ≡def

B1 p A ∧DIFF(A,B1, A
′)

∧DIFF(B2, B1, B
′) ∧ A′ eq B′

A pp union(B1, B2) ≡def

A p union(B1, B2) ∧ ¬(A eq union(B1, B2))

A ppi union(B1, B2) ≡def

A pi union(B1, B2) ∧ ¬(A eq union(B1, B2))

5 Formally, let the projection of D-polytope s onto dimension d be denoted
πd(s). Then ∀c ∈ C(∀d ∈ D(πd(c) ∩ πd(a) �= ∅) ∨ ∀d ∈ D(πd(c) ∩
πd(b) �= ∅)).

The operations DIFF, INT, and XOR each produce a union of
objects, and so we can define the topological relations between other
booleans based on these operations and the topological relations for
unions above. Let r be a relation r ∈ {dc,pi, eq}.

A r difference(B1, B2) ≡def DIFF(B1, B2, B
′) (1)

∧A r B′

A r intersection(B1, B2) ≡def INT(B1, B2, B
′) (2)

∧A r B′

A r xor(B1, B2) ≡def XOR(B1, B2, B
′) (3)

∧A r B′

One exception is the relation pp which in all cases has a more simple
definition.

A pp difference(B1, B2) ≡def A pp B1 (4)
∧ A dc B2

A pp intersection(B1, B2) ≡def A pp B1 (5)
∧ A pp B2

A pp xor(B1, B2) ≡def (A pp B1 ∨A pp B2) (6)
∧ ¬(A pp B1 ∧A pp B2)
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Figure 1: Complete set of qualitative cases for the difference of B
from A; the result is a set of non-overlapping rectangles C.

3.2 Decidability

SPLITS partitions a pair of S objects into a union of a finite number
of non-overlapping S objects. This is extended by Algorithm 1 for
partitioning one union by another union.
To prove that each relation is decidable we need to show that re-
cursive calls to the procedure eventually terminate (i.e. repeatedly
feeding the output of Algorithm 1 back into Algorithm 1 as the input
of a subsequent call reaches a fixpoint).
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Algorithm 1: Procedure SPLIT(A,B,C)

Input: A = union(a1, . . . , an), B = union(b1, . . . , bm)

Output: C = union(c1, . . . , ck)

1 for each b ∈ B
2 A′ = {}
3 for each a ∈ A
4 SPLIT(a, b, C′)
5 A′ ← A′ ∪ C′
6 A ← A′
7 C ← A

Theorem 1. Given constraint network G = (N,E), recur-
sive calls to Algorithm 1 will terminate with initial input A =
union(a1, . . . , an), B = union(b1, . . . , bm), where A ⊆ N,B ⊆ N

Proof. As N is finite by definition then n is finite and the first itera-
tion of the inner for loop (line 3) will terminate. By the definition of
SPLIT, each C′ (line 4) is finite and so A′ will only increase by a
finite amount (line 5). Thus A (line 6) will still be finite. Therefore
all iterations of the inner loop (line 3) will terminate. As N is finite
then m is finite; because the inner loop (line 3) will always terminate
and m is finite then the outer loop (line 1) will also terminate. Finally,
|C′| > 2 (line 4) only if the interior of a and b overlap, but by defini-
tion the interior of regions in C′ do not overlap (Condition 2).6 The
output of Algorithm 1 is a union of C′ (line 5,6,7) thus eventually a
fixpoint will be reached (i.e. SPLIT(A,B, {A ∪B}).

4 Efficient Reasoning Methods for a Subclass of
Packing and Contact Problems

While the method given is decidable, the search space is enormous:
the branching factor of Algorithm 1 is 17 from the SPLIT relation
(i.e. the cases in Figure 1 and the case when a and b are discrete),
and the depth of the search is between O(nm) (when input A equals
output C) and the theoretical worst case O(cmn) (i.e if every occur-
rence of SPLIT introduces the maximum number of objects).
The search procedures for spatial reasoning greatly benefit from op-
timising at a high level of abstraction, rather than pushing the task
of optimisation down to the solver level. Depending on the relation
and the properties of the objects, significantly more efficient methods
are employed. In this section we focus on a particular class of prob-
lems where there is a set of objects B1, . . . , Bn such that (a) they
are completely geometrically undefined, and (b) they have identical
constraints (i.e. the objects Bi are interchangeable in every consis-
tent instantiation). That is, in a configuration that satisfies the con-
straint network, the instances for object Bi can be distinct from some
other object Bj , however, the instantiations for Bi and Bj could be
swapped and the new configuration would still satisfy the network.
This problem class corresponds to a range of packing problems (e.g.
the union of B is equal to A) and contact problem (e.g. all objects in
B are discrete from each other, and externally connect to A). Figure
2 illustrates a general constraint network with B1 − B4 that corre-
sponds to this class.

Restricted DIFF. Relations such as A eq union(B1, B2) require
that the union has no gaps. Thus, when trying to arrange B1, . . . , Bn

to pack rectangle A we can do so incrementally in such a way as to
avoid gaps by placing rectangles in the bottom-left-most corner. This
skips cases where B has an exposed left edge (i.e. we automatically
enforce the constraint Bix ≤ Ajx ), reducing the possible split cases
by a half, as illustrated in Figure 3.

6 That is, if SPLIT(a, b, {c1, c2}) then SPLIT(c1, c2, {c1, c2}).
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B3B4

R1

R1

R1

R1

R1

R1

B1

R2

R2
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Figure 2: An example of a constraint network in the class of packing
and contact problems.

A

A

B
B AB A

B

A
B

AB
A
B

A

B

c1 c2

c1
c2

c1
c2

c3c1

c1
c1

c1

c2

Figure 3: Complete set of qualitative cases for restricted DIFF rela-
tion.
Object Anchoring. Given a constraint network between objects
with no geometric information, if we ground certain parameters of
one of the objects then we are solving an easier version of the same
problem (i.e. less free variables) - this is due to scale invariance from
reals being dense. E.g. determining whether four unground circles
can mutually touch is the same as determining whether three cir-
cles and a fourth completely ground circle can mutually touch. By
judiciously selecting the object parameters to ground, it is possible
to convert a non-linear problem into a linear problem (see Golden
Rectangles problem, Section 4.1), or reduce the runtime complexity
of non-linear problems by orders of magnitude.7

Object Interchangeability. If a set of unground objects have identi-
cal constraints, then they are interchangeable during the search pro-
cedure. Thus, the combination of relations being explored is more
relevant than the choice of the object in each relation. E.g. during
the SPLIT procedure, object Bi of union B is used to split a sub-
rectangle Aj of rectangle A; if we exhaust all possible ways of Bi

splitting region Aj with no success then there is no need to try to split
Aj with some other Bk at a later stage, due to interchangeability.

4.1 Problem Instances and Empirical Analysis

In this section we present a range of problem instances in the class of
packing and contact problems. Tables 1 and 2 present the experiment
time results for each problem instance, utilising all pruning methods
presented. Experiments were run on a MacBookPro, OS X 10.6.3,
2.66 GHz.
The results clearly show that the pruning methods employed have
a significant impact on the runtime performance (without pruning
methods, most problems were still not solved after an hour).
Geometry of Solids Problem Tarski [1956] defines a geometric
point using only a language of spheres and the qualitative spatial
between and congruence relations. Borgo [2013] shows that this can
be accomplished using a language of hypercubes (for dimension d ≥
7 Solving non-linear polynomials using CAD has doubly-exponential com-

plexity in the number of free variables [Davenport and Heintz, 1988], and
thus eliminating three variables by grounding one object can reduce the
complexity significantly.
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Problem Consistent Time (secs)

Geometry of Solids yes (PA = PB ) 0.08
no (PA �= PB ) 1.52

Rectangle Contact yes (n = 4) 0.02
no (n = 5) 1.01

Square Fitting yes (n = 4) 0.01
no (n = 5) 3.60

Golden Rectangle yes (golden(R)) 0.05
no (¬golden(R)) 0.11

Table 1: Time to solve benchmark problems in Section 4.1.
n 2 3 4 5 6 7 8 9

Time(sec) 0.01 0.06 0.01 2.91 2.11 0.09 22.98 0.04

Table 2: Time to solve the square packing problem for n = 2 . . . 9.
2) and mereological relations. A simple and less general method uses
dimension-dependent qualitative specifications on hypercubes.
The key idea is that a point can be defined by the convergence of
a set of regions on that point. Thus, we need to uniquely determine
when a pair of hypercubes are concentric using a restricted language
of parthood (i.e. equal, discrete-from, part-of, union); from this we
can construct points and Euclidean geometry.
Let square A be the union of four squares A1−A4 such that A1−A4
are discrete from each other; define squares B and B1−B4 similarly.
Let Ai be a proper part of Bi for 1 ≤ i ≤ 4. A and B are necessarily
concentric (see Fig. 4).8 Using CLP(QS) we can prove that indeed
the definition is sound.

?- A=square(_,_), B=square(_,_),
|
| square_list(4,[A1,A2,A3,A4]),
| square_list(4,[B1,B2,B3,B4]),
|
| mereology(rcc5(dr), group([A1,A2,A3,A4])),
| mereology(rcc5(dr), group([B1,B2,B3,B4])),
|
| topology(rcc8(eq),A,union(A1,union(A2,union(A3,A4)))),
| topology(rcc8(eq),B,union(B1,union(B2,union(B3,B4))),
|
| mereology(rcc5(pp),A1,B1),mereology(rcc5(pp),A2,B2),
| mereology(rcc5(pp),A3,B3),mereology(rcc5(pp),A4,B4),
|
| centre(A,Pa),
| centre(B,Pb),
| topology(equal, Pa,Pb).
true.

| ...
| topology(not_equal, Pa,Pb).
false.

A subproblem is determining whether a square can be packed with n
smaller squares (of any size). For 2 ≤ n ≤ 9 CLP(QS) determines
that n ∈ {2, 3, 5} has no solution and the rest do, as illustrated in
Figure 5.
Contact Problems Certain tasks require combining size and topo-
logical relations. Standard approaches to QSR employ algebraic clo-
sure by ensuring that all sub-graphs with 3 vertices are satisfiable.
Thus, any problem that inherently requires checking four or more
objects simultaneously is beyond algebraic closure. A simple exam-
ple is fitting a set of same-sized squares around a smaller square, as
illustrated in Figure 6. We can solve these problems with our encod-
ing.
?- A=square(_,_),square_list(5, Sqrs),
| size(equal, group(Sqrs),
| size(smaller,A,group(Sqrs)),
|
| topology(rcc8(ec), A, group(Sqrs) ),
| mereology(rcc5(dr), group(Sqrs) ).
false.

Another interesting contact problem is determining whether a num-

8 The key is that, if the union of four squares A1 − A4 is itself a square A,
then A1 − A4 must necessarily have the same side length, and they touch
at the centre of A.

A1A
A2

A3
A4

union

(a) A is the union of non-
overlapping squares A1−A4

A1 A2

A4 A3

B1 B2

B4 B3
Pa = Pb

(b) A and B are concentric
when Ai is a proper part of
Bi (for 1 ≤ i ≤ 4).

Figure 4: Characterising concentric squares using mereology.

union

B2

B3B4

dr

dr

dr

dr
dr

dr

B1

A
eq

(a) Spatial network n = 4. (b) Solutions found with
CLP(QS), n = 4, 6, . . . , 9.

Figure 5: n Square packing problem.

ber of objects can be mutually externally connected. CLP(QS)
solves this n contact problem for rectangles (up to 4) and circles
(up to 4).

Surfaces in Product Design The task is to arrange two rectangular
sheets A, B to cover a sensitive region C. The task only provides
qualitative information as the product is in the design phase. The re-
gion C is larger than each surface, and we need to determine whether
they can be combined to cover C, as long as A and B are not discon-
nected.
?- A=rectangle(_,_,_),B=rectangle(_,_,_),
| C=rectangle(_,_,_),
| size(bigger, C,A),size(bigger, C,B),
| mereology(rcc5(p), C, union(A,B)).
true.
| ...
| topology(rcc8(dc), A, B).
| mereology(rcc5(p), C, union(A,B)).
false.

Constructive Proofs: The Case of Golden Rectangles

Rectangle R is golden if the ratio of the side lengths Rw, Rh is the
golden ratio. Let a = max(Rw, Rh), b = min(Rw, Rh), then

golden(R) ≡ a+ b

a
=

a

b
=

1 +
√
5

2

Golden rectangles have the property that, if a square with a side
length a (i.e. equal to the longest side of the rectangle) is placed
against the long edge of the rectangle, then their union is also a
golden rectangle; no other rectangles have this property.9

?- A=rectangle(_,Aw,Ah),
| B=rectangle(_,Aw,Aw),
| golden(A),
| topology(rcc8(ec),A,B),
| R=rectangle(_,_,_),
| topology(rcc8(eq),R,union(A,B)),
| golden(R).
true.

| ...
| size(bigger, value(Aw), value(Ah)),
| not_golden(R).
false.

9 If we do not force the square B to have a side length of max(Aw, Ah) then
CLP(QS) finds a solution where the union of A and B is a non-golden
rectangle, as illustrated in Figure 7.
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(a) Spatial network n = 4

A

B
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D

EF

X

(b) Square fitting
problem n = 5

Figure 6: n Square fitting problem where a maximum of four non-
overlapping, same-sized squares can touch a single smaller square.

A Ba

b

a + b

(a) Both A and A ∪ B are
golden rectangles.

A B

a b

(b) A is a golden rectangle,
but A ∪B is not.

Figure 7

We can construct a golden rectangle as follows (see Figure 8): (1)
draw a square A; (2) draw a circle C centred on the midpoint of the
lower edge of A such that it intersects the upper right corner of A;
(3) draw a rectangle R by extending A until the lower right corner
intersects C; R is golden. Using CLP(QS) we can prove that this
procedure can only create golden rectangles.10

?- A=square(point(Ax,Ay),L),
| centre(A, point(Mx,_)),
| corner_point(upper_right,A,Pa),
|
| C=circle(point(Mx,Ay),_),
| topology(on_boundary, Pa,C),
|
| R=rectangle(point(Ax,Ay),_,L),
| corner_point(lower_right,R,Pr),
| topology(on_boundary, Pr,C),
| golden(R).
true.
| ...
| not_golden(R).
false.

(Ax, Ay)

R

PA

A A

(Mx, Ay)(Ax, Ay)

C

PR

Figure 8: Steps for qualitatively constructing a golden rectangle.

5 Conclusions

We have presented a method for reasoning about the regions formed
from the boolean combination of rectangular polytopes as first-class
objects, with a focus of reasoning about mereological and quali-
tative spatial relations. The developed framework is fully flexible:
(A). firstly, objects can be of mixed types, different objects can have
different spatial dimensions, and objects can be either completely
geometrically defined, partially defined, or completely unknown;
(B). secondly, any combination of qualitative spatial relations can

10 The resulting constraints are non-linear, however, using object anchoring
CLP(QS) reduces this into a linear problem by grounding A.

be used (that have been defined within CLP(QS)), allowing a mix
of topology, distance, shape, orientation etc. Our framework unifies
adaptations of a number of related and very well established research
problems such as square fitting and tiling (typically these are optimi-
sation problems, whereas we focus on satisfying qualitative spatial
relations), and thus we are able to utilise the advanced research re-
sults from these areas, particularly pruning methods. We have fully
implemented our method in the system CLP(QS) with a range of
search optimisations such as object anchoring that can reduce the
complexity class of a problem (e.g. from solving a system of non-
linear to linear polynomials). We have benchmarked our system us-
ing a range of classic problems, some of which are well known to
be unsolvable using relation algebraic methods for qualitative spa-
tial reasoning, namely, qualitative constructive proofs, packing, and
contact problems.
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