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Abstract. The paper addresses the problem of executing a plan in a
dynamic environment for tasks involving constraints on consumable
resources modeled as numeric fluents. In particular, the paper pro-
poses a novel monitoring and adaptation strategy joining reactivity
and proactivity in a unified framework. By exploiting the flexibility
of a multi modality plan (where each action can be executed in differ-
ent modalities), reactivity and proactivity are guaranteed by means of
a reconfiguration step. The reconfiguration is performed (i) when the
plan is no more valid to recovery from the impasse (reactively), or
(ii) under the lead of a kernel based strategy to enforce the tolerance
to unexpected situations (proactivity). Both mechanisms have been
integrated into a continual planning system and experimentally eval-
uated over three numeric domains, extensions of planning competi-
tion domains. Results show that the approach is able to increase the
percentage of cases successfully solved while preserving efficiency
in most situations.

1 INTRODUCTION

The execution of plans in realistic environments has to face a number
of challenges: in such dynamic environments it is hard to make accu-
rate predictions (in particular for what concerns the resource profile),
and the occurrence of exogenous events could make the actual state
very different from the one predicted at planning time.

To deal with this problem, the continual planning paradigm is re-
ceiving increasing attention ([9, 4]): in such an approach an agent has
the capability to interleave execution and (re)planning all along the
plan execution in order to recognize and handle all those situations
where discrepancy invalidates the current plan of actions. The contin-
ual planning paradigm, and in particular the replanning mechanism,
is necessary in all those domains where anticipating all the possible
contingencies at planning time is not feasible (e.g., via conformant
or contingent plans) for either computational reasons or impossibil-
ity to find solutions because of the incompleteness of the domain
knowledge [9].

In replanning, a critical aspect concerns the possibility of finding
a repair plan in an efficient way. In fact, the on-line setting imposes
strict constraints on the amount of computational resources (espe-
cially time). Some recent papers ([5],[15],[8]) have shown that, for
small deviations from the nominal behavior, the plan repair problem
can be efficiently managed without the necessity of replanning from
scratch. While this represents a big step ahead, most of the work has
been mainly focused on the maintenance of propositional conditions.
Limited attention has been played to deal with numeric fluents ([6]),
which instead play a crucial role for realistic domains where con-
sumable resources have to be handled.
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In this paper we present a new approach for the execution and
the adaptation of plans involving numeric fluents. This approach is
aimed at limiting the need of replanning as much as possible. In par-
ticular we exploit the notion of Multi Modality Action recently in-
troduced in [12], which allows to model the way the different execu-
tion modalities of the same action impact on the usage of resources,
modeled via numeric fluents. The paper shows that in many cases
an impasse in the plan execution can be solved by changing the ex-
ecution modalities of the actions still to be performed (without the
need of a replanning step). This reconfiguration step is started after
the occurrence of an impasse in the plan execution in a reactive strat-
egy. The paper presents also a pro-active approach where the agent
try to prevent an impasse by anticipating the change in some exe-
cution modalities. In particular, the paper proposes a kernel based
method ([13]) for selecting the execution modality of the next action
to be performed. In such a way the system avoids possible reconfig-
uration/replanning steps, or at least increases the recovery power. In
many cases, in fact, resources are limited and cannot be renewed, so
anticipation is necessary to prevent the agent to be trapped in dead-
end situations.

Section 2 provides a formalization of the notion of Multi Modality
Action and the reconfiguration problem. The reactive strategy which
makes use of the reconfiguration for solving plan execution failure is
described in Section 3, while the kernel based method and the pro-
active strategy are presented in Section 4 and 5, respectively. An ex-
tensive experimental setup is reported in Section 6.

2 BACKGROUND

This section introduces the planning language of reference and for-
malizes the problem we are interested in. According to the PDDL 2.1
([6]) terminology, the domain in our system is modeled via a set F
of propositional fluents and a set X of numerical fluents representing
the qualitative and quantitative properties of domain objects, respec-
tively. A state s is a pair < F (s), X(s) > where F (s) ⊆ F asserts
which propositional fluents are true in s, while X(s) is an assign-
ment of real values to all the numeric fluents in X . As hinted at in
the introduction, the Multi Modality Action (MMA) formalism is in-
tended to model the different ways a given action can be performed.
In particular an execution modality impact (in numeric terms) the re-
source profiles. For this reason the MMA splits the knowledge about
the preconditions and effects of the action at the propositional level
(qualitative behavior) from the preconditions and effects of the nu-
meric one (quantitative behavior), which are implied by the modality
selection. More formally:

Definition 1 (Multi-Modality Action) A Multi-Modality Action
(MMA) a is the tuple < Preprop(a), Effprop(a),mods(a) >
where:
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• Preprop is a set of propositions defined over F modeling the ap-
plicability conditions (in propositional terms) for a.

• Effprop is a set of propositions defined over F , expressing the
effect of the application of a (as typical in PDDL language we
may have both positive and negative effects).

• mods is a collection of modalities. Each modality m defines a
specific way of performing a, and is modeled as a pair
< Prenum, Effnum > where:

– Prenum is a set of comparisons specifying the preconditions
of the execution of MMA a in modality m (Each comparison
has the form (exp, {<,<=,=>,>}, exp′).

– Effnum is a set of numeric operations. Each numeric effect
is the triple (f,op,exp), where f is the numeric fluent affected by
the operation, op is one of {+ =,− =,=}. Effnum repre-
sents the way the action a changes the world state if executed
in modality m.

The terms exp and exp′ denote numeric expressions defined over
real constants and over the set X of numeric fluents2.

An MMA a is executable in modality m in a state s when both
the propositional part of the state s (denoted as sprop) satisfies
Preprop(a) and the numeric part of the state s (denoted as snum)
satisfies Prenum(a(m)). Let a be executable in s with modality m,
its application to s produces a successor state s′ where: s′prop =
(sprop ∪ Eff+

prop(a))\Eff−prop(a) and each numeric fluent f oc-
curring in snum of a(m) is modified according to op and exp.

Note that, given a state s, an action a could be executed in more
than one modality. This is the main characteristic that gives us the
flexibility to decide the modality, given the actual context.

A Multi Modality Plan (MMP) π = a0, a1, .., an−1

is a sequence of MMAs. We will denote with πc =
a0(m0), a1(m1), .., an−1(mn−1) a configured plan where each ai

is associated with a specific modality mi such that mi ∈ mod(ai)
Given an initial state s0, a set G of goal conditions3 and a set of

MMAs, we can say that πc = a0(m0), a1(m1), .., an−1(mn−1) is
valid for s0 and G iff the state sn, predicted by using πc, satisfies G.
Note that each action ai(mi) in πc must be applicable in the state si
generated by its predecessor ai−1(mi−1).

We will denote the final (predicted) state by means of πc with the
symbol s[πc] (note that when at least an action turns out to be not
applicable, s[πc] is not defined).

In this paper we are interested in the execution of an MMP π in a
dynamic environment. In order to accommodate deviations from the
expected behavior, at each step of the execution, we have to select
on-line a modality for each action such that πc remains valid for
achieving the goal. Formally:

Definition 2 (Multi Modality Plan (Re)configuration) A
(re)configuration problem ψ is the tuple < πc

i , s
′
i, G > where:

πi is a suffix of MMP (from the i-th action to the end), s′i is the
world state observed after the execution of ai−1(mi−1), G is a set
of goal conditions (both propositional and numeric). A solution
(if any) is a configuration c′ = {m′i,m′i+1, ..,m

′
n−1} �= c where

a modality is selected for each action, and the reconfigured plan
πc′ = ai(m

′
i), .., an−1(m

′
n−1) is such that: (i) ai(m

′
i) is applicable

to s′i, (ii) each MMA aj(m
′
j) is applicable to s′j for any i < j < n,

and (iii) s′n satisfies G.

2 For computational reasons, similarly to what has been done in [11], in this
paper we limit ourselves to linear expressions

3 In our system we support both comparison and propositional goals. So G
can be also divided in Gprop and Gnum

Definition 3 (Consistency and Validity) Given a state si and a
goal G we say that an MMP πi and a configuration c is
–”consistent” if there is at least a solution for the reconfiguration
problem ψ = < πi, si, G > ( i.e. a configuration of action modali-
ties)
–”valid” if c is a solution for ψ

As shown in [12], the reconfiguration can be an effective adaptation
mechanism for a continual planning system.

The formulation reported above is relevant w.r.t. the classical for-
mulation of a planning problem, for two main reasons. On the one
hand, reasoning about actions and plans involving numeric fluents is
very hard and even undecidable when no restrictions are imposed in
the used language [10], so a pure replanning approach could repre-
sent a barrier for many realistic scenarios. On the other hand, while
in many domains the propositional predictions could be quite accu-
rate, it is quite hard to get precise predictions on the effects of actions
regarding numeric parameters such as energy, cost and time. As we
will see in Section 6, this novel characterization is aimed at providing
flexibility and efficiency in handling discrepancies concerning these
numeric parameters all along the plan execution, thus avoiding the
necessity of (probably expensive) replanning steps.

However, there are open questions: When should the agent activate
the reconfiguration mechanism? How do we deal with the reconfigu-
ration from a computational point of view? How useful is the recon-
figuration mechanism for adapting the plan execution to the contex-
tual situation? While we will address the third question empirically
(see Section 6), we will discuss the other two questions in the fol-
lowing sections.

3 REACTIVE RECONFIGURATION

The problem of deciding when to activate the (re)configuration
mechanism can be approached by means of the continual planning
paradigm ([1]), straightforwardly extended to deal with a multi-
modality plan. Rather than activating the reconfiguration mechanism
each time a discrepancy is encountered during the execution (which
may be too costly), or intervening just when the next action precon-
ditions are not satisfied (which may be too risky), the reconfiguration
is activated only in case πc becomes invalid.

Algorithm 1 reports the strategy in the specific context of multi
modality plans. The plan (with an initial valid configuration) is taken
as input by the procedure, which returns success (or failure) in case
the plan has achieved the goals set (or it has not). At each step of the
plan execution, the agent observes the environment (line 3), updates
its world state representation, and analyzes the plan being executed
(line 4). If the current plan configuration is still valid, the iteration
proceeds with the execution of the next action from the plan with
its instantiated modality. If not, a consistency checking is performed
and a possible new configuration is returned (lines 7 to 10).

To handle the problem from a computational point of view, the
reconfiguration task is encoded as a Constraint Satisfaction Problem
and a Constraint solver can be used for finding a configuration if
needed. In particular the CSP encodes variables for modalities and
the numeric fluents relevant to the problem.

The modality variables represent the way an action can be exe-
cuted, so the CSP has a distinct modality variable for each action in
π. The numeric fluents variables, on the other hand, aim at capturing
the possible trajectories of states behind the MMP, so they have to be
replicated as many times as the steps the plan consists of.

In our formulation constraints are implications binding the precon-
ditions and effects of each modality with numeric fluents variables
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belonging to the previous (for the preconditions) and successive step
(for the effects). Finally, init and goal constraints restrict the set of
reconfigurations to the ones consistent with the current observation
acquired (init for the initial state), and the goals of the mission.

The CSP solver is invoked to find a new configuration in line 11.
If the solver finds a solution, modalities referring to the action al-
ready executed remains unchanged, whereas at least one modality of
actions still to be executed is changed.

If the plan is not consistent (meaning that there is no solution to
the associated reconfiguration problem) a failure is returned4. The
consistency of the plan is evaluated with the same CSP mechanism.

Algorithm 1: Reactive Reconfiguration
Input: π - Multi Modality Plan, G - goal
Input: Failure or Success
begin1

while π is not empty do2

s = observe(environment);3

if s[πc] satisfies G then4

a(m) = πc.pop();5

execute (a(m))6

else7

if π is not consistent given s and G then8

return Failure9

else10

select a c′ such that πc′ is valid given s and G;11

c = c′12

s = observe(environment);13

return s |= G14

end15

A limit of this strategy is that the reconfiguration may intervene
too late, so that the plan becomes inconsistent and cannot be recon-
figured anymore. For instance, if an agent realizes that she is later
than expected, although the plan is still valid, it could be necessary
to search for a plan accommodating this situation. In the following
we will describe a pro-active strategy able to anticipate, at some ex-
tent, the potential problem for the plan execution. However, before
discussing the new strategy, we will show how to reason on the plan
validity in an efficient way.

3.1 Configuration Kernel

As shown in [7, 13], the validity check of a plan involving classi-
cal PDDL actions (i.e. without the notion of execution modalities)
can be performed by avoiding the prediction/simulation step (i.e. the
computation of s[πc]): it is sufficient to look at the conditions of the
i-th kernel associated to the i-th suffix of the plan still to execute5. In
fact, a kernel K is a set of propositions and numeric comparisons rep-
resenting the sufficient and necessary conditions such that, if a state
s satisfies each condition in K, the plan leads to the goal from s.

In the case of MMA, the extension is quite simple, as it is possi-
ble to take apart the numeric and propositional conditions. Therefore,
one can infer if the plan is propositional invalid or just numeric in-
valid, simply by checking separately the propositional or the numeric
conditions involved in K.
4 In case of failure, it would be possible to invoke a replanner for trying to

solve the problem from a generative point of view (see also Section 6)
5 As shown in [13], the classical notion of kernel [7] can be extended to the

numeric case, and also numeric conditions can be constructed via regres-
sion starting from the goal statement

We restrict our attention to the case where the original plan π is
assumed to guarantee the satisfaction of the propositional goals while
we are interested in reasoning about the numeric validity of πc. In
such case we can define:

Definition 4 (Configuration Kernel) Given a configured plan
πc = {a0(m0), a1(m1), .., an−1(mn−1), a state s and a
goal G, a configuration kernel is a set of numeric comparisons
(exp, {<=, <,==, >,=>}, exp′) such that s[πc] |= G iff s |= K.

The notion of configuration kernel can play a relevant role as made
clear by the following proposition.

Proposition 1 Given a reconfiguration problem ψ =< πi, s
′
i, G >,

a configuration c {mi,mi+1...mn−1} and a configuration kernel K
for π instantiated with c, if s′i satisfies K , then c is a solution for ψ.

Proposition 1 is a direct consequence of definitions 2 and 4; it
provides a formal basis for the efficient checking of plan validity. As
a matter of facts, it suffices to focus the attention just on the relevant
state information, which is the one necessary for verifying if the state
satisfies the kernel.

As we will see in the next section, this property is important not
only for validity checking purposes, but also for the fact that it pro-
vides all the requirements for a correct execution in a very compact
form, which can be used also as a basis for more powerful reasoning.

4 PREDICTING ROBUSTNESS VIA
CONFIGURATION KERNEL

The formalization provided so far is based on the notion of plan va-
lidity. However, more interesting results can be obtained by looking
at the problem from a different perspective. In fact, if we give a geo-
metric interpretation to the plan validity, it is easy to see that X(s) and
the configuration kernel K respectively represent a point and a valid-
ity region inside the vectorial space defined by X. If a state s satisfies
(does not satisfy) the kernel, it means that the associated point X(s)
is inside (outside) the validity region defined by the kernel.

Given the geometric interpretation, one obvious question concerns
how much inside (or how outside) X(s) is. In particular, we can hy-
pothesize that the larger the distance of X(s) from the boundaries
defined by the validity region is, the lower the chance to violate (at
execution time) the condition in the configuration kernel will be.

For formalizing this intuition, we define a notion of distance which
has to capture the contribution of each component in K. Formally:

d(X(s),K) =

{
0 if ∃c′ : X(s) violates c′

minc∈K
d(X(s),c)

maxD(X,c)
otherwise

(1)

The distance d defined above takes value from 0 to 1. The mini-
mum distance 0 models the situation in which at least a constraint is
not satisfied by the current state; this means that the configuration is
not valid given that particular state so the configuration has robust-
ness equal to 0. The maximum value 1 is instead reached when, for
each constraint involved in the kernel, the current state is at the max-
imum possible distance. All the intermediate states provide a degree
of robustness of a configuration w.r.t. the current state of the world.

The current implementation is restricted to constraints of the form
(a1x0 + a2x1+, ..,+anxn−1 + a0{<,>}0)6. Since they are linear
combinations, they can be represented as hyperplanes in X, so we
can use the euclidean distance as follows:
6 This kind of representation is possible under the condition of restricting the

language to linear expressions, [11]. Numeric constraints involving com-
parator {<=,=>} are treated adding/removing an ε > 0.
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d(X(s), c) =
|a1x

′
0 + a2x

′
1+, ..,+anx

′
n−1 + a0|√

a2
1 + a2

2 + ..+ a2
n

(2)

where X(s) defining the values (x′0, .., x
′
n−1) refers to the point in

X associated to the state s.
In equation 1, maxD denotes the normalization factor, and it is

used to provide a unified scale for all the fluents involved in the
problem. We approximate this value exploiting the numeric planning
graph ([2, 11]). More precisely, in a preprocessing phase, we per-
form a reachability analysis starting from the initial state to the goal.
This process iteratively produces (the so called) levels containing the
propositional atoms and the values of numeric fluents that could be
reached after the application of a given set of actions. Each level is
built by applying only the positive effects of the actions applicable
in the previous level. In the case of numeric fluent, the application
of the action enlarges the interval of possible values. The iteration
is stopped when the process reaches a level satisfying the conditions
expressed in the goal, or when the fix point is reached7.

If the goal is reachable in the planning graph, for each numeric
fluent involved in the problem we take the maximum and the mini-
mum value according to the last level, and we use such values, and
in particular their geometric interpretation, to figure out the bound-
aries of X. Having defined such boundaries, the computation of the
maximum distance is straightforward.

The distance defined in 1 can be computed for each suffix of the
plan. Moreover, under the assumption of not considering assignment
operators (in the action model), the distance monotonically decreases
towards the goal. Formally:

Proposition 2 If action modalities in π do not contain assignment
operators, for each i < j we have that d(X(s[π0→i]),Ki) ≤
d(X(s[π0→j ]),Kj)

Formal proof is omitted for lack of space. Let us note that, as an
effect of the kernel construction mechanism ([13]), for each i < j
the number of constraints present in Kj is always less or equal to the
number of constraints involved in Ki; therefore the validity region
defined by Ki is strictly smaller than the one defined by Kj .

For this reason, the minimal distance (and so the more critical situ-
ation for the whole plan) is the one considering the current state with
the kernel associated to the current step of the execution. This is of
key importance for the proactive reconfiguration of the next section,
as it allows to focus just on a specific kernel.

5 PROACTIVE RECONFIGURATION

Given a consistent plan π, there could be several valid configurations;
among them, according to the distance presented in the previous sec-
tion, one configuration could be ”better” than others.

However, searching for the ”most robust” configuration may be
prohibitive in an execution context, since the computation could re-
quire the exploration of the whole space of configurations for a given
multi modality plan. In addition, in dynamic environments, the state
evolution could often differ from what is expected. So, the optimal-
ity of the current configuration all along the task execution it is likely
to be compromised, and the effort spent in searching for an optimal
solution could be easily nullified.

For these reasons, we adopt a pragmatical approach to the prob-
lem. Rather than executing the action in the modality as it has been
selected by the current (re)configuration, at each step of the execu-
tion the strategy is allowed to change the modality by reasoning on

7 For details on the numeric extension of the planning graph see [11].

Algorithm 2: Modality Selection
Input: s - State, π - MMP, G - Goal, a - MMA
Output: The Selected Modality
begin1

best = mod(ai);2

s’ = apply(ai(best));3

foreach m ∈ mod(ai) such that m �= best do4

next = apply(ai(m));5

if next satisfies K(ai+1(mi+1), .., an(mn),G) then6

if d(next,K)>d(s’,K) then7

best = m;8

return best9

end10

the information provided by the current observation s and the ker-
nel associated to that configuration. As we have seen in the previous
section, considering just the current kernel is sufficient to understand
the impact of the decision over the whole plan execution.

Algorithm 2 reports the pseudo-code implementing this idea. In
particular the procedure can be invoked from the continual planning
algorithm, just after the action is extracted from the plan (Algorithm
1, line 5).

First, the procedure extracts all the alternative modalities of exe-
cution from the current action a and performs one step of simulation
(line 5) for each of them. Then, the algorithm selects the modality
m which maximizes the distance from the predicted state (the one
obtained by the one step simulation) to the kernel associated to the
arising configuration (the one in which the current action assumes
the new modality). Once the modality has been selected, such a de-
cision is reported to the overall continual planning loop so that the
agent can execute the action with a modality which is different from
what has been planned, adapting the behavior of the plan according
to the actual state of the world.

In a few words, the approach computes the consequences of de-
ciding the current modality from a local point of view, but consider-
ing what is predicted to happen with the previous configuration. Al-
though the mechanism directly impacts just the way the next action
is executed, it could change modalities of several actions. In fact the
modality selection procedure is invoked on-line for each action. As
we will see in the next section, this approach is crucial for increasing
the plan execution success.

6 IMPLEMENTATION AND EVALUATION

In order to evaluate the benefit (and potential drawbacks) of the in-
troduction of the reactive and proactive reconfiguration into a (clas-
sical) continual planning architecture (as the one proposed by [1]),
we compared the performance of three different architectures:

• LPG-ADAPT (ADP) 8, the basic continual planning architecture
of Algorithm 1 where the reconfiguration is substituted with the
invocation of LPG-ADAPT.

• RECON-ADAPT (REA-ADP), i.e. the system implementing the
reactive configuration strategy (see Algorithm 1), which invokes
a reconfiguration supplemented with the invocation of LPG-
ADAPT in case the reconfiguration fails.

8 The system has been set with the ”-speed” parameter. We noticed that this
parameter is crucial for system performance. Note that the plan adaptation
is possible by flattening an MMA in more than one PDDL action ([12])
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• PROACT-ADAPT (PRO-REA-ADP), the system implementing
the proactive strategy (see Algorithm 2). Also in this case, LPG-
ADAPT is invoked whenever the reconfiguration fails.

All the systems have hence the replanning capability, but they differ
from the presence of the reconfiguration mechanism. We expect that
the reconfiguration reduces the need of replanning, hence improving
the efficiency of the system. Moreover, we expect that, thanks to the
proactive behavior, PRO-REA-ADP could also increase the capacity
of completing the plan successfully. This could happen for all those
situations where the system would have intervened too late.

The evaluation has been performed into three different numeric
domains, extensions of the International Planning Competition do-
mains: Planetary Rover, Zenotravel and DriverLog domain. In par-
ticular, we extended the original formulation introducing different
execution modalities of the actions where each modality affects the
way resources (represented as numeric fluents) are consumed9. For
instance, the Zenotravel domain already has this feature, since the fly
action can be performed either at zoom or cruise mode. In addition
we modeled two kinds of boarding (one inexpensive but slower, the
other one costly but faster).

Z
en

oT
ra

ve
l

Noise
ADP REA-ADP PRO-REA-ADP

Cpu-Time PES Cpu-Time PES Cpu-Time PES

0.1 101.30 113 97.56 122 47.79 147

0.15 54.54 59 44.85 62 67.34 111

0.2 29.42 32 20.29 29 56.82 79

0.25 13.95 14 8.09 10 50.69 59

0.3 6.00 6 5.03 6 24.53 28

0.35 4.00 4 3.55 4 18.72 21

0.4 0.00 0 2.00 2 11.00 11

0.45 0.00 0 1.00 1 6.00 6

0.5 0.00 0 0.00 0 4.00 4

Total 209.21 228 182.38 236 286.89 466

D
riv

er
L

og

0.1 65.70 96 75.38 98 108.63 159

0.15 45.79 70 53.28 70 101.40 135

0.2 45.95 59 36.57 51 48.11 65

0.25 37.04 44 40.82 50 31.73 46

0.3 26.73 29 24.19 33 20.89 30

0.35 18.88 20 26.76 34 20.92 29

0.4 20.27 23 12.53 17 8.64 13

0.45 15.57 16 14.92 17 3.67 6

0.5 10.00 10 10.76 12 8.23 11

Total 285.92 367 295.23 382 352.23 494

Pl
an

et
ar

yR
ov

er

0.1 71.88 164 162.88 168 37.67 168

0.15 76.81 157 159.40 167 62.06 168

0.2 87.60 153 145.48 162 77.21 166

0.25 88.51 148 133.56 151 80.84 164

0.3 83.41 136 124.87 144 78.69 162

0.35 80.11 120 105.19 121 80.49 152

0.4 71.52 110 98.56 109 85.85 142

0.45 61.04 80 67.26 82 83.40 120

0.5 69.28 84 54.50 61 55.24 95

Total 690.17 1152 1051.71 1165 641.45 1337

Table 1. Cpu-time score and number of successful plan executions for
each tested systems, in all the considered domains. Results refer to the setup

where 5secs are alloted for the computation.

To mimic a real world like scenario, we implemented an environ-
ment simulator that returns the actual state of the system obtained by
using a noised version of the action model.

To challenge the reconfiguration problem, the noise injection
causes unexpected deviations in the consumption of the resources,
i.e. the numeric fluents involved in the action. Therefore the plan
may become invalid because of the inability of satisfying at least one
numeric condition all along the plan (preconditions and/or goals)

We have run10 each test in nine different settings. In particular, in
setting 1, each action consumes 10% more than expected, in setting
9 Visit http://www.di.unito.it/˜scala for further details on the domains and the

software used.
10 Experiments ran on a 2.53GHz Intel(R) Core(TM)2 processor with 4 GB,

and the Choco solver (www.emn.fr/z-info/choco-solver/) has been used for
solving the CSP.

2, the noise was increased to 15%, and so on until in setting 9 where
the noise was set to 50%.

For all domains, we collected 168 plans (synthesized off-line by
using the same LPG-ADAPT system in plan generation modality),
which are solutions to problems varying the number of available ob-
jects. The length of the resulting plans varies up to 80 actions.

To emulate an on-line context, computational resources devoted
to reconfiguration/and or re-planning have to be limited, so the tests
have been run in a scenario allotting 5 secs of CPU time for each re-
configuration/replanning task and 2*|π| seconds as total deliberation
time. If a timeout is reached, we consider the plan execution failed.

Performances have been measured considering:
• Plan execution success (PES), i.e. the number of times a given ar-

chitecture has been able to successfully reach the goal. It is worth
noting that in most cases the executed plan differs from the orig-
inal plan for the changes required by the reconfiguration or the
replanning steps; results are showed by Table 1.

• The computation cost, i.e the total amount of CPU time spent
to deliberate (which includes the monitoring, modality selec-
tion, reconfiguration and replanning). In particular for provid-
ing an informative parameter we have used a metric similar to
the International Planning Competition metric (http://ipc.icaps-
conference.org/). That is, each case submitted is evaluated accord-
ing to T∗

T
, where T ∗ and T are the time spent by the best and the

evaluated system, respectively. A not solved case takes 0; results
are shown in Table 1.

• Plan completion, i.e. the portion between the number of the ac-
tions actually executed by the system and the total number of the
actions constituting the plan. This measure provides additional in-
formation with respect to PES, since it is able to capture the abil-
ity of an architecture to progress in the plan execution; results are
shown in Figure 1.

Results show that PRO-REA-ADP is the system exhibiting the max-
imum competence (PES) over all the domains tested. The advantage
is prominent and is estimated around almost 200-250 points, corre-
sponding to the difference of cases solved by PRO-REA-ADP and
the other two systems. As concerns the efficiency, REA-ADP be-
haves quite well in the most of the domains, and is the winner in the
Planetary Rover domain. This is explained by the efficiency of the
reconfiguration mechanism.

Concerning the average plan completion, PRO-REA-ADP is
clearly the system behaving better. However, making exception for
the Planetary Rover domain, we do not have a clear winner between
LPG-ADP and REA-ADP. Even if we have run a significant set of
cases, the stochastic nature of LPG-ADP does not allow an exact
comparison between these two systems. We are working on an exten-
sion of the experimental setting to better understand this parameter.

In order to evaluate the impact of the timeout on the performance
of the system, we have relaxed the maximum cpu-time threshold and
we have run the same set of experiments in a scenario allotting 60
secs for the repair and 10*|π| secs for the total time that can be spent
to deliberate. Table reports the PES and CPU Time score for the
rover domain. It is easy to see that all the architectures are able to
increase PES, that PRO-REA-ADP is still the winner but the dif-
ferences in performance with respect to LPG-ADAPT are reduced,
since the number of times LPG-ADAPT reaches a timeout decreased.

7 DISCUSSION AND CONCLUSION

In recent years the plan execution problem has received an increas-
ing amount of attention and several works [15, 8, 5, 14] have ap-
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Figure 1. Average plan completion (y-axis) over all the three domains: ZenoTravel, Driverlog and PlanetaryRover. On the x-axis the noise setting.
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Noise
ADP REA-ADP PRO-REA-ADP

Cpu-Time PES Cpu-Time PES Cpu-Time PES

0.1 73.04 168 161.20 167 40.03 168

0.15 76.73 164 157.10 167 60.66 168

0.2 86.52 159 148.15 163 76.32 168

0.25 82.47 153 142.90 158 79.59 168

0.3 88.15 145 121.55 138 82.03 166

0.35 80.30 133 105.07 118 85.72 163

0.4 73.41 116 91.20 106 86.20 146

0.45 69.82 99 66.63 78 82.16 128

0.5 64.09 92 49.65 56 65.49 102

Total 694.53 1229 1043.46 1151 658.20 1377

Table 2. Cpu-time score and number of successful plan executions for all
the systems in the Planetary Rover domain. Results refer to the setup where

60secs are alloted for the computation.

proached the problem from a continual planning point of view: the
agent executes actions from the plan till it is valid, and activates a re-
planning (or adaptation) step when the (unexpected) contextual con-
ditions have threatened the plan. While significant progresses have
been made in developing strategies for efficiently handling the plan
repair task, few works provide answers for the other questions re-
lated to the general problem of continual planning, as for instance
deciding when the plan in execution has to be revised. Moreover, not
so much attention has been paid to domains where plans are highly
constrained in terms of resources usage, in particular when resources
are modeled as numeric fluents and the goal contains numerical con-
straints.

The present paper addresses the problem of plan execution in dy-
namic environments where discrepancies on the expected resources
such as power, fuel, cost and time could compromise the success of
the plan. Exploiting a promising new characterization for the repair
problem involving resources ([12]), the main focus of this paper is
on a proactive strategy aimed at anticipating potential threats to the
plan and therefore at reducing possible plan failures. In this context,
the closest works to our approach are the ones by [3], [7]. The former
proposes an approach for generating branched plans to be used when
particular conditions are met in order to opportunistically increase
the number of reached goals. As a difference with our approach, the
mechanisms presented by Coles operates off-line and addresses the
problem of robustness from a probabilistic point of view. The ap-
proach presented in [7] works on-line (as in our case) establishing
conditions for determining the sub-optimality of the current solution.
The main difference with our approach concerns the objective: [7] is
mainly concerned in increasing the plan quality, while our approach
is aimed at increasing the plan robustness.

The decision of adopting an on line approach has made clear that
computational efficiency is a critical aspect. We addressed this prob-
lem in a number of ways: first of all we have exploited the notion
of multi modality actions where each possible execution modality
specifies the impacts/requirements on the numeric fluents represent-
ing resources. The strategies have been implemented in a continual
planning system combining a CSP encoding and a kernel based for-

mulation ([13]). The former allows to reason about plan reconfigura-
tions once the plan has become invalid (re-action), while the second
mechanism provides guidance for a robustness oriented continuous
reinforcement of the plan throughout the execution (pro-action).

An experimental analysis on three challenging numeric domains
showed the benefit of adopting these two strategies. In particular, the
proactive strategy is able to absorb a relevant number of unexpected
deviations, reducing (in many situations) the number of plan failures.
Moreover, since the plan has to be repaired less frequently, the com-
putational cost for selecting the most adequate execution modality
at each step is compensated by a lesser number of reconfigurations
or plan adaptations. Finally, both strategies have resulted quite effi-
cient from a computational point of view, hence they can be used in
combination with any numeric plan adaptation tool.

The presented approach can be extended in a number of ways. In
particular, the proactive mechanism could be extended to deal with
a larger set of possible reconfigurations and to perform a trade off
between plan robustness and plan quality (possibly by using some of
the notions proposed in [7]).
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