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Abstract. The LM-Cut heuristic is currently the most successful

heuristic in optimal STRIPS planning but it cannot be applied in the

presence of conditional effects. Keyder, Hoffmann and Haslum re-

cently showed that the obvious extensions to such effects ruin the

nice theoretical properties of LM-Cut. We propose a new method

based on context splitting that preserves these properties.

1 INTRODUCTION

The aim of classical planning is to find a sequence of actions that

leads from the current world state to some desired state. Conditional

effects enable situation-dependent behavior of actions. For example,

there can be an action stop-f in an elevator domain that boards wait-

ing passengers at floor f and disembarks all passengers with destina-

tion f . To describe such a behavior without conditional effects, one

would need specific actions for all different situations of waiting and

boarded passengers related to this floor, or use some other formula-

tion that applies several actions to cause the same world change.

Conditional effects can be compiled away [9] but only with se-

vere disadvantages: any plan-preserving transformation leads to an

exponential blow-up of the task description size. An alternative com-

pact compilation does not preserve the delete relaxation, which many

heuristics such as the LM-Cut heuristic [6] are based on. As a result,

these heuristics do not give good guidance on such compiled tasks.

Haslum [4] uses an incremental compilation approach for solving

delete-relaxed tasks optimally: starting from the compact compila-

tion (which can cause further relaxation), it successively introduces

the exponential transformation until an optimal solution for the com-

piled task can be transformed into a plan for the original task. In the

worst case, this can lead to the full exponential compilation.

We take the different approach of supporting conditional effects

natively in the heuristic computation. This is not unusual for inad-

missible heuristics but among current admissible heuristics (which

are required for cost-optimal planning) the support is rather weak

and a suitable extension to conditional effects is not always obvious.

For the state-of-the-art LM-Cut heuristic [6], Keyder et al. [7] re-

cently pointed out that obvious extensions either render the heuristic

inadmissible or lose the dominance over the maximum heuristic [1].

We present an extension of the LM-Cut heuristic that preserves

both admissibility and dominance over the maximum heuristic. For

this purpose we introduce context splitting as a new general tech-

nique which allows us to split up actions in a task to distinguish dif-

ferent scenarios of their application. We show how context splitting

can be made useful for the extension of the LM-Cut heuristic. Af-

ter proving the desired theoretical properties of the heuristic, we also

evaluate its performance empirically.
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2 BACKGROUND

We consider propositional STRIPS planning with action costs, ex-

tended with conditional effects. In this formalism, which we denote

as STRIPSc, a task is given as a tuple Π = 〈F,A, I,G, cost〉 where

F is a set of propositional variables (or facts), A is a set of actions,

I ⊆ F is the initial state, G ⊆ F describes the goal, and the cost

function cost : A → N0 defines the cost of each action. A state

s ⊆ F of a task is given by the variables that are true in this state.

Every action a ∈ A is given as a pair a = 〈pre(a), eff(a)〉. The

precondition pre(a) ⊆ F defines when the action is applicable. The

set of effects eff(a) consists of conditional effects e, each given by a

triple 〈cond(e), add(e), del(e)〉 where all components are (possibly

empty) subsets of F . If all facts in the effect condition cond(e) are

true in the current state, the successor state is determined by remov-

ing all facts in the delete effect del(e) and adding the facts in the add

effect add(e). Given an effect e ∈ eff(a), we use the notation act(e)
to refer to the action a.

Action a is applicable in state s if pre(a) ⊆ s. The resulting suc-

cessor state is

s[a] =
(

s \
⋃

e∈eff(a) with

cond(e)⊆s

del(e)
)

∪
⋃

e∈eff(a) with

cond(e)⊆s

add(e)

A plan for a state s is a sequence of actions whose sequential ap-

plication leads from s to a state s∗ such that G ⊆ s∗. A plan for the

task is a plan for I . The cost of a plan is the sum of the action costs

as given by cost, and an optimal plan is one with minimal cost. We

denote the cost of an optimal plan for s in task Π with h∗
Π(s).

A task where all effect conditions are empty is a standard STRIPS

task (with action costs). In this case, we can combine all add (and

delete) effects of an action a to a single set add(a) (and del(a)).
When introducing context splitting, we will briefly consider the

more general ADL formalism, where action preconditions and effect

conditions are arbitrary propositional formulas over the task vari-

ables F . For a formal semantics, we need to regard a state s ⊆ F

as a truth assignment T (s) that assigns 1 to the variables in s and

0 to all other variables. An action a is then applicable in a state s if

T (s) |= pre(a) and an effect e triggers if T (s) |= cond(e). If not

explicitly mentioned otherwise, we are talking about STRIPSc tasks.

The delete relaxation Π+ of a planning task Π is equivalent to Π
except that all delete effects are replaced with the empty set. We call

such a task delete-free. The cost of an optimal plan for a state s in

Π+ is denoted with h+(s) and is an admissible estimate for h∗
Π(s) in

Π. To simplify the notation throughout this paper, we avoid making

the state s explicit in all definitions. Instead, we compute heuristic

estimates for a state s from a modified task Πs where we replace the
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initial state with s. The heuristic estimate h(s) then only depends on

the task Πs and we can write h(Πs) instead.

Since computing h+ is NP-complete [3], it is often approxi-

mated by polynomial-time computable heuristics. One such heuris-

tic, which is dominated by h+ and therefore also admissible, is

the maximum heuristic hmax [1]. It assigns a value V max to vari-

ables and sets of variables. The value V max(P ) of a non-empty set

of variables P ⊆ F is the maximal value of any of its elements:

V max(P ) = maxp∈P V max(p). For the empty set, V max(∅) = 0. The

value V max(p) of a variable p is 0 if p is true in the initial state. Oth-

erwise, it is the lowest estimated cost Cmax(e) of any effect e that

achieves (adds) it: V max(p) = min{e|p∈add(e)} C
max(e).

The cost Cmax(e) of an effect e is the action cost plus the value

V max of all propositions that must be true for the effect to trigger:

Cmax(e) = cost(act(e)) + V max(cond(e) ∪ pre(act(e))).2

The estimate of the maximum heuristic for the initial state is the

value V max of the goal: hmax(Π) = V max(G).

Another admissible heuristic which is also based on delete relax-

ation and dominates hmax is the LM-Cut heuristic hLM-Cut [6]. It relies

on disjunctive action landmarks which are sets of actions of which

at least one must occur in every plan. The LM-Cut heuristic is only

defined for STRIPS tasks (without conditional effects).

To simplify the presentation, we assume in the following that the

initial state consists of a single variable i and the goal of a single

variable g. If the task does not have this form, we would introduce i

and g as new variables and add a goal action (having the original goal

as precondition and adding g) and an init action (requiring i, deleting

i, and adding all variables from the original initial state), both with

cost 0. We also require that every action has a precondition (if it is

originally empty, we can add an artificial precondition).

The hLM-Cut computation works in rounds: based on the values

V max, each round computes a disjunctive action landmark, accounts

for its cost and adapts the task so that the result will be admissible:

Definition 1 (Round of LM-Cut for STRIPS) Each round of the

LM-Cut algorithm for STRIPS works as follows:

1. Compute V max for all variables. If V max(g) = 0 then terminate.

2. Define a precondition choice function pcf that maps each action

to one of its precondition variables with a maximal V max value.

3. Create the weighted, directed graph G = (V,E), where V = F

and E contains labeled edges for all actions a from the selected

precondition to each add effect: E = {(pcf(a), a, v) | a ∈ A, v ∈
add(a)}. Each edge has weight cost(a).
The goal zone Vg ⊆ V consists of all nodes from which one can

reach the goal variable g via edges with weight 0. The cut C con-

tains all edges (v, a, v′) such that v 6∈ Vg , v′ ∈ Vg and v can be

reached from i without traversing a node in Vg .

The landmark L consists of all actions that occur as a label in C.

4. Add the cost cmin of the cheapest action in L to the heuristic value

(which starts as 0).

5. Reduce the action costs of all actions in L by cmin.

Helmert and Domshlak [6] call the graph G a justification graph of

the current task because by the definition of the precondition choice

function and its construction, the hmax value of a fact p is the cost of

a cheapest (with respect to the edge weights) path from i to p. This is

relevant for the proof that hLM-Cut dominates hmax, so we will retain

this property in our adaption to conditional effects.

2 Strictly speaking, V max is not well-defined in the presence of 0-cost actions.
In this case, V max is the pointwise maximal function that satisfies the given
properties. A unique maximum always exists.

3 RUNNING EXAMPLE

f2

f1

f0

A

B

Figure 1: Running example.

Throughout the paper we use a running example (Figure 1),

borrowed from Haslum [4, Example 1]. It is based on a delete-

free variant of the Miconic domain,3 where passengers are trans-

ported between floors by an elevator. In this small example there

are three floors (f0, f1, f2) and two passengers (A and B). Passen-

ger A wants to go from f1 to f2 and passenger B from f2 to f1.

The elevator starts at f0. The possible actions are to stop at any

floor f which causes all passengers who start at f to board and

all boarded passengers with target f to disembark. This is imple-

mented by conditional effects: Each action stop-f has a conditional

effect board(p) = 〈∅, {boarded(p)}, ∅〉 for each person p originated

at f . The effect condition can stay empty because in the delete-

relaxed variant it is irrelevant whether we “re-board” a passenger

who has already been served. For each person who has f as destina-

tion floor, the stop-f action has a conditional effect disembark(p) =
〈{boarded(p)}, {served(p)}, ∅〉 that marks p as served if she was in

the cabin. Both actions, stop-f1 and stop-f2, have no preconditions

and a cost of 1.

An optimal plan for the example is 〈stop-f1, stop-f2, stop-f1〉. At

least one stop action must be used twice because the first application

of such an action can only trigger the effect causing the passenger to

board and not the one causing the other passenger to disembark.

4 LM-CUT FOR CONDITIONAL EFFECTS

We will now introduce a generic adaption of the LM-Cut algorithm

to STRIPSc tasks. As above, we assume that the input task has a

single initial variable i and a single goal atom g. Moreover, we re-

quire without loss of generality that every conditional effect in the

task only adds a single variable. If this is not the case, we can simply

break up the conditional effect accordingly.

Since we still want to compute a justification graph in every round

of the computation, we need to consider the effect conditions in the

(pre-) condition choice function. It is also necessary that the cut in

the graph distinguishes different conditional effects of an action.

Definition 2 (Generic Round of LM-Cut for STRIPSc) Each

round of the LM-Cut algorithm for STRIPSc works as follows:

1. Compute the V max values for all variables. If V max(g) = 0 then

terminate.

2. Define a condition choice function ccf that maps each effect to a

fact from the effect condition or its action’s precondition that has

a maximal V max value.

3. Create the justification graph G = (V,E), where V = F and E

contains edges for all conditional effects e from the selected con-

dition to the single add effect of e (labeled with e). Each edge has

weight cost(act(e)). The goal zone Vg and the cut C are defined

as in the standard STRIPS case. The landmark L consist of all

actions of which an effect occurs as a label in C.

3 Compared to the domain reported in our experiments, there are no move
actions and the stop action is delete-free, to get a simpler example.
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4. Add the cost cmin of the cheapest action in L to the heuristic value

(which starts as 0).

5. Adapt the task.

In our example, the generic LM-Cut algorithm would calculate a

V max value of 1 for each boarded(p) fact and a V max value of 2 for

each served(p) fact and the artificial goal fact g. The condition choice

function would select one served(p) fact arbitrarily. Let us assume it

selects served(A). The resulting justification graph is shown in Fig-

ure 2a (the continuation in Figures 2b and 2c belongs to a later ex-

ample). The only effect achieving served(A) is disembark(A), which

will be the only effect in the cut. It belongs to the action stop-f2, so

we have L = {stop-f2} and cmin = 1.

The open question here is how to adapt the task. The most obvious

way would be to apply the same strategy as in the STRIPS case and

to reduce the costs of all actions in L. We denote this instantiation of

the algorithm by hLM-Cut
basic .

With this strategy stop-f2 is free of cost after the first round in our

example. In the second round the V max value of both served(p) facts

is 1 and one is selected arbitrarily by the condition choice function.

The discovered landmark is either {board(A)} or {disembark(B)}
depending on this choice, but in both cases the cost of stop-f1 is re-

duced next. After this round both stop actions are free of cost, the

V max value of the goal becomes 0, and the LM-Cut algorithm termi-

nates with a heuristic value of 2. In this example, the hLM-Cut
basic estimate

is still as high as V max(g) but this is not guaranteed in general. Key-

der et al. [7] showed that hLM-Cut
basic does not dominate hmax with an

example task Π for which hLM-Cut
basic (Π) < hmax(Π).

They also considered a strategy where each conditional ef-

fect is treated separately and showed that this leads to an in-

admissible heuristic. With this strategy LM-Cut would run for 4
rounds in our example. It discovers the landmarks {disembark(A)},

{disembark(B)}, {board(A)}, and {board(B)} in an order that de-

pends on the condition choice function. The heuristic value of 4 is

inadmissible because increasing the heuristic value by 1 for each of

these landmarks ignores the fact that two effects can be achieved with

one action application. For example, board(B) and disembark(A)
can be achieved by stop-f2 if stop-f1 was executed before.

In the following sections, we will show how one can adapt the task

without sacrificing either admissibility or dominance over hmax.

5 CONTEXT SPLITTING

Before we present the adaption specifically for the LM-Cut heuristic,

we would like to introduce context splitting as a new general concept.

For this, we briefly consider the more general ADL formalism.

Actions behave differently if they are applied in different scenar-

ios (e. g., a conditional effect triggers only if the effect condition is

true). The core idea of context splitting is that we can include such

scenarios in the action preconditions, splitting up an action into sev-

eral ones with disjoint scenarios. An extreme case of this general idea

is the compilation from STRIPSc to STRIPS by Nebel [9]. For each

action, it introduces new actions for each possible subset of effects

and adds a corresponding condition to the action precondition.

However, such scenario information can also be useful for heuris-

tic computations: if we account for an action application in a heuristic

computation, we often know that some desired effects only trigger in

a certain scenario. If the action has other required effects that do not

trigger at the same time, we could account for its cost again for a

later application of the action.

In general, a context split is defined by the description of a sce-

nario. Such a description is given as a propositional formula over the

task variables, which we call the context. If we split an action with a

context, we introduce two new actions, one requiring the context to

be true, the other one requiring it to be false.

Definition 3 (Context splitting) A context is a propositional for-

mula. Context-splitting an action a with context ϕ means replacing

a with two new actions of the same cost: aϕ = 〈pre(a) ∧ ϕ, eff(a)〉
and a¬ϕ = 〈pre(a) ∧ ¬ϕ, eff(a)〉.

Context splitting is a task transformation that does not affect the

optimal goal distance of any state:

Theorem 1 Let Π be an ADL planning task with action set A. For

action a ∈ A and context ϕ, let aϕ and a¬ϕ be the two new actions

resulting from context-splitting a with ϕ. Let Π′ denote the task that

only differs from Π in its action set A′ = (A \ {a}) ∪ {aϕ, a¬ϕ}.

For all states s of Π (and Π′) it holds that h∗
Π(s) = h∗

Π′(s).

Proof: We can associate every plan π for s in Π with a plan π′ for s

in Π′ of the same cost and vice versa.

From π′ to π, we simply replace every occurrence of an action

aϕ or a¬ϕ with the original action a. This is possible because these

actions only differ in the precondition and pre(aϕ) |= pre(a) and

pre(a¬ϕ) |= pre(a).
From π to π′ we check for every occurrence of a if ϕ is true in

the state s′ in which action a is applied. If yes, we replace a with aϕ,

otherwise we replace it with a¬ϕ. These actions will be applicable

and have the same effect and cost as the original action a.

The theorem ensures that an admissible heuristic estimate for the

transformed task is also an admissible estimate for the original task.

6 RELAXED CONTEXT SPLITTING

The key idea of our adaption of the LM-Cut heuristic is to reduce

action costs only where necessary. After discovering the landmark

{disembark(A)} in our example we would like to reduce the cost of

stop-f2 whenever it is used in a way that this effect triggers. If we

stick to the original actions, however, we can only reduce the cost

of the whole action, i. e., also in situations where the effect does not

trigger because A has not boarded yet. Another way of looking at

this is that we can reduce the cost of the original actions at most

twice before all actions are free of cost, so the heuristic value can

be at most 2 when no actions are modified. This is where context

splitting comes into play.

The context for each action should capture all situations in which

the LM-Cut heuristic accounts for its cost. This is the case whenever

one of its effects occurs as a label in the cut C. So we need to formu-

late a context that covers all situations in which one of the effects in

the cut triggers. This leads to the natural definition of the context as

ϕa =
∨

(v,e,v′)∈C with act(e)=a

cond(e).

If we split all actions in the LM-Cut landmark L with their respec-

tive context, the set of actions {aϕa
| a ∈ L} will be a landmark

of the modified task. So we can admissibly count the landmark cost,

reduce the cost of all aϕa
, leave the cost of all a¬ϕa

unchanged, and

proceed.

However, this idea cannot be implemented directly because we

leave the STRIPSc formalism with the context splitting. To see this,

consider a context split of action a.
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The precondition of the first new action aϕa
is of the form

pre(a) ∧ (cond(e1) ∨ · · · ∨ cond(en)) for some conditional effects

e1, . . . , en ∈ eff(a). Since the precondition pre(a) and the effect

conditions are all conjunctions of atoms, we can break up the action

into n new STRIPSc actions ae
ϕa

= 〈pre(a) ∧ cond(e), eff(a)〉 for

e ∈ {e1, . . . , en}. Whenever a plan contains an action aϕa
, there

would also be a plan using an action ae
ϕa

instead and vice versa.

The problem arises from the second new action a¬ϕa
whose pre-

condition in general cannot be expressed as a negation-free formula.

So we cannot easily reformulate these actions in STRIPSc as we did

with the actions aϕa
.

As a solution, we propose relaxed context splitting which ignores

the condition ¬ϕa and simply preserves the original action:

Definition 4 (Relaxed Context Splitting) The relaxed context

splitting of an action a with context ϕ adds a new action

aϕ = 〈pre(a) ∧ ϕ, eff(a)〉 with cost c(a) to the task.

Like unrelaxed context splitting, relaxed context splitting pre-

serves the goal distance of states. It also preserves the value V max of

all variables: in general, adding actions to a task can only lead to a de-

crease of V max. However, in this case a decrease cannot happen: the

new actions have the same effects and costs as the original ones but

their precondition is a superset of the original precondition. There-

fore the cost Cmax of the effects of the new action cannot be lower

than the one of the original effects, so no variable can be achieved

more cheaply.

Unfortunately, with relaxed context splitting the set of actions

{aϕa
| a ∈ L} is not a landmark of the modified task because a

plan could contain action a ∈ L instead of aϕa
. So we cannot ob-

viously apply the cost adaption as proposed at the beginning of this

section. In the next section we will show that we still can define an

extension to LM-Cut based on relaxed context splitting that preserves

the desired properties of the heuristic.

7 LM-CUT WITH RELAXED CONTEXT
SPLITTING

The key insight of our proposed heuristic is that we can safely leave

the cost of all actions unchanged in each round of the LM-Cut com-

putation as long as we add new reduced-cost actions that “fit” the

context of the cut.

Definition 5 (LM-Cut heuristic with relaxed context splitting)

The LM-Cut heuristic with relaxed context splitting (hLM-Cut
context ) instan-

tiates the generic heuristic from Definition 2. In the task adaption

step, for every edge (v, e, v′) ∈ C it extends the task with an action

ae = 〈pre(a) ∪ cond(e), eff(a)〉 with cost(ae) = cost(a) − cmin,

where a = act(e).

In our example, we discover the landmark {disembark(A)} in

the first round (Figure 2a). Since there is only one effect in the

cut, the disjunction in the context collapses to a single condition

ϕstop-f2 = cond(disembark(A)) = boarded(A). With relaxed con-

text splitting we create the new action stop-f2
′ = stop-f2disembark(A)

with the additional precondition boarded(A) and the reduced cost 0.

In the next round (Figure 2b) we discover the landmark

{disembark(B)}, which is handled just like in the first round and

we add the action stop-f1
′ = stop-f1disembark(B) with the additional

precondition boarded(B) and the reduced cost 0.

In the final round (Figure 2c) the values V max of all boarded(p)
and served(p) facts and g are 1. The discovered landmark consists

i

boarded(A) (1)

boarded(B) (1)

served(A) (2)

served(B) (2)

g

board(A) (1)

board(B) (1)

disembark(A) (1)

disembark(B) (1)

(a) Round 1.

i

boarded(A) (1)

boarded(B) (1)

served(A) (1)

served(B) (2)

g

board(A) (1)

board(B) (1)

disembark(A) (1)

disembark(A)′ (0)

disembark(B) (1)

board(B)′ (0)

(b) Round 2.

i

boarded(A) (1)

boarded(B) (1)

served(A) (1)

served(B) (1)

g

board(A) (1)

board(B) (1)

disembark(A) (1)

disembark(A)′ (0)

disembark(B) (1)

disembark(B)′ (0)

board(B)′ (0)board(A)′ (0)

(c) Round 3.

Figure 2: Justification graphs in the LM-Cut rounds for hLM-Cut
context on the

example task. Action costs for effects and V max values for facts are

given in parentheses, edges in the cut are bold.

of a single board-effect. Which of the two is chosen depends on

the condition choice function, but we assume that board(A) is se-

lected. Since this effect has no condition, the context is ϕstop-f1 =
cond(board(A)) = ⊤ and the newly added action stop-f1

′′ is iden-

tical to stop-f1, except that it is free of cost.

With this new action, the V max value of all facts now is 0. In par-

ticular, boarded(B) can be reached from boarded(A) with action

stop-f2
′ without additional cost. The LM-Cut algorithm stops with a

perfect heuristic value of 3.

In the following, we will show that hLM-Cut
context is admissible and dom-

inates hmax.

Theorem 2 The LM-Cut heuristic with relaxed context splitting

(hLM-Cut
context ) is admissible.

Proof: We will show that the optimal delete-relaxation heuristic h+

dominates hLM-Cut
context . Since h+ is admissible, we can conclude that

hLM-Cut
context is also admissible.

If hmax(Π) = 0, the LM-Cut algorithm directly terminates with

hLM-Cut(Π) = 0, so there is nothing to show in this case. Other-

wise, let Π and Π′ be the (relaxed) tasks before and after a round of

hLM-Cut
context , respectively. We will show that h+(Π) ≥ cmin + h+(Π′).

The dominance of h+ then follows from an inductive application of

this argument.

Every atom (except i) of the task Π can only be made true by an

effect of an incoming edge in the justification graph and this effect

only triggers if the source of the edge has been true. So any plan of Π
must use all action effects of some path from i to g in the justification

graph and therefore also at least one effect from the cut.

Let π = 〈a1, . . . , an〉 be an optimal plan for Π and let ai be the

first action in this plan whose application triggers an effect e from

the cut. Π′ has an action a′
i = 〈pre(ai)∪ cond(e), eff(ai)〉 with cost

c(ai) − cmin. Since e triggers in π, pre(ai) ∪ cond(e) must be true
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after the application of 〈a1, . . . , ai−1〉. As ai and a′
i have the same

effect, π′ = 〈a1, . . . , ai−1, a
′
i, ai+1, . . . , an〉 is a plan for Π′ that

costs cmin less than π and therefore h+(Π′) ≤ h+(Π)− cmin.

The new heuristic is more informed than the maximum heuristic:

Theorem 3 The LM-Cut heuristic with relaxed context splitting

(hLM-Cut
context ) dominates hmax.

Proof: To increase clarity, in the following we denote the V max value

of a variable v in a task Π by V max
Π (v).

If hmax(Π) = 0 there is nothing to show. If hmax(Π) > 0, we again

denote the original (relaxed) task by Π and the transformed one after

one LM-Cut round by Π′. We show that hmax(Π) ≤ cmin +hmax(Π′).
An inductive application of this argument proves the theorem.

Let A and A′ denote the action sets of Π and Π′, respectively.

Consider the standard algorithm for computing V max: it uses a prior-

ity queue, initially containing the initial facts with a priority 0. The

algorithm successively pops a fact with minimal priority from the

queue and assigns it the priority as value V max if the fact has not

already been popped before. Whenever all relevant conditions of an

effect e have been popped, the algorithm enqueues its added fact f

with priority Cmax(e).
Let f ′ ∈ F be the first fact which is popped during the V max

Π′

computation that gets assigned a value V max
Π′ (f ′) < V max

Π (f ′), if such

a fact exists. If g is popped before f ′ or no such fact f ′ exists, then

hmax(Π) = V max
Π (g) = V max

Π′ (g) = hmax(Π′) and there is nothing

to show. In the following, we assume that g is popped after f ′ and

hence hmax(Π′) = V max
Π′ (g) ≥ V max

Π′ (f ′).
Let e′ be the effect due to which f ′ had been enqueued. Then e′

must be an effect of some newly added action a′ ∈ A′ \ A: since f ′

is the first value with a differing V max, the change cannot be due to

“cheaper” condition costs.

The action a′ must have been added because an effect e (of an ac-

tion a) occurred in the cut. Therefore, a′ = 〈pre(a)∪cond(e), eff(a)〉
with cost cost(a′) = cost(a)−cmin for some action a of Π and effect

e of a. Let f be the fact added by e.

Since e was in the cut, f must have been in the goal zone and there-

fore it holds that V max
Π (pre(a) ∪ cond(e)) + cost(a) ≥ V max

Π (f) ≥
V max
Π (g) = hmax(Π) (*).

We can bound hmax(Π) as follows:

h
max(Π) ≤ V

max
Π (pre(a) ∪ cond(e)) + cost(a) (1)

= V
max
Π′ (pre(a) ∪ cond(e)) + cost(a) (2)

≤ V
max
Π′ (pre(a) ∪ cond(e) ∪ cond(e′)) + cost(a) (3)

= V
max
Π′ (f ′) + cmin (4)

Statement (1) uses the previously derived bound (*). Equation (2)

holds as pre(a) ∪ cond(e) is the precondition of a′ and hence all

facts in this set must have been popped before f ′ was enqueued by

effect e′. Since f ′ is the first popped fact for which V max
Π 6= V max

Π′

it follows for all p ∈ pre(a) ∪ cond(e) that V max
Π (p) = V max

Π′ (p).
Inequality (3) is due to V max(P ) ≤ V max(P ′) if P ⊆ P ′. The last

line exploits that effect e′ of action a′ establishes the value V max
Π′ (f ′)

and that cost(a′) = cost(a)− cmin.

Overall we have shown that hmax(Π) ≤ V max
Π′ (f ′)+cmin. Since we

know from above that hmax(Π′) ≥ V max
Π′ (f ′), it holds that hmax(Π) ≤

hmax(Π′) + cmin.

We have seen that hLM-Cut
context preserves the desired properties of the

LM-Cut heuristic for STRIPS. In the next section we will evaluate

whether it also preserves its good performance.

8 EXPERIMENTAL EVALUATION

For the evaluation we use the same sets of domains T0 and FSC as

Haslum [4]. The T0 domains are generated by a compilation from

conformant to classical planning by Palacios and Geffner [10]; the

set FSC has been generated by the finite-state controller synthesis

compilation by Bonet et al. [2]. In addition, we include tasks from

the briefcase world from the IPP benchmark collection [8]. We also

use the Miconic Simple-ADL version from the benchmark set of the

International Planning Competition (IPC-2000) because it has con-

ditional effects but no derived predicates after grounding with Fast

Downward.

We compare hmax and three variants of the LM-Cut heuristic:

• our version hLM-Cut
context using relaxed context splitting,

• the version hLM-Cut
basic mentioned by Keyder et al. [7] that reduces the

action cost of every action with an effect in the cut and does not

dominate hmax, and

• the standard LM-Cut version hLM-Cut
standard [6], which does not support

conditional effects. For this variant, we transform the tasks with

the exponential compilation by Nebel [9].

All heuristics were implemented in the Fast Downward planning

system [5], which separates the preprocessing phase from the actual

search phase. For each phase, we set a time limit of 30 minutes and a

memory limit of 2 GB per task. The experiments were conducted on

Intel Xeon E5-2660 processors (2.2 GHz).

We first compare the two LM-Cut versions that support condi-

tional effects directly.
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Figure 3: Number of expansions (excluding the ones on the last f -

layer) of hLM-Cut
basic and hLM-Cut

context for the commonly solved tasks.

Figure 3 plots the number of A∗ expansions of hLM-Cut
basic vs. those

of hLM-Cut
context for each task. As expected, context splitting almost always

gives equal or better guidance than the basic approach. The only ex-

ception is the t0-grid-dispose domain in which hLM-Cut
basic is superior.

To get a clearer idea of the difference of the heuristic estimates,

we compare the heuristic values of the initial states in Figure 4. The

very high estimates in the t0-grid-dispose domain render the results

of the other tasks almost indistinguishable. For this reason, Figure 4b

shows the same results but only includes tasks where both heuristic

estimates are below 50. Overall, we note that the estimates of hLM-Cut
context

are much better than those of hLM-Cut
basic and in the t0-uts domain they

are always at least twice as high.

Since the results of the t0-grid-dispose domain stick out nega-

tively, we had a closer look at this domain to understand the dif-

ferent performance. A deeper analysis of one task reveals that the

variant with relaxed context splitting makes unfavorable decisions

when selecting one of several candidates with maximal V max for
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Figure 4: Heuristic values of the initial state for hLM-Cut
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context .

the condition choice function. As a result, effects that achieve dif-

ferent sub-goals end up in one cut, and they all become cheaper in

the next round. A similar effect can also be observed with hLM-Cut
standard in

the STRIPS freecell domain.

Table 1: Coverage results. Best results in each domain in bold text.

h
LM-Cut
standard

hmax h
LM-Cut
basic

h
LM-Cut
context

briefcaseworld (9,50) 6 7 9 8
fsc-grid-a1 (0,16) - 2 2 2

fsc-grid-a2 (0,2) - 1 1 1

fsc-grid-r (0,16) - 15 15 13
fsc-hall (0,2) - 1 1 1

gedp-ds2ndp (0,24) - 18 12 12
miconic(149,150) 78 70 141 141

t0-coins (20,30) 14 10 14 14

t0-comm (25,25) 5 4 5 5

t0-grid-dispose (0,15) - 0 3 2
t0-grid-lookandgrab (0,1) - 1 1 0
t0-sortnet (0,5) - 2 2 2

t0-sortnet-alt (1,6) 1 4 4 4

t0-uts (6,29) 5 6 8 10

Sum (210,371) 109 141 218 215

Table 1 shows the number of solved instances for all heuristics

(omitting domains where no task was solved by any heuristic). Note

that hLM-Cut
standard cannot be directly compared to the other heuristics based

on these numbers because it requires a compilation of the task that

removes conditional effects. The small numbers behind the domain

names state for how many tasks the Fast Downward preprocessing

phase completed with and without the compilation. It is apparent

that–at least with the exponential transformation–compiling away

conditional effects and using a standard heuristic is not competitive.

Except for the Miconic domain, which dominates the summary re-

sults with its large number of tasks, the three remaining heuristics are

surprisingly close to each other and each one is better than the others

in some domain. While hmax performs worst as expected, the better

guidance of hLM-Cut
context does not translate to higher coverage than hLM-Cut

basic

because it does not offset the additional time for the heuristic evalua-

tions. However, in the conclusion we will explain how this might be

resolvable in future work.

9 CONCLUSIONS AND FUTURE WORK

We presented an extension of the LM-Cut heuristic to conditional

effects that is admissible and dominates the maximum heuristic. For

this purpose we introduced context splitting as a new general concept

of which we belief that it will prove useful also for other applications.

One obstacle for the new heuristic is that it adds many new ac-

tions in every round of its computation, which causes computational

overhead in the following rounds. However, we hope that we can

resolve this to some extent in future work: in certain respects, the

computation of hLM-Cut
context is based on the individual conditional effects

plus their action precondition. From this perspective, the context split

adds many “equivalent” effects in every round. If it is possible to

represent them only once (similar to the way it is done in an effi-

cient hmax implementation), we expect a significant speed-up of the

computation.

To avoid unfavorable selections of the condition choice function,

it might be beneficial to deploy additional strategies, such as prefer-

ring conditions that were not added by a context split. As this paper

focuses on the theoretical properties of the heuristics, we leave this

topic for future work.
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