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Abstract. We study a fragment of Intuitionistic Linear Logic com-
bined with non-normal modal operators. Focusing on the minimal
modal logic, we provide a Gentzen-style sequent calculus as well as
a semantics in terms of Kripke resource models. We show that the
proof theory is sound and complete with respect to the class of mini-
mal Kripke resource models. We also show that the sequent calculus
allows cut elimination. We put the logical framework to use by in-
stantiating it as a logic of agency. In particular, we apply it to reason
about the resource-sensitive use of artefacts.

1 Introduction

We propose a novel modal extension of a fragment of intuitionistic
linear logic ILL [12, 30]. Linear logic is a resource-sensitive logic
that allows for modeling the constructive content of deductions in
logic. In particular, linear logic has been applied as a logic for rep-
resenting computations [12, 1]. Moreover, intuitionistic fragments of
linear logic have been used to model problems in knowledge repre-
sentation and multiagent systems, for example in [19], [27], [14].

We shall extend ILL by adding non-normal modalities. Those are
the modalities with a logic weaker than K, and cannot be evaluated
over a Kripke semantics. The extension of ILL with normal modali-
ties has already been investigated for example in [9, 16].

Neighborhood semantics were introduced independently by Scott
and Montague. Early results were offered by Segerberg. Chellas built
upon and gave a textbook presentation in [7]. Neighborhood seman-
tics allow for defining non-normal modalities that are required to
model a number of application domains. The significance of non-
normal modal logics and their semantics in modern developments in
logics of agents has been emphasized before [2]. Indeed many logics
of agents are non-normal: chiefly logics of coalitional power [26],
but also epistemic logics without omniscience [33, 24], or logics of
agency [13], etc.

There are two main families of modal logics of action. Probably
the most prominent in computer science is the one of dynamic logics.
The second family has an older lineage, but the modern blooming
stems from the work von Wright and others. They are the logics of
agency, where action is seen as a modal notion. They do not talk
about action proper but instead about what agents bring about. For
instance, the formula DoesaA ∧Doesa¬DoesaB captures the fact
that agent a does that A is the case, and a refrains from doing (a does
that a does not do that) B is the case. Kanger’s influence led to the
logics of bringing-it-about. A thorough philosophical analysis is due
to Elgesem [10]. Governatori and Rotolo [13] clarified the semantics
and provided a complete axiomatization. An algorithm to solve the
satisfiability problem of the corresponding logic can be found in [31].
It gained much interest in the study of sociality, e.g.: parliamentary
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powers [17], legal reasoning [23], social influence [28], institutional
agency [5], etc.

Our theoretical contributions are the following. A Kripke-like se-
mantics allows the evaluation of connectives of linear logic. We en-
rich it with neighborhood functions to capture non-normal modali-
ties. We obtain what we simply coin modal Kripke resource models.
We define and study a non-normal modal logic whose propositional
part is based on intuitionistic linear logic. Next, we introduce a se-
quent calculus, in order to investigate properties of reasoning about
modal resource-bounded propositions. Moreover, we show that the
sequent calculus allows cut elimination that provides a normal form
for proofs. In the last sections, we motivate and discuss a number of
applications of our system to represent and reasoning about artefacts.

We shall instantiate our framework with a collection of modalities
Ei where the formula EiA captures the fact that the acting entity i
brings about the action A. Our application lies in the reasoning about
artefact’s function and tool use. Artefacts are special kind of entities
that are characterized by the fact that they are designed by some other
agent in order to achieve a purpose in a particular environment. An
important aspect of the modeling of artefacts is their interaction with
the environment and with the agents that use the artefact to achieve
a specific goal [11, 4, 15, 20]. Briefly, we can view an artefact as
an object that in presence of a number of preconditions c1, . . . , cn
produces the outcome o. In this work, we want to represent the func-
tion of artefacts by means of logical formulas and to view the correct
behavior of an artefact by means of a form of reasoning.

Imagine we represent naı̈vely the behavior of a screwdriver as
a classical formula that states that if there is a screw S, then we
can tighten it T . We simply describe the behavior of the artefact
as a material implication S → T . In classical logic, we can infer
that by means of a single screwdriver we can tighten two screws:
S, S, S → T � T ∧ T . Worse, we do not even need to have two
screws to begin with: S, S → T � T ∧ T . Thus, without specifying
all the relevant constraints on the environment (e.g. that a screwdriver
can handle one screw at the time) we end up with unintuitive results.
Moreover, often we need to specify the relationship between the arte-
fact and the agents: for example, there are artefacts that can be used
by one agent at the time. Since a crucial point in modeling artefacts is
their interaction with the environment and the users, either we care-
fully list all the relevant conditions, or we need to change the logical
framework that we use to represent the artefact’s behavior.

In this paper, we propose to pursue this second strategy. Our mo-
tivation is that, instead of specifying for each artefact the precondi-
tion of its application (e.g. that there is only one screw that a screw
driver is supposed to operate on), the logical language that encodes
the behavior of the artefact already takes care of preventing unintu-
itive outcomes. Thus, the formulas of ILL shall represent actions of
agents and functions of artefacts, and the non-normal modality shall
specify which agent or artefact brings about which process.
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Our decision for using an intuitionistic version of linear logic is
that in intuitionistic sequent calculus, every sequent has a single “out-
put” formula. This feature matches our modeling of the use of arte-
facts as input-output processes. Thus, we can also view the composi-
tion of a number of behaviors of artefacts as a complex input-output
process.

2 A fragment of intuitionistic linear logic

The propositional language that we are going to use, LILL, is defined
by the BNF

A ::= 1 | p | A⊗A | A&A | A � A

where p ∈ Atom. The resource-sensitive nature of linear logic is due
to the lack of structural rules in the sequent calculus. ILL rejects the
global validity of weakening (W), that amounts to a monotonicity of
the entailment, and contraction (C), that is responsible for arbitrary
duplications of formulas, e.g. A → A ∧ A is a tautology classical
logic.

Γ � A (W)
Γ, B � A

Γ, B,B � A
(C)

Γ, B � A

Exchange still holds, thus contexts of formulas Γ in sequent calcu-
lus are multisets. By dropping weakening and contraction, we are led
to define two non-equivalent conjunctions with different behavior:
the multiplicative conjunction ⊗ (tensor) and the additive conjunc-
tion & (with). The intuitive meaning of ⊗ is that an action of type
A⊗B can be performed by summing the resources that are relevant
to perform A and to perform B. The lack of weakening entails that
A⊗B no longer implies A, namely the resources that are relevant to
perform A ⊗ B may not be relevant to perform just A. The lack of
contraction entails that A � A⊗A is no longer valid. The additive
conjunction A & B expresses an option, the choice to perform A or
B. Accordingly A&B � A holds in linear logic, the resources that
enable the choice between A and B are relevant also to make A or to
make B. The linear implication A � B expresses a form of causal-
ity, for example “If I strike a match, I can light the room” the action
of striking that match is consumed, in the sense that it is no longer
available after the room is lighted. The unit 1 is the neutral element
for ⊗ and can represent model a null action.

For better readability, we have labeled our fragment intuitionis-
tic linear logic ILL although the full fragment of intuitionistic linear
logic includes also an additive disjunction ⊕ and the exponential !A.
Exponentials in linear logic allow for defining a local form of struc-
tural rules. However, exponentials introduce very high complexity in
the calculus, for instance even the multiplicative exponential frag-
ment (!, ⊗, �) is at least EXPSPACE-hard and an upper bound is
not known [21]. We will not introduce an additive disjunction. One
reason for that is that the Kripke resource model cannot handle the
additive fragment faithfully. In particular, the &, ⊕ fragment of lin-
ear logic is not complete for the Kripke semantics:2 We have decided
to exploit Kripke resource frames as far as possible, as they allow for
a simple semantics for an interesting fragment of linear logic and for
a natural modal extension. Moreover, Kripke resource frames pro-
vides model for the logic of bunched implication (BI)[25, 29], for
that reason, our modal extension can be adapted to BI. An intuitionis-
tic negation can be added to our language. We simply define a desig-
nated atom ⊥ ∈ Atom and define negation by means of implication
∼ A ≡ A � ⊥ [18]. There is no specific rule for negation.

2 A more crude way to put is that the Kripke semantics is inadequate.

Given a multiset of formulas, it will be useful to combine them
into a unique formula. We adopt the following notation: ∅∗ = 1, and
Δ∗ = A1 ⊗ . . .⊗Ak when Δ = {A1, . . . , Ak}.

3 Models of ILL

We introduce a Kripke-like class of models for ILL that is basically
due to Urquhart [32]. A Kripke resource frame is a structure M =
(M, e, ◦,≥), where (M, e, ◦) is a commutative monoid with neutral
element e, and ≥ is a pre-order on M . The frame has to satisfy the
condition of bifunctoriality: if m ≥ n, and m′ ≥ n′, then m ◦m′ ≥
n ◦ n′. To obtain a Kripke resource model, a valuation on atoms V :
Atom → P(M) is added. It has to satisfy the heredity condition: if
m ∈ V (p) and n ≥ m then n ∈ V (p). The truth conditions of the
formulas of LILL in the Kripke resource model M = (M, e, ◦,≥, V )
are the following:

m |=M p iff m ∈ V (p).
m |=M 1 iff m ≥ e.
m |=M A⊗B iff there exist m1 and m2 such that m ≥ m1 ◦m2

and m1 |=M A and m2 |=M B.
m |=M A&B iff m |=M A and m |=M B.
m |=M A � B iff for all n ∈ M , if n |=M A, then n◦m |=M B.

Denote ||A||M the extension of A in M, i.e. the set of worlds of
M in which A holds. A formula A is true in a model M if e |=M
A.3 A formula A is valid in Kripke resource frames, noted |= A, iff
it is true in every model.

With |=M now defined, observe that heredity can be shown to
extend naturally to every formula, in the sense that:

Proposition 1. For every formula A, if m |= A and m′ ≥ m, then
m′ |= A.

4 Modal Kripke resource models

We now design a version of ILL with a minimal modality � and
obtain MILL. The language of MILL, LMILL, then becomes

A ::= 1 | p | A⊗A | A&A | A � A | �A

where p ∈ Atom.4

To give a meaning to the new modality, we define a neighborhood
semantics on top of the Kripke resource frame. A neighborhood func-
tion is a mapping N : M → P(P(M)) that associates a world m
with a set of sets of worlds. (See [7].) We define:

m |= �A iff ||A|| ∈ N(m)

This is not enough, though. It is possible that m |= �A, yet m′ �|=
�A for some m′ ≥ m. That is, Proposition 1 does not hold with the
simple extension of |= for LMILL. (One disastrous consequence is that
the resulting logic does not satisfy the modus ponens or the cut rule.)
We could define the clause concerning the modality alternatively as:
m |= �A iff there is n ∈ M , such that m ≥ n and ||A|| ∈ N(n).
However, this is bothersome because this is not how a non-normal
modality is traditionally defined [7].

3 When the context is clear we will write ||A|| instead of ||A||M, and m |=
A instead of m |=M A.

4 Note that we are working with a ‘necessity’ modality only. We do not deal
with a ‘possibility’ operator. In intuitionistic logics, they are not dual, there-
fore they are not interdefinable. We leave a discussion of their logical rela-
tions for future work. For what is worth, we will not feel the need of it for
our application domain of agency.
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Instead, we will require our neighborhood function to satisfy the
condition that if some set X ⊆ M is in the neighborhood of a world,
then X is also in the neighborhood of all “greater” worlds.5 Formally,
our modal linear logic is evaluated over the following models:

Definition 1. A modal Kripke resource model is a structure M =
(M, e, ◦,≥, N, V ) such that:

• (M, e, ◦,≥) is a Kripke resource frame;
• N is a neighborhood function such that:

if X ∈ N(m) and n ≥ m then X ∈ N(n) (1)

It is readily checked that Proposition 1 is true as well for LMILL

over modal Kripke resource models for modal formulas.

5 Sequent calculus MILL and completeness

In this section, we introduce the sequent calculus for our logic. A
sequent is a statement Γ � A where Γ is a finite multiset of occur-
rences of formulas of ILL and A is a formula. The fact that we allow
for a single formula in the conclusions of the sequent corresponds
to the fact that we are working with the intuitionistic version of the
calculus [12].

ax
A � A

Γ, A � C Γ′ � A
cut

Γ,Γ′ � C

Γ, A,B � C ⊗L
Γ, A⊗B � C

Γ � A Γ′ � B ⊗R
Γ,Γ′ � A⊗B

Γ � A Γ′, B � C
�L

Γ′,Γ, A � B � C

Γ, A � B
�R

Γ � A � B

Γ, A,Γ′ � C
&L

Γ, A&B,Γ′ � C

Γ, B,Γ′ � C
&L

Γ, A&B,Γ′ � C

Γ � A Γ � B
&R

Γ � A&B
Γ � C

1L
Γ, 1 � C

1R� 1

Table 1. Sequent calculus MILL

Since in a sequent Γ � A we identify Γ to a multiset of formulas,
the exchange rule—the reshuffling of Γ—is implicit.

A sequent Γ � A where Γ = A1, . . . , An is valid in a modal
Kripke resource frame iff the formula A1 ⊗ . . .⊗An � A is valid,
namely |= Γ∗ � A. The calculus of ILL presented above is sound
and complete wrt. the class of Kripke resource models [32].

We obtain the sequent calculus for our minimal modal logic MILL
by extending the language of ILL with modal formulas and by adding
a new rule �(re).

A � B B � A
�(re)

�A � �B

Crucially, the modal extension does not affect cut elimination.

Theorem 2. Cut elimination holds for MILL.

Proof. (Sketch) Cut elimination holds for linear logic [12]. The
proof for MILL largely adapts the proof for linear logic [30]. By rea-
soning by induction on the length of the proof, we need to show that

5 An analogous yet less transparent condition was used in [9] for a normal
modality.

we can reduce the depth of cuts and we need to show that we can
reduce cuts on complex formulas to cuts on sub formulas and then
eliminate them by replacing them with axioms.
For example, take the case in which �A is the cut formula and is
principal in both premises (i.e. it has been introduced by �(re)):

B � C C � B
�(re)

�B � �C
C � D D � C

�(re)
�C � �D cut

�B � �D

It is reduced by replacing the cut on �C by less complex cuts on C.

B � C C � D cut
B � D

D � C C � B cut
D � B

�(re)
�B � �D

This reduction extends to the case where �A is the non-principal
cut formula.

By inspecting the rules others than cut, it is easy to see that cut
elimination entails the subformula property, namely if Γ � A is
derivable, then there is a derivation containing subformulas of Γ and
A only. The decidability remains to be established. We can show that
the proof-search for MILL is no more costly than the proof-search for
propositional intuitionistic multiplicative additive linear logic [22].

Theorem 3. Proof search complexity for MILL is in PSPACE.

Proof. (Sketch) The proof adapts the argument in [22]. By cut elim-
ination, Theorem 2, for every provable sequent in MILL there is a
cut-free proof with same conclusion. For every rule in MILL other
than (cut), the premises have a strictly lower complexity wrt. the con-
clusion. Hence, for every provable sequent, there is a proof whose
branches have a depth at most linear in the size of the sequent. The
size of a branch is at most quadratic in the size of the conclusion. And
it contains only subformulas of the conclusion sequent because of the
subformula property. This means that one can non-deterministically
guess such a proof, and check each branch one by one using only a
polynomial space. Proof search is then in NPSPACE = PSPACE.

We sketch the proof of soundness and completeness of MILL wrt.
the class of modal Kripke resource frames.

Theorem 4. |= Γ∗ � A iff Γ � A.

The direction of soundness is established by proving by induction
that sequents rules preserve validity. We only give the proof for the
cases that differ from the proof of soundness for ILL, since soundness
for ILL wrt Kripke resource frames has been established in [16].
Soundness of �(re). We show that � preserves validity, namely, if
premises are valid, then the conclusion is valid: If e |= A � B
and e |= B � A, then e |= �A � �B. Our assumptions imply
that, for all x, if x |= A, then x |= B, and if x |= B then x |= A.
Thus, ||A|| = ||B||. We need to show that for all x, if x |= �A,
then x |= �B. By definition, x |= �A iff ||A|| ∈ N(x). Thus, since
||A|| = ||B||, we have that ||B|| ∈ N(x), that means x |= �B.

The proof of completeness can be summarized as follow. We build
a canonical model Mc (Definition 2). In particular, the set Mc of
states consists in the set of finite multisets of formulas, and the neu-
tral element ec is the empty multiset. We first need to show that it is
indeed a modal Kripke resource model (Lemma 5). Second we need
to show a correspondence, the “Truth Lemma”, between � and truth
in Mc. Precisely we show that for a formula A and a multiset of for-
mulas Γ ∈ Mc, it is the case that Γ satisfies A iff Γ � A is provable
in the calculus (Lemma 6). Finally, to show completeness, assume
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that it is not the case that � Γ∗ � A. By the Truth Lemma, it means
that in the canonical model Γ∗ � A is not satisfied at ec. So Mc

does not satisfy Γ∗ � A. So it is not the case that |= Γ∗ � A.
In the following, � is the multiset union. Also, | A |c= {Γ | Γ �

A}.

Definition 2. Let Mc = (Mc, ec, oc,≥c, Nc, V c) such that:

• Mc = {Γ | Γ is a finite multiset of formulas};
• Γ ◦c Δ = Γ �Δ;
• ec = ∅;
• Γ ≥c Δ iff Γ � Δ∗;
• Γ ∈ V c(p) iff Γ � p;
• Nc(Γ) = {| A |c| Γ � �A}.

Lemma 5. Mc is a modal Kripke resource model.

Proof. 1. (Mc, ec, oc,≥c) is the “right type” of ordered monoid:
(i) (Mc, ec, ◦c) is a commutative monoid with neutral element ec,
and (ii) ≥c is a pre-order on Mc. Finally, (iii) if Γ ≥c Γ′ and Δ ≥c

Δ′ then Γ ◦c Δ ≥c Γ′ ◦c Δ′.
For (i), commutativity and neutrality follows from the definition

of ◦c as the multiset union, and the neutrality of ec follows from it
being the empty multiset.

For (ii), ≥c is reflexive because {A1, . . . , An} � {A1, . . . , An}∗
can be proved from the axioms (ax) Ak � Ak, 1 ≤ k ≤ n, and
by applying ⊗R n − 1 times. The key rule to establish that ≥c is
transitive is cut.

For (iii), assume Γ ≥c Γ′ and Δ ≥c Δ′, that is, Γ � (Γ′)∗ and
Δ � (Δ′)∗. By ⊗R we have Γ,Δ � (Γ′)∗ ⊗ (Δ′)∗. By applying
the definitions we end up with Γ�Δ � (Γ′ �Δ′)∗ and the expected
result follows.
2. V c is a valuation function and satisfies heredity: if Γ ∈ V (p) and
Δ ≥c Γ then Δ ∈ V (p). To see this, suppose Γ � p and Δ � Γ∗.
By applying ⊗L enough times, we have Γ∗ � p. By cut, we obtain
Δ � p.
3. Nc is well-defined: Suppose that | A |c=| B |c. We need to show
that | A |c∈ Nc(Γ) iff | B |c∈ Nc(Γ).

From | A |c=| B |c, we have Γ � A ⇒ Γ � B. In particular, we
have A � A ⇒ A � B. Hence, A � B is provable (by rule (ax)).
We show symmetrically that B � A is provable.

From A � B and B � A, we have by rule �(re) that �A � �B is
provable, and also that �B � �A is provable.

Now suppose that Γ � �A. Since �A � �B is provable, we
obtain by cut that Γ � �B is provable. Symmetrically, suppose that
Γ � �B. Since �B � �A is provable, we obtain by cut that Γ �
�A is provable.

Hence, we have that Γ � �A iff Γ � �B. By definition of Nc, it
means that | A |c∈ Nc(Γ) iff | B |c∈ Nc(Γ).
4. If X ∈ Nc(Γ) and Δ ≥c Γ then X ∈ Nc(Δ). To see that this
is the case, the hypotheses are equivalent to Γ � �A for some A
such that | A |c= X , and Δ � Γ∗. By repeatedly applying ⊗L to
obtain Γ∗ � �A and by using cut, we infer that Δ � �A. Which is
equivalent to the statement that X ∈ Nc(Δ).

The following can be proved with a routine induction on the com-
plexity of A.

Lemma 6. Let us then note |=c the truth relation in Mc. We have
Γ |=c A iff Γ � A.

6 A resource-sensitive logic of agency

We present the (non-normal modal) logic of agency of bringing-it-
about [10, 13], and propose a version of it in linear logic coined

Linear BIAT. Then, we illustrate the logic by representing a few ac-
tions of agents, functions of artefacts, and their interaction. We shall
emphasize how these interactions depend on resources by means of
proof search in Linear BIAT. We specialize our minimal modality
to a bringing-it-about modality [10, 13]. For each agent a in a set
A, we define a modality Ea, and EaA specifies that agent a ∈ A
brings about A. As previously, to interpret them in a modal Kripke re-
source frame, we take one neighborhood function Na for each agent
a that obeys Condition (1) in Definition 1. We have m |= EaA iff
||A|| ∈ Na(m).

The four following principles typically constitute the core of logics
of agency [28, 10, 3]:

1. If something is brought about, then this something holds.
2. It is not possible to bring about a tautology.
3. If an agent brings about two things concomitantly then the agent

also brings about the conjunction of these two things.
4. If two statements are equivalent, then bringing about one is equiv-

alent to bringing about the other.

Item 1 is a principle of success. It corresponds to the axiom T:
EiA → A. Item 2 has been open to some debate, although Chel-
las is essentially the only antagonist. (See [6] and [8].) It corre-
sponds to the axiom ¬Ei� (notaut). Item 3 corresponds to the axiom:
EiA ∧ EiB → Ei(A ∧B). That is, co-temporality is tacitly presup-
posed. Item 4 confers to the concept of bringing about the quality
of being a modality, effectively obeying the rule of equivalents: if
� A ↔ B then � EiA ↔ EiB. We capture the four principles,
adapted to the resource-sensitive framework, by means of rules in
the sequent calculus, cf. Table 2

We already know that the logic MILL satisfies the rule of equiv-
alents for Ea: from A � B and B � A we infer EaA � EaB, so
principle 4 is fine.

Because of the difference between the unities in LL and in clas-
sical logic (i.e. in LL all the tautologies are not equally provable),
principle 2 must be changed into an inference rule (∼ nec): if � A,
then EaA � ⊥. So, if a formula is a theorem, an agent that brings it
about implies the contradiction6.

Principle 1 is captured by Ea(refl) that entails the linear version of
T: EaA � A. In our interpretation, it means that if an agent brings
about A, then A affects the environment.

The principle of BIAT for combining actions (Item 3 in the list)
is the interesting bit here: it can be interpreted in linear logic in two
ways, namely, in a multiplicative and in an additive way. Both ver-
sion can be easily handled from a technical point of view, however
we focus here on the multiplicative interpretation of principle 3, and
we leave a discussion of the additive for future work. The additive
combination would mean that if there is a choice for agent a between
bringing about A and bringing about B, then agent a can bring about
a choice between A and B. Ea⊗ means that if an agent a brings about
action A and brings about action B then a brings about both actions
A ⊗ B. Moreover, in order to bring about A ⊗ B, the sum of the
resources for A and the resources for B is required. The following
conditions on modal Kripke resource frames are now required.

(∼ nec) requires:

if (X ∈ Na(w)) and (e ∈ X) then (w ∈ V (⊥)) (2)

(Ea(refl)) requires:

if X ∈ Na(w) then w ∈ X (3)

6 This amounts to negating EaA, according to intuitionitstic negation.
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Let X ◦ Y = {x ◦ y | x ∈ X and y ∈ Y }, the condition corre-
sponding to the multiplicative version of action combination (Ea⊗)
requires that the upper closure of X ◦ Y , denote it by (X ◦ Y )↑, is
in Na(x ◦ y):

if X ∈ Na(x) and Y ∈ Na(y) , then (X ◦ Y )↑ ∈ Na(x ◦ y) (4)

Theorem 7. Linear BIAT is sound and complete wrt. the class of
Kripke modal frames that satisfy (2), (3), and (4).

Proof. (Sketch) We only consider the case of Condition (2) and rule
(∼nec). (∼nec) is sound. Assume that for every model, e |= A. We
need to show that e |= EaA � ⊥. That is. for every x, if x |= EaA,
then x models ⊥. If x |= EaA, then by definition, ||A|| ∈ Na(x).
Since A is a theorem, e ∈ ||A||, thus by Condition 2, x ∈ V (⊥), so
x |= ⊥. For completeness, it suffices to adapt our canonical model
construction. Build the canonical model for Linear BIAT as in Def 2
(we have now more valid sequents). Now suppose (1) X ∈ Nc(Γ),
and (2) ec ∈ X . By definition of Nc and of |.|c, there is A, s.t. |A|c =
X , (1) Γ � EaA and (2) � A. From (2), and (∼nec): EaA � ⊥. From
(1), and previous, we obtain Γ � ⊥ using (cut). By definition of V c,
Γ ∈ V c(⊥).

A � B B � A
Ea(re)

EaA � EaB
� A ∼nec

EaA � ⊥
Γ, A � B

Ea(refl)
Γ,EaA � B

Γ � EaA Δ � EaB
Ea⊗

Γ,Δ � Ea(A⊗B)

Table 2. Linear BIAT

Behavior of artefacts There is a striking similarity between func-
tions of artefacts as displayed behavior and the meaning of the propo-
sitions A that are purposefully brought about. Artefacts are not living
things but have a purpose, attributed by a designer or a user [4, 20].
If A is a function of an artefact t, then one can represent t’s behavior
as EtA in a conceptually consistent manner. With linear logic, we are
equipped with a formalism to represent and reason about processes
and resources. We represent the function of an artefact as a formula
of Linear BIAT. With a resource consumption and production reading
of linear formulas, this view of artefact functions has an immediate
appeal.

At an abstract level, an artefact can be seen as an agent. It takes ac-
tions in a reactive manner. When t is an artefact, and EtA is deemed
true, the formula A is a realized function of t. Thus, the formula A
describes a behavior of t. Clearly, functions do not have a unique for-
mulation. The functions (A ⊗ B) � C, and A � (B � C) are
provably equivalent. However, the rule Ea(re) ensures that an agent
bringing about a function is provably equivalent to this agent bring-
ing about any of its equivalent forms.

Take a very simple example. We can represent the behavior of a
screwdriver s as an implication that states that if there is a screw
(formula S) and some agent brings about the right force (F ), then the
screw gets tighten (T ): Es(S ⊗ F � T ). Suppose the environment
provides S and an agent i is providing the right force EiF , we can
show that the goal T can be achieved by means of the following proof
in Linear BIAT.

S � S
F � F

Ei(refl)
EiF � F ⊗R

S,EiF � S ⊗ F T � T
�L

S,EiF, S ⊗ F � T � T
Es(refl)

S,EiF,Es(S ⊗ F � T ) � T

Our calculus is resource sensitive, thus, as expected, we cannot infer
for example that two agents can use the same screwdriver at the same
time to tighten two screws:

S, S,EiF,EjF,Es(S ⊗ F � T ) � T ⊗ T

Linear BIAT allows for expressing much more. For instance, it can
capture functions that are user-specific:

Et((Ea1A � O) & (Ea2A � O) & · · ·& (EamA � O)) (5)

where ai ∈ B ⊆ A. The meaning of ( ) is that implications
EaiA � O specify which agents among those in A are entitled of
using the artefact t to obtain O. Accordingly, if one of those agents
brings about A in a context of manipulating the tool t, then the out-
come O is provable in Linear BIAT. Formula (5) can be shortened as
Et(

˘
x∈B⊆A Ex(A) � O). Let i ∈ B ⊆ A, we have the following

proof.
...

EiA,EiA � O � O
...

& L (enough times)
EiA,

˘
x∈B(ExA � O) � O

Et(refl)
EiA,Et(

˘
x∈B(ExA � O)) � O

Moreover, the behavior represented by Et(
˘

x∈A Ex(A⊗B) � O)
requires the same agent x to perform both actions A and B in order
to get O (e.g. in order to access my email I have to insert my login
and my password). This is due to our Ei⊗ rule.

EiA � EiA EiB � EiB
Ei⊗

EiA,EiB � Ei(A⊗B) O � O
�L

EiA,EiB,Ei(A⊗B) � O � O
Et(refl)

EiA,EiB,Et(Ei(A⊗B) � O) � O

On the other hand, the behavior Et(
˘

x,y∈A,x �=y(ExA ⊗ EyB) �
O), forces the agents who operate tool t to be different (e.g. a cross-
cut saw). In a similar way, we can represent in a purely logical man-
ner, tools that require any number of agents to operate (of course, if
we want to express that any subsets of A can operate the tool, then
we need an exponentially long formula).

Linear BIAT is resource-sensitive as the previous non-provable se-
quent in our screwdriver example illustrates: the screwdriver cannot
be reused, despite the fact that an additional screw is available and
an appropriate force is brought about. This is perfectly fine as long
as our interpretation of resource consumption is concurrent: all re-
sources are consumed at once. Abandoning a concurrent interpreta-
tion of resource consumption, we may specialize the modality Ea

when a is an artefactual agent in such a way that the function of an
artefact can be used at will. After all, using a screwdriver once does
not destroy the screwdriver. Its function is still present after. We are
after a property of contraction for our operator Es.

Γ,EsA,EsA � B
c(Es)

Γ,EsA � B

Now, if we adopt the rule, c(Es) we can easily see that indeed

S, S,EiF,EjF,Es(S ⊗ F � T ) � T ⊗ T

is provable.There are several issues with this solution to ‘reuse’ as a
duplication of assumptions. Some technical, some conceptual. The
main technical issue is that we lose a lot of control on the proof
search, as contraction is the main source of non-termination (of
bottom-up proof search). Another technical (or theoretical) issue is
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that trying to give a natural condition on our frames that would be
canonical for contraction is out of question. The conceptual issue
is the same as the one posed by Girard in creating linear logic: du-
plication of assumptions should not be automatic. Similarly, ad lib
reuse of an artefact does not reflect a commonsensical experience.
In general, although they don’t consume after the first use, tools will
nonetheless eventually become so worn out that they will not real-
ize their original function. We can capitalize on the ‘additive’ feature
of linear logic language: employing the ‘with’ operator &, we can
specify a sort of warranty of artefact functions.

A≤n = 1&(A)&(A⊗A)& . . .&(

n times
︷ ︸︸ ︷

A⊗ . . .⊗A)

The formula A≤n can be read as “it is guaranteed that A can be
used n times”. We can apply this concept of warranty to any artefact
that we have discussed, therefore characterizing a set of behavior and
their warranty. For example, with three screws, and by applying three
times the appropriate force, then using a decently robust screwdriver,
one can obtain three tighten screws:

F, F, F, S, S, S,Es(S ⊗ F � T )≤10000 � T ⊗ T ⊗ T

7 Conclusions

We have studied a non-normal modal logic based on intuitionistic
linear logic and we have provided the main logical results in order to
show that MILL is a well-behaved system. We have extended MILL
to Linear BIAT and presented a number of applications to artefacts.
We conjecture that cut elimination holds also for Linear BIAT and
that would provide us with a PSPACE upper bound for proof-search
complexity for Linear BIAT. The proof theory of sequent calculus
can be viewed as the theoretical background for developing a logic
programming approach to modal linear logics. For this purpose we
plan to implement an automated prover for Linear BIAT. Moreover,
by exploiting our methodology for modeling functions and the intrin-
sic power of logic representations at modularity, we can represent
complex combinations of artefacts. Therefore, more complex arte-
facts, as well as more complete industrial and business processes,
can all in principle be modeled within a generalization of our frame-
work. To that end, Linear BIAT can later be extended to coalitional
agency where sets of artefacts and agents can combine their functions
and actions. A resource-sensitive framework for strategic ability in
multi-agent settings will then be a prime objective.
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