
Multi-objective learning of hybrid classifiers 
Rok Piltaver1,2 and Mitja Luštrek1 and Jernej Zupančič1,3 and Sašo Džeroski1 and Matjaž Gams1,2 

 
Abstract. We propose a multi-objective machine learning approach 
guaranteed to find the Pareto optimal set of hybrid classification 
models consisting of comprehensible and incomprehensible sub-
models. The algorithm run-times are below 1 s for typical 
applications despite the exponential worst-case time complexity. 
The user chooses the model with the best comprehensibility-
accuracy trade-off from the Pareto front which enables a well 
informed decision or repeats finding new Pareto fronts with 
modified seeds. For a classification trees as the comprehensible 
seed, the hybrids include single black-box model, invoked in 
hybrid leaves. The comprehensibility of such hybrid classifiers is 
measured with the proportion of examples classified by the regular 
leaves. We propose one simple and one computationally efficient 
algorithm for finding the Pareto optimal hybrid trees, starting from 
an initial classification tree and a black-box classifier. We evaluate 
the proposed algorithms empirically, comparing them to the 
baseline solution set, showing that they often provide valuable 
improvements. Furthermore, we show that the efficient algorithm 
outperforms the NSGA-II algorithm in terms of quality of the 
result set and efficiency (for this optimisation problem). Finally we 
show that the algorithm returns hybrid classifiers that reflect the 
expert’s knowledge on activity recognition problem well.  

1 INTRODUCTION 
In many real-life domains, a large part of expert knowledge can be 
represented in a comprehensible way, but there is usually also a 
part of the knowledge that is complex and difficult to formulize. 
The models should thus consist of comprehensible parts containing 
knowledge comprehensible to a human and incomprehensible parts 
enabling improved accuracy. This paper deals with the task of 
finding such hybrid models with the best trade-off between two 
conflicting objectives: accuracy and comprehensibility. The 
preferred approach to learning a model while considering multiple 
objectives is multi-objective learning [1] that returns the Pareto 
optimal set from which the user selects a single solution. The set 
contains pairwise incomparable solutions that are better than any 
other solution not belonging in the set i.e. non-dominated solutions.  

While several existing machine learning (ML) algorithms 
already use multiple objectives to find the best models, the goal 
here is somewhat different: to extract knowledge similar to the 
knowledge of human experts from domain examples. Our 
algorithm takes an initial comprehensible classifier, a black-box 
(BB) classifier, and a set of training data as input. The result of the 
algorithm is a set of hybrid classifiers consisting of comprehensible 
and BB parts, similarly to how expert knowledge is structured.  
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As a motivating example we will consider activity recognition 
using acceleration data. The goal is to recognize the activity of a 
person wearing an accelerometer. An accurate black-box classifier 
can be constructed using high-quality laboratory data. However, 
since we were about to enter the EvAAL live activity recognition 
competition (http://evaal.aaloa.org/), we wanted a classifier that we 
could trust to perform correctly in a situation substantially different 
from the one in the laboratory. Since a completely understandable 
classifier performed poorly, a hybrid approach was called for. 

The following sections present related work, our algorithm 
MOLHC (Multi-Objective Learning of Hybrid Classifiers), 
theoretical analyses, practical experiments and discussion. 

2 RELATED WORK 
The related work for this paper comes from two areas: increasing 
the comprehensibility of models constructed with ML, both in a 
single- and multi-objective way, and constructing hybrid models 
that combine elements of multiple model types. 

Some established ML algorithms already use criteria other than 
accuracy in the learning process. For example, the RIPPER rule 
induction algorithm [2] ensures the compactness of the rule set by 
using the minimum description length principle. Girosi [3] 
included comprehensibility criteria in the regularization of artificial 
neural networks. Jin [4] and Gorzałczany and Rudziński [5] did 
likewise in the construction of fuzzy rules with evolutionary 
optimization methods. Common to these approaches is that they 
combine the accuracy and comprehensibility as a weighted sum in 
a single objective function, and output a single model. 

One of the earliest examples of multi-objective ML is the work 
by Kottathra and Attikiouzel [6], who formulated the training of an 
artificial neural network as a bi-objective minimization problem 
with the mean square error and the number of neurons as 
conflicting objectives. They tackled the problem with a branch-
and-bound algorithm, while later work mostly used evolutionary 
optimization methods. Examples include Ishibuchi et al. [7] and 
Pulkkinen [8], who constructed fuzzy rules; Jin et al. [9], who 
constructed artificial neural networks; Markowska-Kaczmar and 
Mularczyk [10], who extracted rules from neural networks; Tušar 
[11], who constructed classification trees; and Clark and Everson 
[12], who constructed relevance vector machines. 

In the area of hybrid ML models, the best-known example are 
model trees, which have linear functions in the leaves [13]. The 
resulting models are accurate and compact. NBTrees place Naive 
Bayes classifiers in the leaves of classification trees [14]. This 
retains the comprehensibility of both model types and often 
improves the accuracy. The VFDTc algorithm for mining data 
streams similarly combines Naive Bayes with Hoeffding trees, 
improving the accuracy compared to regular Hoeffding trees [15]. 
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Hybrid SVM-based classification trees [16] use a SVM classifier to 
classify examples close to the class boundary, and a classification 
tree for the examples farther away. This results in a significant 
speedup over SVM alone, without any compromise in accuracy. 

Our research builds upon existing work on multi-objective ML, 
but introduces important distinctions. First, most related work 
defines the comprehensibility as the complexity of the classifier. In 
contrast, we define the comprehensibility as the fraction of 
examples classified by the comprehensible part of our hybrid 
classifiers. Such hybrid classifiers are ideally suited to searching 
for trade-offs between the accuracy and comprehensibility, because 
the comprehensibility can be dialled to anywhere between none 
and complete. Second, we use a novel algorithm that is guaranteed 
to find the complete Pareto optimal set, which is an improvement 
over the commonly used stochastic optimization algorithms. Third, 
our use of hybrid trees is motivated not only by the classification 
accuracy of models or the speed of learning them, but also by the 
desire to build models mimicking a human expert’s knowledge:  
with some comprehensible parts (represented by a tree), and others 
incomprehensible. Finally, we are interested in an interactive 
learning process where the human expert provides some initial 
knowledge (tree) to build upon and possibly re-uses some of the 
proposed alternative models to further direct the learning process.  

3 THE MOLHC ALGORITHM 
The inputs to the algorithm are: an initial classification tree, a BB 
classifier and a set of examples used to evaluate the performance of 
the initial tree and the BB classifier in each subspace of the 
attribute space. The initial tree should be one that a human expert 
considers as comprehensible frame for knowledge representation, 
and can be constructed manually or by ML. Subspaces are defined 
by the initial classification tree: a subspace is composed of the 
examples belonging to a single leaf of the classification tree.  

The goal of the multi-objective learning algorithm is to find a set 
of hybrid trees (derived from the initial classification tree and the 
BB classifier) which is Pareto optimal with respect to the two 
objectives: classification accuracy and comprehensibility. The 
algorithm constructs hybrid trees by replacing one or several leaves 
in the initial classification tree with the provided BB classifier. 
Some subspaces of the attribute space are thus classified by the 
initial classification tree and others by the BB classifier.  

When classifying a new example, the algorithm first checks in 
which leaf (subspace) the example belongs. If it belongs in a leaf 
marked as regular, the example is classified as the majority class of 
that leaf – as in a regular classification tree. If it belongs in a leaf 
marked as hybrid, it is classified with the BB classifier.  

The accuracy at of a hybrid tree t is defined as the ratio between 
the number of correctly classified examples and the number of all 
examples N used to evaluate the accuracy of the hybrid tree 
(Equation 1). The number of correctly classified examples is added 
over all the leaves in the hybrid tree: for a leaf j, the number of 
correctly classified examples is denoted Nj,t if j is marked as 
regular, and Nj,bb if j is marked as hybrid.  

at = (∑j marked regular Nj,t + ∑j marked hybrid Nj,bb) / N (1) 
The comprehensibility ct of a hybrid tree t is defined as the 

ratio between the number of examples that are classified by the 
regular leaves and the number of all examples used to evaluate the 
comprehensibility of the hybrid tree (Equation 2).  

ct = (∑j marked regular Nj) / N (2) 

By definition, the comprehensibility of the initial classification 
tree is 1 and the comprehensibility of the BB classifier is 0, while 
the comprehensibility of hybrid trees are between 0 and 1. In 
reality, very large classification trees are not particularly 
comprehensible, so it makes sense to limit their size, as we do in 
Section 4.1 below. 

To compare hybrid trees when dealing with multiple 
objectives, the Pareto dominance relation ( ) is used [17]. 
Equation 3 defines the relation where the goal is to maximize the 
accuracy and comprehensibility. 

x  y  (ax > ay ˄ cx ≥ cy) ˅ (ax ≥ ay ˄ cx > cy)  (3) 
A solution x is said to be non-dominated in a set of solutions S if 

no solution that dominates x exist in S (Equation 4). 
x  non-dom(S)  y  S: y  x  (4) 

A set of solutions P’ = non-dom(P) is a non-dominated set 
among the set of solutions P if it is composed of the solutions that 
are not dominated by any member of the set P. The Pareto set (or 
globally Pareto-optimal set) is the non-dominated set of the entire 
solution space [17]. The goal of our algorithm is to find the Pareto 
set of hybrid trees. The user of the algorithm only needs to select 
one or more of the hybrid trees from the Pareto set P’ and does not 
need to consider hybrid trees outside P’, as it is guaranteed that all 
of them are worse than at least one of the hybrid trees from P’. 

3.1 Naive implementation 
In order to find the Pareto set of hybrid trees, the algorithm needs 
to search the entire search space of 2n hybrid trees. The search 
space can be represented as the Cartesian product {0,1}×…×{0,1} 
= {0,1}n where n is the number of leaves considered for replacing 
with the BB classifier: the leaves where the BB classifier is more 
accurate than the initial classification tree. The values 0 and 1 in 
each component of the product denote the type of corresponding 
leaf: 0 for regular and 1 for hybrid leaves. The initial classification 
tree is represented as S0 = (0,0,…,0), while the BB classifier is 
represented as S2^n = (1,1,…,1). By considering all possible 
replacements of leaves in the initial tree, the replacements of all the 
subtrees are implicitly considered as well because replacing all the 
leaves of a subtree is equivalent to replacing the root of the subtree 
for a BB - if an example belongs to the root of the subtree, it must 
belong to one of its leaves. 

The algorithm starts by splitting the set of labelled examples 
into subspaces of the attribute space corresponding to the leaves of 
the initial classification tree. Afterwards, it computes the number of 
examples Nj belonging to each subspace/leaf j. It also computes the 
number of examples correctly classified by the initial classification 
tree Nj,t and the BB classifier Nj,bb in each leaf j. Finally, it 
computes the relative difference in accuracy δj,a (Equation 5) and 
comprehensibility δj,c (Equation 6) introduced by replacing the leaf 
j for a BB leaf. The relative differences are used to compute quality 
of hybrid trees using dynamic programing as described below. 

δj,a =   (Nj,bb – Nj,t) ⁄ N (5) 
δj,c =   – Nj ⁄ N (6) 

A hybrid tree Si can be transformed into a new hybrid tree Sj by 
replacing a leaf l marked as regular in Si for a BB leaf in Sj, thus 
obtaining Sj = (sj,1, sj,2, …,  sj,n), where sj,l = 1 and sj,k = si,k for each 
k ≠ l. The accuracy and comprehensibility (aj, cj) of the new hybrid 
tree Sj are computed from the accuracy and comprehensibility (ai, 
ci) of the original hybrid tree Si using Equation 7. 

(aj, cj) = (ai + δl,a, ci + δl,c)  (7) 
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The relative difference in accuracy and comprehensibility 
(Equation 7) between the hybrid trees Si and Sj, depends solely on 
the relative differences in accuracy δl,a and comprehensibility δl,c of 
the leaf l, and not on any other property of the hybrid tree Si: from 
Equations 1 and 5, it follows that δl,a = ai – aj, and from Equations 
2 and 6 that δl,c = ci – cj.  

The algorithm proceeds with an exhaustive search to find and 
evaluate all the hybrid trees. Each iteration of the exhaustive search 
algorithm (Algorithm 1) finds a set of hybrid trees that have one 
more hybrid leaf than the set found in the previous iteration. Two 
sets are used: Proc consisting of processed hybrid trees and UProc 
consisting of unprocessed hybrid trees. The algorithm begins with 
an empty set Proc and the set UProc containing only the initial 
classification tree S0, i.e., with the call find({},{S0}). The algorithm 
processes the set of unprocessed hybrid trees UProc as follows. For 
each hybrid tree Si belonging to UProc it generates a set of new 
hybrid trees by replacing each regular leaf l in turn with a hybrid 
leaf. Each new hybrid tree is added to a temporary set UProc’ and 
its comprehensibility and accuracy are computed using Equation 7. 
After that, the hybrid tree Si is considered processed and is added 
to the set Proc. If at least one new hybrid tree has been generated 
(i.e., UProc’ is not empty), the algorithm runs a new iteration using 
the temporary set UProc’ as the new set of unprocessed hybrid 
trees UProc. 

Algorithm 1. MOLHC, naïve implementation 
find(Proc, UProc) { 
repeat { 
  UProc' = {}; 
  for (each Si in UProc) {  
    for (each l: si,l = 0) { 
      Sj = Si; sj,l = 1; 
      aj = ai + δl,a; cj = ci + δl,c; 
      if (Sj not in UProc') {UProc'.add(Sj);} 
    } Proc.add(Si);  
  } UProc = UProc'; 
} until (UProc' ≠ {}); 
return Proc;} 

3.2 Efficient implementation 
The naïve implementation searches the entire search space of 
hybrid trees, therefore it faces a combinatorial explosion, making 
its run-time unacceptable even for initial classification trees with as 
few as 15 leaves considered for marking as hybrid. Therefore we 
propose two optimizations: avoid generating dominated hybrid 
trees and avoid generating a hybrid tree more than once. 

The key to avoid generating dominated hybrid trees is the 
fact that only non-dominated regular leaves should be replaced 
with hybrid leaves, since replacing a dominated leaf produces a 
dominated hybrid tree. Furthermore, no non-dominated hybrid tree 
can be generated from a dominated hybrid tree by replacing a 
subset of its leaves with hybrid leaves (except the ones that can 
also be generated from non-dominated trees). This enables an 
efficient implementation of the algorithm that is correct in the 
sense that it finds the complete Pareto optimal set of hybrid trees, 
even though it does not examine the entire search space. The proof 
is available in the Supplementary Material (SM) [18], Section 2.2, 
page 8. 

Note that leaves (subspaces) can be compared using the Pareto 
dominance relation similar as trees: the two objectives are the 

relative differences in accuracy δj,a and comprehensibility δj,c 
(instead of the accuracy and comprehensibility themselves), and 
both need to be maximized.  

The algorithm 1 needs to be changed so that the loop for 
(each l: si,l = 0) is replaced with for (each l: l ϵ 
non-dom{l: si,l = 0}), hence only non-dominated regular 
leaves get replaced with hybrid leaves. Therefore the algorithm 
needs to maintain the set of non-dominated leaves in each hybrid 
tree: it computes a set of leaves Dl that are directly dominated by 
the leaf l for each leaf l in the initialization phase. Directly 
dominated leaves Dl are the ones that are in a transitive reduction 
of the Pareto dominance relation on the set of all leaves in the 
initial classification tree with the leaf l. When generating a new 
hybrid tree Sj from an existing hybrid tree Si by replacing a regular 
leaf l with a hybrid leaf, the set of non-dominated leaves Lj in the 
new tree Sj is computed using dynamic programming (Equation 8) 
from the set of non-dominated leaves Li in the original tree Si. This 
approach is considerably more efficient than examining all the 
leaves of the hybrid tree Sj for dominance. 

Lj = non-dom(Li  Dl  l)  (8) 
The new set Lj includes all the leaves in Li except the leaf l. 

However, since l is removed, the set Lj should be expanded with 
the set Dl consisting of leaves directly dominated by l. 

If there are two incomparable leaves l1 and l2, the naive 
algorithm would generate a hybrid tree that has both leaves 
replaced with hybrid leaves twice: (1) by replacing l1 first and l2 in 
a later iteration, and (2) by replacing l2 first and l1 in a later 
iteration. In order to prevent this duplication, the leaves are 
enumerated and replacing only a leaf l in a hybrid tree Si that has a 
larger number than any already replaced leaf in Si is allowed. In 
order for this second improvement of the algorithm not to interfere 
with the first one (avoiding dominated hybrid trees), the 
enumeration must be such that any leaf x that dominates another 
leaf y has a smaller index than y, i.e., the enumeration must 
correspond to the non-dominated sorting [17]. 

Despite the fact that the efficient implementation limits the 
search space, it can still generate some dominated hybrid trees, 
therefore non-dominated hybrid trees have to be selected from the 
set of all generated hybrid trees before returning the result of the 
algorithm (proof available in the SM [18], Section 2.3, page 14). 

4 EXPERIMENTAL RESULTS 

4.1 Time complexity and run-times 
 The naïve and efficient implementations both have exponential 

time complexities O(2n) in the worst case, where n is the number of 
leaves in the initial classification tree considered for replacing with 
hybrid leaves (proof in SM [18], Section 2.1, page 5). Since the 
problem is obviously at least as difficult as the NP-hard 0/1 
knapsack problem, no algorithm that solves the problem in 
polynomial time is expected to exist. However, the efficient 
implementation has considerably lower run-time as shown in Fig. 
1: the measurements can be approximated with 22n and 20.4n. Each 
measurements in Fig. 1 represents an average run-time over 100 
randomly generated trees with relative differences in accuracy and 
comprehensibility of leaves similar to the typical initial trees (10 
trees for run-times over 5 min were used). The average run-time of 
the naïve implementation of the algorithm in Java™ for a tree with 
18 leaves is around 18 minutes, (3.2 min for 17 leaves) while it is 
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only 0.8 ms for the efficient implementation (< 0.5 s for 40 leaves) 
on a 3 GHz  Intel® Core™ 2 Duo computer. 

Since the goal is to find classifiers comprehensible to humans, 
only small initial trees are expected as an input to the algorithm. 
Since most people are not capable of maintaining more than 5 to 7 
conditions in their short-term memory, only binary trees with  
approximately 32 (or at most 128) leaves at most are reasonable. 
Therefore one can expect that the efficient implementation of the 
algorithm can find the Pareto set within seconds.  

Figure 1.  Run-times of the naive and the efficient algorithm 

4.2 Measuring the success of MOLHC 
To evaluate the MOLHC algorithm, we tested it on several datasets 
from the UCI repository. The results were compared with standard 
single-objective machine learning algorithms to assess the gain of 
MOLHC and with a state-of-the-art multi-objective optimization 
algorithm NSGA-II [19] in terms of execution time. Finally, an 
interactive experiment with a human expert was performed on 
dataset in the activity recognition domain. 
     We selected the testing datasets from the set of 94 classification 
datasets from the UCI repository [20] available in ARFF format at 
the Weka webpage [21]. Among the 49 datasets with more than 
300 instances we chose the 23 datasets where the BB classifier 
achieved at least 10 % better accuracy than the tree with 
approximately 20 leaves. Finally 40 experiments with the MOLHC 
algorithm were conducted: one with a small tree (~20 leaves) for 
each of the 23 datasets and another with a big tree (~40 leaves) if 
the dataset allowed building such tree.   

The following algorithms were used to build the BB classifiers: 
SVM, kNN, aNN, logistic regression and Naive Bayes, all 
implemented in Weka [22] and used with the default algorithm 
parameters. Among them, the classifier with the highest 
classification accuracy computed using 10-fold cross-validation 
was chosen as the BB classifier for each dataset. The two initial 
classification trees were obtained using the J48 algorithm, which is 
the Weka implementation of the C4.5 algorithm, using the pruning 
parameters to obtain trees with ~20 and ~40 leaves. 

The results of multi-objective algorithms are usually compared 
using the hypervolume metric [23], which measures the volume of 
the dominated objective space between a reference point and the 
attainment surface – the envelope marking all the solutions which 
are sure to be dominated by the set of solutions returned by the 
algorithm. Since we have two objectives, the hypervolume is in 
fact the area under the attainment surface (the broken line in Fig. 
2). The reference point was set to (–0.2, –0.2) following the 
typically used rule-of-thumb advocating a space that is a little bit 
larger than the actual objective space. 

The results of the MOLHC are compared with the set of 
baseline solutions (Table 2) consisting of the initial classification 

tree and the BB classifier, and with the set of hybrid trees found by 
the NSGA-II algorithm (Table 4). The gain of the MOLHC is 
expressed as the difference in terms of hypervolume. 

Two additional important measures of success are the average 
differences in the accuracy ea and comprehensibility ec of the 
hybrid trees in the solution set, estimated on the training dataset on 
one hand, and on the separate test dataset on the other hand. This is 
important since the user needs to select hybrid trees from the 
solution set based on the Pareto front (an image of the Pareto set in 
the objective space, e.g. Fig. 2). The solutions are positioned on the 
Pareto front based on the performance of the learned hybrid trees 
on the training dataset. If these are different from the results on the 
test set, the user is misled and may not choose the appropriate 
hybrid tree. The differences are defined as the average absolute 
error and are computed using Equations 9 and 10, where S is the 
set of solutions returned by the algorithm with cardinality |S| and 
a’j and c’j are the classification accuracy and the comprehensibility 
of the classifier j computed on the test set, respectively. 

ea =   j S |aj – a’j|  |S| (9) 
ec =   j S |cj – c’j| |S| (10) 

4.3 Comparison with the baseline 
Fig. 2 shows the predicted and validated (on a separate test set) 
results of the MOLHC and the baselines (the initial tree and the BB 
classifier) as fronts in the objective space. The predicted attainment 
surface is shown for the hybrid trees obtained by the MOLHC.  

Figure 2.  Pareto fronts in the objective space for the EvAAL domain 

Table 1 shows the data about seven domains: three with the best 
improvements, one with average improvement and three with the 
worst improvements out of the 40 experiments. 

Table 2 shows the comparison of the MOLHC and the baseline 
for the seven domains. Two columns show the hypervolume of the 
Pareto sets of the hybrid trees produced by MOLHC and the 
baselines, validated on the test set consisting of one third of all the 
instances in a dataset.  An experiment was also performed using 
10-fold cross validation, obtaining comparable results for the 
datasets with enough instances and exhibiting high deviations of 
the results for the small datasets. The column with bold font shows 
the differences in hypervolume between MOLHC and baseline. 
The last two columns show the average absolute errors of the 
predicted accuracy ea and comprehensibility ec. 
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Table 1.  General data about the 3 best, an average, and 3 worst domains 

Dataset 
#inst. 

◊ 
#cls. 

□ 
#atr. 

○ 
BB 

accuracy  
Tree 

accuracy  
mfeat-pixel 2000 10 241 100 42,72 
letter 20000 26 17 100 39,66 
vowel 990 11 14 100 44,55 
mfeat-zernike 2000 10 48 89,06 83,81 
cylinder-bands 540 2 38 90,00 66,66 
balance-scale 625 3 5 92,82 88,04 
flags 194 8 30 100 86,20 
◊ number of instances       □ number of classes      ○ number of attributes  

Table 2. MOLHC evaluation and comparison with baseline 

Dataset MOLHC 
hypervol. 

Baseline 
hypervol. 

Hypervol. 
difference  ea ec 

mfeat-pixel 1,138 0,833 0,305 0,024 0,010 
letter 1,108 0,815 0,293 0,005 0,005 
vowel 1,003 0,772 0,231 0,019 0,018 
mfeat-zernike 1,154 1,031 0,123 0,016 0,015 
cylinder-bands 1,028 1,002 0,026 0,006 0,014 
balance-scale 1,229 1,201 0,029 0,030 0,019 
flags 0,914 0,896 0,017 0,023 0,07 

Table 3 shows the relative improvements of hypervolume 
obtained with MOLHC compared to baseline in percentages for all 
the 40 experiments: the average improvement is 11.17 %, the best 
improvement is 36.6 % and the worst 1.9 %.  

Table 3. The improvement of MOLHC vs. baseline measured as the 
relative increase of hypervolume in % for the 40 experiments 

36.6 26.5 13.7 11.9 10.5 7.6 6.9 5.6 3.8 2.7 
36.0 24.8 12.6 11.7 9.7 7.4 6.8 5.1 3.5 2.6 
29.9 18.6 12.2 10.8 8.9 7.0 6.6 4.9 2.8 2.4 
27.3 16.3 12.0 10.6 8.2 6.9 5.9 4.6 2.7 1.9 

4.4 Comparison with the NSGA-II algorithm 
The efficient implementation of MOLHC was compared to the 
state-of-the-art stochastic multi-objective optimization algorithm 
NSGA-II. The task of both algorithms was to search the space of 
hybrid trees for (approximation of) the Pareto set: trees with 
accuracy and comprehensibility as the two objectives. The DEAP 
framework (Distributed Evolutionary Algorithms in Python) [24] 
implementation of NSGA-II was used. The parameters of the 
NSGA-II algorithm were set as follows: two point crossover was 
used as the crossover technique, and bit flip as the mutation 
operator with the probability of a mutation equal to 1 / number of 
leaves for each bit. The stopping criterion was defined by setting 
the NSGA-II execution time limit to 10, 50 and 100 times longer 
than the average run-time over 10 runs of the MOLHC. Three sizes 
of population were set to: 6.3 × number of leaves – 15 (medium 
population), half that number (small) and twice that number (big). 
The formula was based on a linear approximation of the number of 
hybrid trees in the Pareto set in relation to the number of leaves 
considered to be marked as hybrid. The number of generations was 
not limited explicitly; however it depended on the run-time limit 
and the size of the population. 

Table 4 shows the average relative increase of hypervolume 
expressed in % between the proposed efficient algorithm and the 
average over five runs of the NSGA-II algorithm averaged over six 
domains. The table includes data for two sizes of the initial 

decision trees, the three run-time multipliers, and the three sizes of 
the population used by NSGA-II. The results show that the 
MOLHC outperforms NSGA-II when searching for the trees of 
comprehensible size. However, NSGA-II might be preferred for 
large initial trees with more than 100 leaves (considered 
incomprehensible in this paper) in order to obtain an approximation 
of the Pareto set since MOLHC run-times reach the limits of 
practicality for such tree sizes. 

Table 4. Relative difference in % of hypervolume - MOLHC vs. NSGA-II  
Run-time 

/Population size 
Small tree 12.8 leaves Big tree 22 leaves 
Big Med. Small Big Med. Small 

t(MOLHC) × 10 3.8 1.8 1.4 5.5 4.9 2.7 
t(MOLHC) × 50 0.2 0.1 0.2 2.8 0.6 0.4 

t(MOLHC) × 100 0.02 0.03 0.2 1.5 0.3 0.1 

4.5 Domain expert validation 
Besides quantitative evaluation of MOLHC on the UCI 

repository datasets, we also performed an experiment which 
involved interaction with a domain expert for the task of activity 
recognition described in the introduction. The data (from which a 
classifier that won at the EvAAL competition was built), contain 
examples of 10 activities (class) that have to be recognized from 
the movement of 9 persons. There are 48.000 instances with 61 
attributes computed from the data measured by an accelerometer 
placed on person’s chest. The best BB classifier (random forest) 
achieved an accuracy of 90.6 on this data (Fig. 2). 

In the first iteration, the activity recognition expert found the 
initial classification tree (67.9 accuracy, 8 leaves) constructed 
using all the 61 attributes as well as the resulting hybrid trees 
poorly comprehensible, so he selected a subset of 12 attributes to 
build an initial tree (67.4 accuracy, 8 leaves) for the second 
iteration.  From the resulting Pareto set the expert chose the hybrid 
tree in which 3 leaves - containing mostly instances of 3 classes 
that are difficult to distinguish using simple rules - were merged 
into a single BB classifier. The hybrid tree contained overall 6 
leaves, accuracy was 80.2 and comprehensibility 0.689. In the third 
iteration (Pareto front in Fig. 2) a larger initial tree (76.1 accuracy, 
12 leaves) was used. Finally the expert choose a hybrid tree that 
achieved (84.1, 0.721) and contained 7 regular and 3 BB leaves - 
one replacing a subtree with 3 leaves. The expert judged this 
hybrid tree accurate enough, all the regular leaves comprehensible, 
and corresponding classification rules correct, as well as confirmed 
that accurately classifying instances belonging to the BB leaves is 
impossible using simple rules. An additional accelerometers was 
suggested in order to further improve the comprehensibility and 
accuracy. 

5 DISCUSSION AND CONCLUSION 
In this paper, we introduce MOLHC – a novel algorithm for 

multi-objective learning aiming to find hybrid classifiers that 
resemble expert knowledge. The approach relies on hybrid trees 
that incorporate regular leaves and BB classifier. A human 
provides an initial classification tree which he considers a proper 
frame for the representation of the knowledge about the domain – 
with interpretable attributes, reasonable size, and consistent with 
his knowledge.  

MOLHC provides a list of non-dominated hybrid trees 
according to the two criteria: accuracy and comprehensibility, 
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enabling the human to finally select the hybrid tree that best suits 
his needs. A comprehensibility measure of hybrid trees is 
introduced based on the number of examples that fall in the regular 
leaves of the hybrid tree. This is different from most other 
approaches that equate comprehensibility with tree size.  

An important advantage of the MOLHC over the usual 
stochastic approaches to multi-objective learning is that it is 
guaranteed to find the complete Pareto set of solutions - a 
theoretical proof is provided. At the same time, the MOLHC is 
reasonably efficient: the average run-time on the test datasets is 
approximately 20.4n where n is the number of leaves in the initial 
classification tree, an improvement over the 22n complexity of 
exhaustive search. For small trees with up to 50 leaves (trees need 
to be small to be understandable), the Pareto set can be found in 
seconds. 

This allows for interactive data-mining with a human in the 
loop, where the system quickly proposes a set of models based on 
the user’s initial input, but with improved classification accuracy. 
The models, based on the human input, preserve the structure of 
the expert knowledge, which often consists of comprehensible and 
incomprehensible parts. The overall process can be iterative, with 
outputs from one phase being inputs for the next phases.  

We showed that MOLHC performs well on 23 datasets from the 
UCI repository. We also tested it on the activity recognition 
domain in cooperation with a human expert, who confirmed that 
the algorithm produces models that correspond well to his 
knowledge. Compared to the NSGA-II algorithm, the MOLHC 
achieved better results in all experiments – it found all the solutions 
in the Pareto set and spent less run-time. 

MOLHC algorithm also has some limitations. First, it finds 
hybrid classifiers with improved accuracy if the provided BB 
classifiers achieves better accuracy than the initial tree at least in 
some parts of the domain (instances belonging to a leave or subtree 
of the initial tree). Furthermore, the size of the Pareto set 
containing hybrid trees depends on the number of leaves 
considered to be replaced with a hybrid leaf: in the experiments it 
varies from 4 to 1500 (average 140). Second, the dataset must be 
reasonably large, so that there are enough examples in each leaf of 
the initial classification tree to reliably decide whether to replace it 
with the BB classifier. The reliability of estimating the accuracy 
and comprehensibility of hybrid trees on the test set also suffers if 
the dataset is too small.  

In the future, we plan to extend our approach in several 
directions. First, we will improve the reliability of the decisions to 
replace a leaf with the BB classifier. Second, we will test the 
approach on different classifiers, such as classification rules and 
expert-crafted trees, and examine using multiple types of BB 
classifiers in a single hybrid tree. Third, extensive tests are planned 
in various domains, both in an automated fashion and in interaction 
with human experts.   
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