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Abstract. Abstract argumentation frameworks (AFs) are one of the
most studied formalisms in AI. In this work, we introduce a certain
subclass of AFs which we call compact. Given an extension-based
semantics, the corresponding compact AFs are characterized by the
feature that each argument of the AF occurs in at least one extension.
This not only guarantees a certain notion of fairness; compact AFs
are thus also minimal in the sense that no argument can be removed
without changing the outcome. We address the following questions
in the paper: (1) How are the classes of compact AFs related for dif-
ferent semantics? (2) Under which circumstances can AFs be trans-
formed into equivalent compact ones? (3) Finally, we show that com-
pact AFs are indeed a non-trivial subclass, since the verification prob-
lem remains coNP-hard for certain semantics.

1 Introduction

In recent years, argumentation has become a major concept in AI
research [5, 17]. In particular, Dung’s well-studied abstract argu-
mentation frameworks (AFs) [9] are a simple, yet powerful formal-
ism for modeling and deciding argumentation problems. Over the
years, various semantics have been proposed, which may yield differ-
ent results (so called extensions) when evaluating an AF [9, 18, 6, 2].
Also, some subclasses of AFs such as acyclic, symmetric, odd-cycle-
free or bipartite AFs, have been considered, where for some of these
classes different semantics collapse [7, 10].

In this work we introduce a further class, which to the best of our
knowledge has not received attention in the literature, albeit the idea
is simple. We will call an AF compact (with respect to a semantics
σ), if each of its arguments appears in at least one extension under σ.
Thus, compact AFs yield a “semantic” subclass since its definition is
based on the notion of extensions. Another example of such a seman-
tic subclass are coherent AFs [11]; further examples are in [3, 14].

Importance of compact AFs mainly stems from the following two
aspects. First, compact AFs possess a certain fairness behavior in
the sense that each argument has the chance to be accepted, which
might be a desired feature in some of the application areas AFs are
currently employed in, such as decision support [1]. The second and
more concrete aspect is the issue of normal-forms of AFs. Indeed,
compact AFs are attractive for such a normal-form, since none of the
arguments can be removed without changing the extensions.

Following this idea we are interested in the question whether an
arbitrary AF can be transformed into a compact AF without changing
the outcome under the considered semantics. It is rather easy to see
that under the naive semantics, which is defined as maximal conflict-
free sets, any AF can be transformed into an equivalent compact AF.
However, as has already been observed in [12], this is not true for
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other semantics. As an example consider the following AF F1, where
nodes represent arguments and directed edges represent attacks.

x
aa′

bb′
c c′

The stable extensions (conflict-free sets attacking all other ar-
guments) of F1 are {a, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c},
{a, b, c′}, {a′, b, c}, and {a, b′, c}. It was shown in [12] that there
is no compact AF (in this case an F ′

1 not using argument x) which
yields the same stable extensions as F1. By the necessity of conflict-
freeness any such compact AF would only allow conflicts between
arguments a and a′, b and b′, and c and c′, respectively. Moreover,
there must be attacks in both directions for each of these conflicts
in order to ensure stability. Hence any compact AF having the same
stable extensions as F1 necessarily yields {a′, b′, c′} in addition. As
we will see, all semantics under consideration share certain criteria
which guarantee impossibility of a translation to a compact AF.

Like other subclasses, compact AFs decrease complexity of certain
decision problems. This is obvious by the definition for credulous
acceptance (does an argument occur in at least one extension). For
skeptical acceptance (does an argument a occur in all extensions) in
compact AFs this problem reduces to checking whether a is isolated.
If yes, it is skeptically accepted; if no, a is connected to at least one
further argument which has to be credulously accepted by the defini-
tion of compact AFs. But then, it is the case for any semantics which
is based on conflict-free sets that a cannot be skeptically accepted,
since it will not appear together with b in an extension. However,
the problem of verification (does a given set of arguments form an
extension) remains coNP-hard for certain semantics, hence enumer-
ating all extensions of a compact AF remains non-trivial.

An exact characterization of the collection of all sets of extensions
which can be achieved by a compact AF under a given semantics
σ seems rather challenging. We illustrate this on the example of sta-
ble semantics. Interestingly, we can provide an exact characterization
under the condition that a certain conjecture holds: Given an AF F
and two arguments which do not appear jointly in an extension of
F , one can always add an attack between these two arguments (and
potentially adapt other attacks in the AF) without changing the sta-
ble extensions. This conjecture is important for our work, but also an
interesting question in and of itself.

To summarize, the main contributions of our work are:
• We define the classes of compact AFs for some of the most promi-

nent semantics (namely naive, stable, stage, semi-stable and pre-
ferred) and provide a full picture of the relations between these
classes. Then we show that the verification problem is still in-
tractable for stage, semi-stable and preferred semantics.

• Moreover we use and extend recent results on maximal numbers
of extensions [4] to give some impossibility results for compact
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realizability. That is, we provide conditions under which for an AF

with a certain number of extensions no translation to an equivalent
(in terms of extensions) compact AF exists.

• Finally, we study signatures [13] for compact AFs exemplified on
the stable semantics. An exact characterization relies on the open
explicit-conflict conjecture mentioned above. However, we give
some sufficient conditions for an extension-set to be expressed as
a stable-compact AF. For example, it holds that any AF with at
most three stable extensions possesses an equivalent compact AF.

2 Preliminaries

In what follows, we briefly recall the necessary background on
abstract argumentation. For an excellent overview, we refer to [2].

Throughout the paper we assume a countably infinite domain A of
arguments. An argumentation framework (AF) is a pair F = (A,R)
where A ⊆ A is a non-empty, finite set of arguments and R ⊆ A×A
is the attack relation. The collection of all AFs is given as AFA. For an
AF F = (B,S) we use AF and RF to refer to B and S, respectively.
We write a �→F b for (a, b) ∈ RF and S �→F a (resp. a �→F S) if
∃s ∈ S such that s �→F a (resp. a �→F s). For S ⊆ A, the range of
S (wrt. F ), denoted S+

F , is the set S ∪ {b | S �→F b}.
Given F = (A,R), an argument a ∈ A is defended (in F ) by

S ⊆ A if for each b ∈ A, such that b �→F a, also S �→F b. A set T
of arguments is defended (in F ) by S if each a ∈ T is defended by S
(in F ). A set S ⊆ A is conflict-free (in F ), if there are no arguments
a, b ∈ S, such that (a, b) ∈ R. We denote the set of all conflict-
free sets in F as cf(F ). S ∈ cf(F ) is called admissible (in F ) if S
defends itself. We denote the set of admissible sets in F as adm(F ).

The semantics we study in this work are the naive, stable, pre-
ferred, stage, and semi-stable extensions. Given F = (A,R) they
are defined as subsets of cf(F ) as follows:
• S ∈ naive(F ), if there is no T ∈ cf(F ) with T ⊃ S
• S ∈ stb(F ), if S �→F a for all a ∈ (A \ S)
• S ∈ pref(F ), if S ∈ adm(F ) and �T ∈ adm(F ) s.t. T ⊃ S
• S ∈ stage(F ), if �T ∈ cf(F ) with T+

F ⊃ S+
F

• S ∈ sem(F ), if S ∈ adm(F ) and �T ∈ adm(F ) s.t. T+
F ⊃ S+

F
We will make frequent use of the following concepts.

Definition 1. Given S ⊆ 2A, Arg
S

denotes
⋃

S∈S
S and PairsS de-

notes {(a, b) | ∃S ∈ S : {a, b} ⊆ S}. S is called an extension-set
(over A) if Arg

S
is finite.

3 Compact Argumentation Frameworks

Definition 2. Given a semantics σ, the set of compact argumentation
frameworks under σ is defined as CAFσ = {F ∈ AFA | Argσ(F ) =
AF }. We call an AF F ∈ CAFσ just σ-compact.

Of course the contents of CAFσ differ with respect to the seman-
tics σ. Concerning relations between the classes of compact AFs note
that if for two semantics σ and θ it holds that σ(F ) ⊆ θ(F ) for each
AF F , then also CAFσ ⊆ CAFθ . Our first important result provides
a full picture of the relations between classes of compact AFs under
the semantics we consider.

Proposition 1. 1. CAFsem ⊂ CAFpref;
2. CAFstb ⊂ CAFσ ⊂ CAFnaive for σ ∈ {pref, sem, stage};
3. CAFθ 
⊆ CAFstage and CAFstage 
⊆ CAFθ for θ ∈ {pref, sem}.

Proof. (1) CAFsem ⊆ CAFpref is by the fact that, in any AF F ,
sem(F ) ⊆ pref(F ). Properness follows from the AF F ′ in Fig-
ure 1 (including the dotted part)4. Here pref(F ′) = {{z}, {x1, a1},
4 The construct in the lower part of the figure represents symmetric attacks

between each pair of arguments.

a3 a1
a2 b3 b1

b2

x1 x2 x3 y1 y2 y3

z

Figure 1. AFs illustrating the relations between various semantics.

{x2, a2}, {x3, a3}, {y1, b1}, {y2, b2}, {y3, b3}}, but sem(F ′) =
(pref(F ′) \ {{z}}), hence F ′ ∈ CAFpref, but F ′ /∈ CAFsem.
(2) Let σ ∈ {pref, sem, stage}. The ⊆-relations follow from the fact
that, in any AF F , stb(F ) ⊆ σ(F ) and each σ-extension is, by being
conflict-free, part of some naive extension. The AF ({a, b}, {(a, b)}),
which is compact under naive but not under σ, and AF F from Fig-
ure 1 (now without the dotted part), which is compact under σ but
not under stable, show that the relations are proper.
(3) The fact that F ′ from Figure 1 (again including the dotted part) is
also not stage-compact shows CAFpref 
⊆ CAFstage. Likewise, there
is an AF (to be found in the long version) which is sem-compact, but
not stage-compact. Finally, the AF ({a, b, c}, {(a, b), (b, c), (c, a)})
shows CAFstage 
⊆ CAFθ for θ ∈ {pref, sem}.

Considering compact AFs obviously has effects on the computa-
tional complexity of reasoning. While credulous and skeptical ac-
ceptance are now easy (as discussed in the introduction) the next
theorem shows that verifying extensions is still as hard as in general
AFs.

Theorem 2. For σ ∈ {pref, sem, stage}, AF F = (A,R) ∈ CAFσ

and E ⊆ A, it is coNP-complete to decide whether E ∈ σ(F ).
Proof. For all three semantics the problem is known to be in
coNP [6, 8, 15]. For hardness we only give a (prototypical) proof
for pref. We use a standard reduction from CNF formulas ϕ(X) =∧

c∈C c with each clause c ∈ C a disjunction of literals from X to
an AF Fϕ with arguments Aϕ = {ϕ, ϕ̄1, ϕ̄2, ϕ̄3} ∪ C ∪ X ∪ X̄
and attacks (i) {(c, ϕ) | c ∈ C}, (ii) {(x, x̄), (x̄, x) | x ∈ X},
(iii) {(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}, (iv)
{(ϕ, ϕ̄1), (ϕ̄1, ϕ̄2), (ϕ̄2, ϕ̄3), (ϕ̄3, ϕ̄1)}, and (v) {(ϕ̄1, x), (ϕ̄1, x̄) |
x ∈ X}. It holds that ϕ is satisfiable iff there is an S 
= ∅ in
pref(Fϕ) [8]. We extend Fϕ with four new arguments {t1, t2, t3, t4}
and the following attacks: (a) {(ti, tj), (tj , ti) | 1 ≤ i < j ≤ 4}, (b)
{(t1, c) | c ∈ C}, (c) {(t2, c), (t2, ϕ̄2) | c ∈ C} and (d) {(t3, ϕ̄3)}.
This extended AF is in CAFpref and moreover {t4} is a preferred ex-
tension thereof iff pref(Fϕ) = {∅} iff ϕ is unsatisfiable.

4 Limits of Compact AFs

Extension-sets obtained from compact AFs satisfy certain struc-
tural properties. Knowing these properties can help us decide
whether – given an extension-set S – there is a compact AF F such
that S is exactly the set of extensions of F for a semantics σ. This is
also known as realizability: A set S ⊆ 2A is called compactly realiz-
able under semantics σ iff there is a compact AF F with σ(F ) = S.

Among the most basic properties that are necessary for compact
realizability, we find numerical aspects like possible cardinalities of
σ-extension-sets. As an example, consider the following AF F2:

a1 a2

a3

c1 c2

c3

b1 b2

z

Let us determine the stable extensions of F2. Clearly, taking one ai,
one bi and one ci yields a conflict-free set that is also stable as long
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as it attacks z. Thus from the 3 · 2 · 3 = 18 combinations, only
one (the set {a1, b1, c2}) is not stable, whence F2 has 18 − 1 = 17
stable extensions. We note that this AF is not compact since z occurs
in none of the extensions. Is there an equivalent stable-compact AF?
The results of this section will provide us with a negative answer.

In [4] it was shown that there is a correspondence between the
maximal number of stable extensions in argumentation frameworks
and the maximal number of maximal independent sets in undirected
graphs [16]. Recently, the result was generalized to further seman-
tics [13]. To set the scene for the subsequent results building upon it,
we recall the result below (Theorem 3). For any natural number n we
define:5

σmax(n) = max {|σ(F )| | F ∈ AFn}
σmax(n) returns the maximal number of σ-extensions among all AFs
with n arguments. Surprisingly, there is a closed expression for σmax.

Theorem 3. The function σmax(n) : N → N is given by

σmax(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if n = 0 or n = 1,

3s, if n ≥ 2 and n = 3s,

4 · 3s−1, if n ≥ 2 and n = 3s+ 1,

2 · 3s, if n ≥ 2 and n = 3s+ 2.

What about the maximal number of σ-extensions on connected
graphs? Does this number coincide with σmax(n)? The next theorem
provides a negative answer to this question and thus gives space for
impossibility results as we will see. For a natural number n define

σcon
max(n) = max {|σ(F )| | F ∈ AFn, F connected}

σcon
max(n) returns the maximal number of σ-extensions among all con-

nected AFs with n arguments. Again, a closed expression exists.

Theorem 4. The function σcon
max(n) : N → N is given by

σcon
max(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n, if n ≤ 5,

2 · 3s−1 + 2s−1, if n ≥ 6 and n = 3s,

3s + 2s−1, if n ≥ 6 and n = 3s+ 1,

4 · 3s−1 + 3 · 2s−2, if n ≥ 6 and n = 3s+ 2.

A further interesting question concerning arbitrary AFs is whether
all natural numbers less than σmax(n) are compactly realizable.6 The
following theorem shows that there is a serious gap between the max-
imal and second largest number. For any positive natural n define

σ2
max(n) = max ({|σ(F )| | F ∈ AFn} \ {σmax(n)})

σ2
max(n) returns the second largest number of σ-extensions among all

AFs with n arguments. Graph theory provides us with an expression.

Theorem 5. Function σ2
max(n) : N \ {0} → N is given by

σ2
max(n) =

⎧⎪⎨
⎪⎩

σmax(n)− 1, if 1 ≤ n ≤ 7,

σmax(n) · 11
12
, if n ≥ 8 and n = 3s+ 1,

σmax(n) · 8
9
, otherwise.

Example 1. Recall that the (non-compact) AF F2 we discussed pre-
viously had the extension-set S with |S| = 17 and |Arg

S
| = 8. Is

there a stable-compact AF with the same extensions? Firstly, nothing
definitive can be said by Theorem 3 since 17 ≤ 18 = σmax(8). Fur-
thermore, in accordance with Theorem 4 the set S cannot be com-
pactly σ-realized by a connected AF since 17 > 15 = σcon

max(8).
Finally, using Theorem 5 we infer that the set S is not compactly
σ-realizable because σ2

max(8) = 16 < 17 < 18 = σmax(8).

5 In this section, unless stated otherwise we use σ as a placeholder for stable,
semi-stable, preferred, stage and naive semantics.

6 We sometimes speak about realizing a natural number n and mean realizing
an extension-set with n extensions.

The compactness property is instrumental here, since Theorem 5
has no counterpart in non-compact AFs. More generally, allowing ad-
ditional arguments as long as they do not occur in extensions enables
us to realize any number of stable extensions up to the maximal one.

Proposition 6. Let n be a natural number. For each k ≤ σmax(n),
there is an AF F with |Argstb(F )| = n and |stb(F )| = k.

Now we are prepared to provide possible short cuts when deciding
realizability of a given extension-set by initially simply counting the
extensions. First some formal definitions.

Definition 3. Given an AF F = (A,R), the component-structure
K(F ) = {K1, . . . ,Kn} of F is the set of sets of arguments, where
each Ki coincides with the arguments of a weakly connected compo-
nent of the underlying graph; K≥2(F ) = {K ∈ K(F ) | |K| ≥ 2}.

The component-structure K(F ) gives information about the num-
ber n of components of F as well as the size |Ki| of each component.
Knowing the components of an AF, computing the σ-extensions can
be reduced to computing the σ-extensions of each component and
building the cross-product. The AF resulting from restricting F to
component Ki is given by F↓Ki

= (Ki, RF ∩Ki ×Ki).

Lemma 7. Given an AF F with component-structure K(F ) =
{K1, . . . ,Kn} it holds that the extensions in σ(F ) and the tuples
in σ(F↓K1

)× · · · × σ(F↓Kn
) are in one-to-one correspondence.

Given an extension-set S we want to decide whether S is realizable
by a compact AF under semantics σ. For an AF F = (A,R) with
σ(F ) = S we know that there cannot be a conflict between any pair
of arguments in PairsS, hence R ⊆ PairsS = (A×A)\PairsS. In the
next section, we will show that it is highly non-trivial to decide which
of the attacks in PairsS can be and should be used to realize S. For
now, the next proposition implicitly shows that for argument-pairs
(a, b) /∈ PairsS, although there is not necessarily a direct conflict
between a and b, they are definitely in the same component.

Proposition 8. Let S be an extension-set. (1) The transitive closure
of PairsS, the set

(
PairsS

)∗, is an equivalence relation, that is, it is
reflexive, symmetric, and transitive. (2) For each AF F ∈ CAFσ that
compactly realizes S under semantics σ (that is, σ(F ) = S), the
component structure K(F ) of F is given by the equivalence classes
of

(
PairsS

)∗, that is, K(F ) is the quotient set of Arg
S

by
(
PairsS

)∗.

We will denote the component-structure induced by an extension-
set S as K(S). Note that, by Proposition 8, K(S) is equivalent to
K(F ) for every F ∈ CAFσ with σ(F ) = S. Given S, the computa-
tion of K(S) can be done in polynomial time. With this we can use
results from graph theory together with number-theoretical consider-
ations in order to get impossibility results for compact realizability.

Proposition 9. Given an extension-set S where |S| is odd, it holds
that if ∃K ∈ K(S) : |K| = 2 then S is not compactly realizable
under semantics σ.

Example 2. Consider the extension-set S = {{a, b, c}, {a, b′, c′},
{a′, b, c′}, {a′, b′, c}, {a, b, c′}, {a′, b, c}, {a, b′, c}} = stb(F1)
where F1 is the non-compact AF from the introduction. There, it
took us some effort to argue that S is not compactly stb-realizable.
Proposition 9 now gives an easier justification: PairsS yields K(S) =
{{a, a′}, {b, b′}, {c, c′}}. Thus S with |S| = 7 cannot be realized.

We denote the set of possible numbers of σ-extensions of a com-
pact and connected AF with n arguments as Pc(n). Although
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we know that p ∈ Pc(n) implies p ≤ σcon
max(n), there might be

q ≤ σcon
max(n) with q /∈ Pc(n). Having to leave the exact contents

of Pc(n) open, we can still state the following result:

Proposition 10. Let S be an extension-set that is compactly realiz-
able under semantics σ where K≥2(S) = {K1, . . . ,Kn}. Then for
each 1 ≤ i ≤ n there is a pi ∈ Pc(|Ki|) such that |S| = ∏n

i=1 pi.

Example 3. Consider the extension-set S′ = {{a, b, c}, {a, b′, c′},
{a′, b, c′}, {a′, b′, c}}. (In fact there exists a (non-compact) AF F
with stb(F ) = S′). We have the same component-structure K(S′) =
K(S) as in Example 2, but since now |S′| = 4 we cannot use Propo-
sition 9 to show impossibility of realization in terms of a compact
AF. But with Proposition 10 at hand we can argue in the following
way: Pc(2) = {2} and since ∀K ∈ K(S′) : |K| = 2 it must hold
that |S| = 2 · 2 · 2 = 8, which is obviously not the case.

In particular, we have a straightforward non-realizability criterion
whenever |S| is a prime number: the AF (if any) must have at most
one weakly connected component of size greater than two. Theo-
rem 4 gives us the maximal number of σ-extensions in a single
weakly connected component. Thus whenever the number of desired
extensions is larger than that number and prime, it cannot be realized.

Corollary 11. Let extension-set S with |Arg
S
| = n be compactly

realizable under σ. If |S| is a prime number, then |S| ≤ σcon
max(n).

We can also make use of the derived component structure of an
extension-set S. Since the total number of extensions of an AF is
the product of these numbers for its weakly connected components
(Lemma 7), each non-trivial component contributes a non-trivial
amount to the total. Hence if there are more components than the
factorization of |S| has primes in it, then S cannot be realized.

Corollary 12. Let extension-set S be compactly realizable under
σ and fz1

1 · . . . · fzm
m be the integer factorization of |S|, where

f1, . . . , fm are prime numbers. Then z1 + . . .+ zm ≥ |K≥2(S)|.

5 Capabilities of Compact AFs

The results in the previous section made clear that the restriction to
compact AFs entails certain limits in terms of compact realizability.
Here we provide some results approaching an exact characterization
of the capabilities of compact AFs with a focus on stable semantics.

5.1 C-Signatures

The signature of a semantics σ is defined as Σσ = {σ(F ) |
F ∈ AFA} and contains all possible sets of extensions an AF can
possess under σ (see [13] for characterizations of such signatures).
We first provide some alternative, yet equivalent characterizations of
these signatures in Proposition 13. Then we strengthen the concept
of signatures to “compact” signatures (c-signatures), which contain
all extension-sets realizable with compact AFs.

The most central concept when structurally analyzing extension-
sets is captured by the Pairs-relation from Definition 1. Whenever
two arguments a and b occur jointly in some element S of extension-
set S (i.e. (a, b) ∈ PairsS) there cannot be a conflict between those
arguments in an AF having S as solution under any standard seman-
tics. (a, b) ∈ PairsS can be read as “evidence of no conflict” between
a and b in S. Hence, the Pairs-relation gives rise to sets of arguments
that are conflict-free in any AF realizing S.
Definition 4. Given an extension-set S, we define Scf = {S ⊆ Arg

S
|

∀a, b ∈ S : (a, b) ∈ PairsS}, and S+ = max⊆ Scf.

b a

x1 x2 y1 y2 z1 z2

s3 s1 s2

Figure 2. AF compactly realizing an extension-set S �⊆ S+ under pref.

Proposition 13. Σnaive ={S 
= ∅ | S = S+}; Σstb ={S | S ⊆ S+};
Σstage ={S 
= ∅ | S ⊆ S+}.

Let us now turn to signatures for compact AFs.

Definition 5. The c-signature Σc
σ of a semantics σ is defined as

Σc
σ = {σ(F ) | F ∈ CAFσ}.
It is clear that Σc

σ ⊆ Σσ holds for any semantics. The following
result is mainly by the fact that the canonical AF

F cf
S
= (Acf

S
, Rcf

S
) = (Arg

S
, (Arg

S
× Arg

S
) \ PairsS)

has S+ as extensions under all semantics under consideration and
by extension-sets obtained from non-compact AFs which definitely
cannot be transformed to equivalent compact AFs.

Proposition 14. It holds that (1) Σc
naive = Σnaive; and (2) Σc

σ ⊂ Σσ

for σ ∈ {stb, stage, sem, pref}.

For ordinary signatures it holds that Σnaive ⊂ Σstage = (Σstb \
{∅}) ⊂ Σsem = Σpref [13]. This picture changes when considering
the relationship of c-signatures.

Proposition 15. Σc
pref 
⊆ Σc

stb; Σc
pref 
⊆ Σc

stage; Σ
c
pref 
⊆ Σc

sem; Σc
naive ⊂

Σc
σ for σ ∈ {stb, stage, sem}; Σc

stb ⊆ Σc
sem; Σc

stb ⊆ Σc
stage.

Proof. Σc
pref 
⊆ Σc

stb, Σc
pref 
⊆ Σc

stage: For the extension-set
S = {{a, b}, {a, x1, s1}, {a, y1, s2}, {a, z1, s3}, {b, x2, s1},
{b, y2, s2}, {b, z2, s3}} it does not hold that S ⊆ S+ (as {a, b, s1},
{a, b, s2}, {a, b, s3} ∈ Scf, hence {a, b} /∈ S+), but there is a com-
pact AF F realizing S under the preferred semantics, namely the one
depicted in Figure 2. Hence Σc

pref 
⊆ Σc
stb and Σc

pref 
⊆ Σc
stage.

Σc
pref 
⊆ Σc

sem: Let T = (S ∪ {{x1, x2, s1}, {y1, y2, s2},
{z1, z2, s3}}) and assume there is some F = (Arg

T
, R) compactly

realizing T under sem. Let S = {a, x1, s1}, T = {x1, x2, s1},
and U = {a, b}. There must be a conflict between a and x2, oth-
erwise (S ∪ T ) ∈ sem(F ). Since each T and U must defend it-
self, necessarily both (x2, a), (a, x2) ∈ R. By symmetry we get
{(a, α1), (α1, a), (b, α2), (α2, b) | α ∈ {x, y, z}} ⊆ R. Now
as U must not be in conflict with any of s1, s2, and s3, each si
must have an attacker which is not attacked by U or si. Hence
wlog. {(s1, s2), (s2, s3), (s3, s1)} ⊆ R. Now observe that S must
defend s1 from s3, therefore (x1, s3) ∈ R. Since now S+

F ⊇
(Arg

T
\ {y1, z1}), S has to attack both y1 and z1, a contradiction

to U ∈ sem(F ), as U+
F ⊂ S+

F . Σc
pref 
⊆ Σc

sem now follows from the
fact that pref(F ′) = T for F ′ = (AF , RF \ {(α1, α2), (α2, α1) |
α ∈ {x, y, z}}) where F is the AF depicted in Figure 2.

Σc
naive ⊂ Σc

σ for σ ∈ {stb, stage, sem}: First of all note that any
extensions-set compactly realizable under naive is compactly real-
izable under σ (by making the AF symmetric). Now consider the
extension-set S = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}. S 
= S+

since {b1, b2, b3} ∈ S+, hence S /∈ Σc
naive. Σc

naive ⊂ Σc
σ follows

from the fact that S is compactly realizable under σ [13].
Σc

stb ⊆ Σc
sem, Σc

stb ⊆ Σc
stage: Follow from the fact that stage(F ) =

sem(F ) = stb(F ) for any F ∈ CAFstb [6].
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5.2 The Explicit-Conflict Conjecture

So far we only have exactly characterized c-signatures for the
naive semantics (Proposition 14). Deciding membership of an
extension-set in the c-signature of the other semantics is more in-
volved. In what follows we focus on stable semantics in order to
illustrate difficulties and subtleties in this endeavor.

Although there are, as Proposition 1 showed, more compact AFs
for naive than for stb, one can express a greater diversity of outcomes
with the stable semantics, i.e. S = S+ does not necessarily hold.
Consider some AF F with S = stb(F ). By Proposition 13 we know
that S ⊆ S+ must hold. Now we want to compactly realize extension-
set S under stb. If S = S+, then we can obviously find a compact
AF realizing S under stb, since F cf

S
will do so. On the other hand,

if S 
= S+ we have to find a way to handle the argument-sets in
S− = S+ \ S. In words, each S ∈ S− is a ⊆-maximal set with
evidence of no conflict, which is not contained in S.

Now consider some AF F ′ ∈ CAFstb having S � S+ as its stable
extensions. Further take some S ∈ S−. There cannot be a conflict
within S in F ′, hence we must be able to map S to some argument
t ∈ (Arg

S
\ S) not attacked by S in F ′. Still, the collection of these

mappings must fulfill certain conditions in order to preserve a justi-
fication for all S ∈ S to be a stable extension and not to give rise to
other stable extensions. We make these things more formal.

Definition 6. Given an extension-set S, an exclusion-mapping is the
set RS =

⋃
S∈S−{(s, fS(S)) | s ∈ S s.t. (s, fS(S)) /∈ PairsS} where

fS : S− → Arg
S

is a function with fS(S) ∈ (Arg
S
\ S).

Definition 7. A set S ⊆ 2A is called independent if there exists an
antisymmetric exclusion-mapping RS such that it holds that ∀S ∈
S ∀a ∈ (Arg

S
\ S) : ∃s ∈ S : (s, a) /∈ (RS ∪ PairsS).

The concept of independence suggests that the more separate the
elements of some extension-set S are, the less critical is S−. An inde-
pendent S allows to find the required orientation of attacks to exclude
sets from S− from the stable extensions without interferences.

Theorem 16. For every independent extension-set S with S ⊆ S+ it
holds that S ∈ Σc

stb.

Proof. Consider, given an independent extension-set S and an
antisymmetric exclusion-mapping RS fulfilling the independence-
condition (cf. Definition 7), the AF F stb

S = (ArgsS, R
stb
S ) with Rstb

S =
(Rcf

S
\ RS). We show that stb(F stb

S ) = S. First note that stb(F cf
S
) =

S+ ⊇ S. As RS is antisymmetric, one direction of each symmetric
attack of F cf

S
is still in F stb

S . Hence stb(F stb
S ) ⊆ S+.

stb(F stb
S ) ⊆ S: Consider some S ∈ stb(F stb

S ) and assume that
S /∈ S, i.e. S ∈ S−. Since RS is an exclusion-mapping fulfill-
ing the independence-condition by assumption, there is an argument
fS(S) ∈ (Arg

S
\ S) such that {(s, fS(S)) | s ∈ S, (s, fS(S)) /∈

PairsS} ⊆ RS. But then, by construction of F stb
S , there is no a ∈ S

such that (a, fS(S)) ∈ Rstb
S , a contradiction to S ∈ stb(F stb

S ).
stb(F stb

S ) ⊇ S: Consider some S ∈ S and assume that S /∈ stb(F stb
S ).

We know that S is conflict-free in F stb
S . Therefore there must be some

t ∈ (Arg
S
\ S) with S 
�→F stb

S

t. Hence ∀s ∈ S : (s, t) ∈ (PairsS ∪
RS), a contradiction to the assumption that S is independent.

Corollary 17. For every S ∈ Σstb, with |S| ≤ 3, S ∈ Σc
stb.

Theorem 16 gives a sufficient condition for an extension-set to
be contained in Σc

stb. Section 4 provided necessary conditions with
respect to numbers of extensions. As these conditions do not match,
we have not arrived at an exact characterization of the c-signature for

stable semantics yet. In what follows, we identify the missing step
which has to be left open but, as we will see, results in an interesting
problem of its own. Let us first define a further class of frameworks.

Definition 8. We call an AF F = (A,R) conflict-explicit under
semantics σ iff for each a, b ∈ A such that (a, b) /∈ Pairsσ(F ), we
find (a, b) ∈ R or (b, a) ∈ R (or both).

As a simple example consider the AF F = ({a, b, c, d}, {(a, b),
(b, a), (a, c), (b, d)}) which has S = stb(F ) = {{a, d}, {b, c}}.
Note that (c, d) /∈ PairsS but (c, d) /∈ R as well as (d, c) /∈ R.
Thus F is not conflict-explicit under stable semantics. However, if
we add attacks (c, d) or (d, c) we obtain an equivalent (under stable
semantics) conflict-explicit (under stable semantics) AF.

Theorem 18. For each compact AF F which is conflict-explicit un-
der stb, it holds that stb(F ) is independent.

Proof. Consider some F ∈ CAFstb which is conflict-explicit under
stb and let E = stb(F ). Observe that E ⊆ E+. Further let RE =
{(b, a) /∈ R | (a, b)∈R} and consider the AF F s = (AF , RF ∪RE)
being the symmetric version of F . Now let E ∈ E−. Note that E ∈
cf(F ) = cf(F s). But as E /∈ E there must be some t ∈ (A\E) such
that for all e ∈ E, (e, t) /∈ RF . For all such e ∈ E with (e, t) /∈
PairsE it holds, as F is conflict-explicit under stb, that (t, e) ∈ RF ,
hence (e, t) ∈ RE, showing that RE is an exclusion-mapping.

It remains to show that RE is antisymmetric and ∀E ∈ E∀a ∈
Arg

S
\ E : ∃e ∈ E : (e, a) /∈ (RE ∪ PairsE) holds. As some pair

(b, a) is in RE iff (a, b) ∈ R and (b, a) /∈ R, RE is antisymmetric.
Finally consider some E ∈ E and a ∈ Arg

S
\ E and assume that

∀e ∈ E : (e, a) ∈ RE ∨ (e, a) ∈ PairsE. This means that e 
�→F a, a
contradiction to E being a stable extension of F .

Since our characterizations of signatures completely abstract away
from the actual structure of AFs but only focus on the set of exten-
sions, our problem would be solved if the following was true.

EC-Conjecture. For each AF F = (A,R) there exists an AF F ′ =
(A,R′) which is conflict-explicit under the stable semantics such
that stb(F ) = stb(F ′).

Theorem 19. Under the assumption that the EC-conjecture holds,
Σc

stb = {S | S ⊆ S+ ∧ S is independent}.

Unfortunately, the question whether an equivalent conflict-explicit
AF exists is not as simple as the example above suggests. We provide
a few examples showing that proving the conjecture includes some
subtle issues. Our first example shows that for adding missing at-
tacks, the orientation of the attack needs to be carefully chosen.

Example 4. Consider AF F below and observe stb(F ) =
{{a1, a2, x3}, {a1, a3, x2}, {a2, a3, x1}, {s, y}}.

s a1 a2
a3

x1 x2 x3 y

Pairsstb(F ) yields one pair of arguments a1 and s whose conflict is not
explicit by F , i.e. (a1, s) /∈ Pairsstb(F ), but (a1, s), (s, a1) /∈ RF .
Now adding the attack a1 �→F s to F would reveal the additional
stable extension {a1, a2, a3} ∈ (stb(F ))+. On the other hand by
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a1 s1 t1 u1

a2 s2 t2 u2

a3 s3 t3 u3

Figure 3. Guessing the orientation of non-explicit conflicts is not enough.

adding the attack s �→F a1 we get the conflict-explicit AF F ′ with
stb(F ) = stb(F ′).

Finally recall the role of the arguments x1, x2, and x3. Each of
these arguments enforces exactly one extension (being itself part of
it) by attacking (and being attacked by) all arguments not in this ex-
tension. We will make use of this construction-concept in Example 5.

Even worse, it is sometimes necessary to not only add the missing
conflicts but also change the orientation of existing attacks such that
the missing attack “fits well”.

Example 5. Let X = {xs,t,i, xs,u,i, xt,u,i | 1 ≤ i ≤ 3}∪
{xa,1,2, xa,1,3, xa,2,3} and S = {{si, ti, xs,t,i}, {si, ui, xs,u,i},
{ti, ui, xt,u,i} | i ∈ {1, 2, 3}}∪ {{a1, a2, xa,1,2}, {a1, a3, xa,1,3},
{a2, a3, xa,2,3}}. Consider the AF F = (A′ ∪ X,R′ ∪⋃

x∈X{(x, b), (b, x) | b ∈ (A′ \ Sx)} ∪ {(x, x′) | x, x′ ∈
X,x 
= x′}), where the essential part (A′, R′) is depicted in
Figure 3 and Sx is the unique set S ∈ S with x ∈ S. We
have stb(F ) = S. Observe that F contains three non-explicit
conflicts under the stable semantics, namely the argument-pairs
(a1, s1), (a2, s2), and (a3, s3). Adding any of (si, ai) to RF

would turn {si, ti, ui} into a stable extension; adding all (ai, si) to
RF would yield {a1, a2, a3} as additional stable extension. Hence
there is no way of making the conflicts explicit without chang-
ing other parts of F and still getting a stable-equivalent AF. Still,
we can realize stb(F ) by a compact and conflict-explicit AF, for
example by G = (AF , (RF ∪ {(a1, s1), (a2, s2), (a3, s3)}) \
{(a1, xa,2,3), (a2, xa,1,3), (a3, xa,1,2)}).

This is another indicator, yet far from a proof, that the EC-
conjecture holds and by that Theorem 19 describes the exact char-
acterization of the c-signature under stable semantics.

6 Discussion

We introduced and studied the novel class of σ-compact argu-
mentation frameworks for σ among naive, stable, stage, semi-stable
and preferred semantics. We provided the full relationships between
these classes, and showed that the extension verification problem is
still coNP-hard for stage, semi-stable and preferred semantics. We
next addressed the question of compact realizability: Given a set of
extensions, is there a compact AF with this set of extensions under
semantics σ? Towards this end, we first used and extended recent
results on maximal numbers of extensions to provide shortcuts for
showing non-realizability. Lastly we studied signatures, sets of com-
pactly realizable extension-sets, and provided sufficient conditions

for compact realizability. This culminated in the explicit-conflict
conjecture, a deep and interesting question in its own right: Given
an AF, can all implicit conflicts be made explicit?

Our work bears considerable potential for further research. First
and foremost, the explicit-conflict conjecture is an interesting re-
search question. But the EC-conjecture (and compact AFs in gen-
eral) should not be mistaken for a mere theoretical exercise. There
is a fundamental computational significance to compactness: When
searching for extensions, arguments span the search space, since ex-
tensions are to be found among the subsets of the set of all argu-
ments. Hence the more arguments, the larger the search space. Com-
pact AFs are argument-minimal since none of the arguments can be
removed without changing the outcome, thus leading to a minimal
search space. The explicit-conflict conjecture plays a further impor-
tant role in this game: implicit conflicts are something that AF solvers
have to deduce on their own, paying mostly with computation time. If
there are no implicit conflicts in the sense that all of them have been
made explicit, solvers have maximal information to guide search.
Acknowledgements. This research has been supported by DFG
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[14] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan
Woltran, ‘Complexity-sensitive decision procedures for abstract argu-
mentation’, AIJ, 206, 53–78, (2014).
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